
Intelligent Systems: Reasoning and Recognition

James L. Crowley

ENSIMAG 2 / MoSIG M1 Second Semester 2012/2013

Lesson 8 13 March 2013

Control of Reasoning and Decision Trees

Using Context to Structure Rules2
Contexts and Control Elements... 2
Declarative Control Structures.. 6

Decision Trees ...7
Example: Learn to guess the animal ... 7

Control of Reasoning and Decision Trees Lesson 8

 8-2

Using Context to Structure Rules

It is possible to organize an expert system as a finite state machine, where each state
corresponds to a rule “context” (also called a phase). Contexts can be organized into
cycles, networks or trees. The transition between contexts can be coded reactively
(as rules) or declaratively (as facts). Declarative control is slightly slower but
provides the advantages of being easy to inspect, easy to change, and easier to debug.
Examples include:

Diagnostic Systems (e.g. MYCIN) - tree of contexts
Systems for self-monitoring and self repair – cycles

Within each context, a set of rules encode the systems knowledge.

In general it is good practice to group rules into contexts. Each context (or phase)
concerns some sort of calculation coded as a body of rules that may fire in any order.

Contexts and Control Elements

Contexts are indicated by the existence of a token: an element in the facts list that
indicates the current context.

 (context <Name of the context>)

A classic example is a self-monitoring and self-repair system used for satellites and
space applications. Such systems typically operate in cycle with 3 contexts:

Fault-Detection: A set of rules that test the integrity of subsystems
Fault-Diagnosis: A set of rules that determine the origin of an error.
Fault-Repair: A set of rules that reconfigure the system to repair a fault.

One can imagine many ways to code control.
For example,

Control of Reasoning and Decision Trees Lesson 8

 8-3

1) It is possible to code the fault condition in each rule. However this is expensive
and can allow multiple interacting faults to interfere with each other.

2) It is possible to use salience to define a hierarchy for the rules.
 example : Fault Detection : Salience 3
 Fault Diagnosis : Salience 2
 Fault Repair : Salience 1.

This is a very bad idea that leads to complex un-maintainable code.
DO NOT DO THIS!

3) CORRECT METHOD: Use a “context” element to mark each context and then
use a rule to manage the transitions . This is the preferred solution.

The transition rules encode the control of the system. These can be reactive or
declarative. For example:

(defrule detection-to-diagnosis
 ?context <- (context detection)
 (fault ?f detected)
=>
 (retract ?context)
 (assert (context diagnosis))
 (printout t "Fault " ?f " detected!" crlf)
)

(defrule diagnosis-to-repair
 ?context <- (context diagnosis)
 (fault ?f detected)
 (fault ?f diagnosis ?d)
=>
 (retract ?context)
 (assert (context repair))
 (printout t " Fault " ?f " diagnosis " ?d crlf)
)

(defrule repair-to-detection
 ?c <- (context repair)
 (fault ?f diagnosis ?d repair ?r)
=>
 (retract ?c)
 (assert (context detection))
 (printout t "Fault repaired" crlf)
)

Control of Reasoning and Decision Trees Lesson 8

 8-4

Each context contains a collection of rules for domain knowledge that diagnosis and
suggest a repair for the fault. We can use a salience hierarchy to assure execution of
domain knowledge

Control of Reasoning and Decision Trees Lesson 8

 8-5

Salience Hierarchy:
 Level Salience
 Constraints 30 ;; Rules that eliminate hypotheses
 Expertise 20 ;; Domain knowledge
 Query 10 ;; Rules that interrogate the user
 Control 0 ;; Context transitions

(defrule find-fault
 (declare (salience 20))
 (context identification)
=>
 (printout t "So, what broke this time? ")
 (assert (fault id =(read)))
)

;; function to set a component on or off

(deffunction set (?a ?b) (printout t ?a " is set to " ?b
crlf))
(set motor off)

;;;
;;; repair knowledge in facts
;;;;

(defacts repair-knowledge
 (replace motor backup-motor)
)

(defrule repair-fault
 (declare (salience 20))
 (context repair)
 (fault identified ?p)
 (replace ?p ?replacement)
=>
 (set ?p off) ;; function defined by user.
 (set ?replacement on)
 (assert (fault isolated))
)

Control of Reasoning and Decision Trees Lesson 8

 8-6

Declarative Control Structures

An alternative to coding the context transitions in explicit rules, is to encode the
context transitions in a declarative data structure and use a single generic transition
rule.

(deffacts control-list
 (context detection)
 (next-context detection diagnosis)
 (next-context diagnosis repair)
 (next-context repair detection)
)

(defrule context transition rule.
 (declare (salience -10))
 ?P <- (context ?context)
 (next-context ?context ?next)
=>
 (retract ?P)
 (assert (context ?next))
)

This is an example of a DECLARATIVE representation of control knowledge.
Declarative structures make it possible to treat knowledge representations as data for
calculation. A declarative representation can be used as data to reason about
knowledge.

Control of Reasoning and Decision Trees Lesson 8

 8-7

Decision Trees
A decision trees can be used for diagnosis and classification problems.
They require that :

 The set of answers be finite and known in advance
 The space of problems can be reduced to a series of yes/no tests

A decision tree is composed of decision nodes and leaves.
The decision nodes compose the tree. The answers are found in the leaves.

Example: Learn to guess the animal

The following example is a system that learns to guess an animal by asking
questions.

The decision tree is composed of decision-nodes and answer-nodes.

(deffacts tree
(node root decision "Is it warm blooded?" n1 n2)
(node n1 decision "Does it purr ?" n3 n4)
(node n2 answer snake)
(node n3 answer cat)
(node n4 answer dog)
)

;; initialization rule

(defrule init
 (initial-fact)
=>
 (assert (current-node root))
)

(defrule init
=>
 (assert (current-node root))
)

Control of Reasoning and Decision Trees Lesson 8

 8-8

;; rule to request a decision node

(defrule make-decision
 ?N <- (current-node ?name)
 (node ?name decision ?q ?yes ?no)
=>
 (retract ?N)
 (format t "%s (yes or no) " ?q)
 (bind ?answer (read))
 (if (eq ?answer yes)
 then (assert (current-node ?yes))
 else (assert (current-node ?no))
)
)

;; rule to give answers

(defrule give-answer
 ?N <- (current-node ?name)
 (node ?name answer ?r)
=>
 (printout t "I guess that it is a " ?r crlf)
 (printout t "Am I right? (yes or no) ")
 (bind ?rep (read))
 (if (eq ?rep yes)
 then (assert (context play-again))
 (retract ?N)
 else (assert (context correct-answer))
)
)

;; rule to play again

(defrule play-again
 ?context <- (context play-again)
=>
 (retract ?context)
 (printout t "play again? (yes or no) ")
 (bind ?rep (read))
 (if (eq ?rep yes)
 then (assert (current-node root))
 else (save-facts "animal.dat")
 (halt)
)
)

Control of Reasoning and Decision Trees Lesson 8

 8-9

;; rule to learn the correct answer

(defrule learn-correct-answer
 ?P <- (context correct-answer)
 ?N <- (current-node ?name)
 ?D <- (node ?name answer ?r)
=>
 (retract ?P ?N ?D) ;; Ask the correct answer
 (printout t "What animal was it? ")
 (bind ?new (read))
 (printout t "What question should I ask to tell a "
 ?new " from a " ?r "? ")
 (bind ?question (readline))
 (bind ?newnode1 (gensym*))
 (bind ?newnode2 (gensym*))
 (assert (node ?newnode1 answer ?new))
 (assert (node ?newnode2 answer ?r))
 (assert
 (node ?name decision ?question ?newnode1 ?newnode2))
 (assert (context play-again))
)

;; Rule to open the file animal.dat

(defrule init
 (initial-fact)
=>
 (assert (file (open "animal.dat" data "r")))
)

Control of Reasoning and Decision Trees Lesson 8

 8-10

;; rule to close the file animal.dat

(defrule no-file
 ?f <- (file FALSE)
=>
 (retract ?f)
 (assert (current-node root))
)

;; rule to read the file.

(defrule init-file
 ?f <- (file TRUE)
=>
 (bind ?in (readline data))
 (printout t ?in crlf)
 (if (eq ?in EOF) then (assert (eof))
 else
 (assert-string ?in)
 (retract ?f)
 (assert (file TRUE))
)
)

(defrule eof
 (declare (salience 30))
 ?f <- (file TRUE)
 ?eof <- (eof)
=>
 (retract ?f ?eof)
 (close data)
 (assert (current-node root))
)

