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1 Describing Contrast with Edges 
Contrast is "change in image intensity".  
Classically, contrast was described by detecting "edges".  
 
1.1 Edge Detection using integer coefficient filters 
  

 
  
Image Gradient is:  
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Gradient Magnitude indicates edge strength 
 
    

! 

E(i, j) =
! 
E (i, j) = E1(i, j)2 + E2 (i, j)2 = "P(i, j)  

 
Gradient direction is the direction of maximum contrast  
As an angle: 
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As a vector:  
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We get the direction vector by normalizing the derivatives.   
 
Steps:  
1) Smoothing - Suppress high frequency noise 
2) Gradient - Compute first derivatives in row and column 
3) Detection - Non-maximum suppression with double threshold 
4) Chaining - Assembly of connected points above threshold. Elimination of chains 
where one of the points is not above a second threshold.  
5) Polygonal approximation (multiple algorithms exist).  
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1.2 Difference Operators: Derivatives for Sampled Signals  
 
For the function, s(x) the derivative can be defined as one sided or two sided.  
One sided derivative:  

! 

"s(x)
"x

= lim
#x$0

s(x + #x) – s(x)
#x
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For a discrete signal     

! 

"s(n)
"n

=
s(n +1) – s(n)

1
= s(n) * #1 1[ ]  

 
This is the derivative operator used by Roberts.  
 
A two sided (symmetric) derivative is 
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"s(x)
"x

= lim
#x$0

s(x + #x) – s(x – #x)
#x
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For a discrete signal  
 
 

! 

"s(n)
"n

=
s(n +1) – s(n –1)

1
= s(n) * #1 0 1[ ]  

 
This is the operator used by Sobel. 
 
Which is Better???   We need to look in the Fourier domain to find out.  
 
Note that a derivative is equivalent to convolution! 
 
1.3 Fourier Analysis of Derivative Operators 
 
 

 

! 

F{s(n)} = S(") = s(n)e# j"n
n=#$

$

%  

 
The Fourier Transform of a discrete signal is periodic in frequency with period π.  
 
When a signal s(x) is sampled to create s(n), sampling noise is introduced 
 

⇒  
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Sampling adds repeated copies of the spectrum at periods of two times the nyquist 
frequency 2Fn = 2/T . The result amplifies high frequency noise.   
 
A derivative operator amplifies sampling noise.  
 
The first difference filter d1(n) = [1, 0, -1] has a Fourier transform:  
 
 

! 

D(")= d(n)e# j"n
n=#1

1

$  

 

! 

D(")=1e# j"(#1) + 0e# j" 0 + (#1)e# j"(1)  
 

! 

D(")= e j" # e# j"  
 

! 

D(")= #2 j sin(")  
 
Calculation of a derivative is the same as convolution with the filter [1, 0, -1], which 
is the same as multiplication of the spectrums.  
 
 d(n) * s(n)    D(ω) · S(ω)  
 
 
The filter d(n) = [1, -1] is even worse. Its Fourier transform is  
 
  

! 

D(")= #2 j sin(" /2) 
 

  
 
The derivative used by Sobel attenuates aliasing noise better than the derivative used 
by Roberts.  
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1.4 Smoothing: The Binomial Low pass filter.  
 
Sobel uses a filter [1, 2, 1] to smooth. This is also an optimal filter.  
It is part of a family of filters generated by the binomial series.  
 
The binomial series is the series of coefficients of the polynomial:  
 

  

! 

(x + y)n = bm,n
m= 0

n

" xn#mym  

 
The coefficients can be computed as bm,n =bn(m) = [1, 1]n 

 
These are the coefficients of Pascal's Triangle.  
 
Les coefficients du suite binomial sont générés par le triangle de Pascal : 
 

n sum = 2n µ= n/2 σ2 = n/4 σ = n/2  Coefficients 
0 1 0 0 0 1 
1 2 0.5 0.25  1 1 
2 4 1 0/5  1 2 1 
3 8 1.5 0.75  1 3 3 1 
4 16 2 1 1 1 4 6 4 1 
5 32 2.5 1.25  1 5 10 10 5 1 
6 64 3 1.5  1 6 15  20 15 1 
7 128 3.5 1.75  1 7 21 35 35 21 7 1 
8 256 4 2 2  1 8 29 56 70 56 29 8 1 

 
These coefficients provide a family of low pass filters with remarkable properties.  
Notably, these are the best approximation for a Gaussian filter of finite extent.  
They also happen to have integer coefficients.  
  
  
 bn (m) =    b1(m)*n  =  [ 1,   1]*n  = n convolutions of [1,  1] 

 

Gain :  

! 

sn = bn (m)
m=1

n

" = 2n  

 
Center of gravity is  

! 

µn =
1
sn

bn
m=1

n

" (m) #m =
n
2

 

 

The variance is:   

! 

" n
2 =

1
sn

bn
m=1

n

# (m) $ (m %µ)2 =
n
4
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The Fourier transform for b2(m) = [1, 2, 1] is  
 

 

! 

B2(")= b2(m)e
# j"m

m=#1

1

$  
 

! 

B2(")=1e
# j"(#1) + 2e# j" 0 +1e# j"(1) 

 

! 

B2(")= 2 + e j" + e# j"  
 

! 

B2(")= 2 +2cos(") 

-π π0

4

!

 
 
If we normalize the gain: b2(m) = (1/4)[1, 2, 1] 
 
 

! 

B2(")=
1
2

+
1
2
cos(") 

 
Which is a cosine on a platform 

 
  

! 

B2(")=
1
2

+
1
2
cos(") 

Repeated convolution makes generates  
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Bn (")=
1
2

+
1
2
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The binomial coefficients provide a series of low pass filters with no ripples.  
In 2D, the filters provide separable filters that are nearly circularly symmetric 
 

  2-D   b2(i, j) =   
 1  2  1
 2  4  2
 1  2  1

   =   
 1
 2
 1

    ∗  1 2 1      
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1.5 Non-maximum suppression.  
 
Contrast points are local maxima in   E(i, j).  
 
 les points de contraste :     C(i, j) 
pour le gradient de la magnitude E(i, j) et orientation Φ(i, j) 
 
For each point :   
 
1) Determine the direction of maximum gradient:  
 
  

! 

"i =
" iP(i, j)
#P(i, j)

 

! 

"j =
"jP(i, j)
#P(i, j)  

 
2) Compare the gradient to its neighbors in this direction.  
 

   ∆i, ∆j

E(i, j)

0  
 

! 

c(i, j) =
E(i, j)  if E(i – "i, j – "j) # E(i, j) $ E(i +"i, j +"j)

0  Otherwise                                                    
% 
& 
' 

 

 
Construct a list of connected points for which E(i,j) ≠ 0.  
 
 
Techniques:  
 
1) Line scan edge chaining algorithm 
2) Edge following  
3) Hough Transform 
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2 The Hough Transform 
 
The Hough transform is an "optimal" statistical detector for estimating parametric 
functions from discrete samples. This method was invented for interpreting bubble 
chamber images in particle physics.  It is based on "voting" for possible parameters.  
 
This transform was invented by  
P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High 
Energy Accelerators and Instrumentation, 1959 
 
It was patented in a crude form by IBM in 1962 using  y = mx+c. 
 
It was made popular by Duda and Hart :  
Duda, R. O. and P. E. Hart, "Use of the Hough Transformation to Detect Lines and 
Curves in Pictures," Comm. ACM, Vol. 15, pp. 11–15 (January, 1972) 
 
2.1 The Algorithm 
 
Consider the line equation   
  
 x cos(θ) + y sin(θ) + c = 0 
 
In the image, for each x,y (free parameters) we need to determine (c, θ) 
 
In the Hough transform, we will create a dual space in which (c, θ) are free 
parameters.  
We will estimate lines as peaks in this dual space.  To find peaks we build an 
accumulator array : h(c, θ).  
 
Let  the c be an integer c ∈  [0, D] where D is the "diagonal distance of the image.  
Let θ be an integer   θ ∈  [0, 179] 
 
Algorithm:  
 allocate a table  h(c, θ) initially set to 0.  
 For each x, y of the image 
  for  θ from 0 to 179 
   c = –x cos(θ) – ysin(θ) 
   h(c, θ) = h(c, θ) + E(x, y) 
  End 
 End 
 
The resulting table accumulates contrast.   
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Peaks in h(c, θ) correspond to line segments in the image.  
 

  =>    
 
Because we know θ(x, y), we can limit the evaluation to θ(x, y)+/- ∆θ 
 
2.2 Generalisation of the Hough Transform 
  
We can represent a circle with the equation:  
 
  (x - a)2  + (y - b)2  = r2 
 
We can use this to create a Hough space h(a, b, r) for limited ranges of r.  
  
The ranges of a and b are the possible positions of circles.  
  
Algorithm  
 
Algorithm:  
 allocate a table  h((a, b, r) initially set to 0.  
 For each x, y of the image 
  for r from rmin to rmax 
   for a from 0 to amax 
    b = –y–sqrt( r2 – (x - a)2) 
    h(a,b,r) = h(a,b,r) + E(x,y).  
   End 
  End 
 End 
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3 Beyond Edges - Describing Local Appearance 
 
Appearance is what you see. Consider an image p(i, j).  
 
We seek a set of K local basis functions, fk(x,y) to describe "appearance" around a 
point in an image. These are referred to as "local image description functions" or 
simply "Local features". (x and y are integers).  
 
Each function, fk(x,y) gives an image "feature", ak, describing appearance in the 
neightborhood of the image position p(i, j).  
 

 

! 

ak (i, j) =
y="R

R

#
x="R

R

# p(i " x, j " y) fk (x, y) 

 
Projection of the image neighborhood p(i,j) onto this set of functions gives a  
 

"feature" vector for appearance, 

  

! 

! 
A (i, j) =

a1
a2
...
aK

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

 around position p(i,j).  

 
Ideally the set of local image description functions should be orthogonal 
 

 

! 

y="R

R

#
x="R

R

# p(i " x, j " y) fk (x, y) = 0   if n $m   for all (i, j) 

 
to minimize the number of features.  However, it can be shown that a function cannot 
be both orthogonal and shift invariant.  Because shift invariance is important for 
robust  view invariant  recognition, we compromise on orthoganality.  
 
For a variety of reasons, derivatives of the Gaussian function have been found to be 
very useful as local image features.   Chief among these are invariance to affine 
transformations.  
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4  Image Description Using Gaussian Derivatives 
 
4.1 The Gaussian Function 

The Gaussian Function is   

! 

G(x," ) = e
#
x 2

2" 2
 

 
The Gaussian function is invariant to affine transformations.   
 
 Ta{G(x, y, σ) }  = G(Ta{x}, Ta{y},Ta{σ})  
 

Recall from lesson 2 we saw that  

! 

xr = xc
F
zc

  

The apparent size of an object is inversely proportional to its distance 
 
A change in size (or scale) is a special case of an affine transform:  
 
 
 Ts{G(x, y, σ) }  = G(Ts{x}, Ts{y},Ts{σ}) = G(sx, sy, sσ)  
 
This is just one of the many interesting properties of the Gaussian function.   
 
4.2 Gaussian Derivatives Operators 
 

The Gaussian function is:  

! 

G(x," ) = e
#
x2

2" 2  

Fourier Transform:  

! 

F{e
"
x2

2# 2 } =G($,# ) = 2% # e
"

1
2
# 2$ 2

 
 
Scale property:   

! 

G(x, 2" ) =G(x," )#G(x," ) 
 
Derivatives:   
 
 

! 

"G(x,# )
"x

= – x
# 2 G(x,# ) =Gx (x,# ) 

  

 

! 

" 2G(x,# )
"x2

=
x $# 2

# 4 G(x,# ) =Gxx (x,# ) 

  

 

! 

" 3G(x,# )
"x3

=
x3 $ x# 2

# 6 G(x,# ) =Gxxx (x,# ) 
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4.3 2D Gaussian functions 
 

2D Gaussian Kernel:     

! 

G(x, y," ) = e
#
(x2+y2 )
2" 2

 
 

Fourier Transform:     

! 

F{e
"
x2+y2

2# 2 } =
$
2# 2 e

"
1
2
# 2 (u2+v2 )

 

 

Separability:      

! 

G(x,y,") = e
#
(x 2 +y 2 )
2" 2 = e

#
x 2

2" 2 $e
#
y 2

2" 2
 

 
 
Scale property:   

! 

G(x,y, 2") =G(x,y," )#G(x,y,") 
 
Derivatives:   
 
 

! 

"G(x, y,# )
"x

= – x
# 2 G(x, y,# ) =Gx (x, y,# ) 

 

! 

"G(x, y,# )
"y

= – y
# 2 G(x, y,# ) =Gy(x, y,# )  

 

! 

" 2G(x, y,# )
"x2

=
x $# 2

# 4 G(x, y,# ) =Gxx (x, y,# ) 

 

! 

" 2G(x, y,# )
"x"y

=
xy
# 4 G(x, y,# ) =Gxy(x, y,# ) 

 

! 

" 3G(x, y,# )
"x3

=
x3 $ x# 2

# 6 G(x, y,# ) =Gxxx (x, y,# ) 

 
The Laplacian of the Gaussian:  
  
 

! 

"2G(x, y,# ) =Gxx (x, y,# )+Gyy(x, y,# )  
 
Diffusion Equation:  
 

 

! 

"2G(x, y,# ) =
$ 2G(x, y,# )

$x2
+
$ 2G(x, y,# )

$y2
=
$G(x, y,# )

$#
 

As a consequence:   

! 

"2G(x, y,# ) $ G(x, y,#1) –G(x, y,# 2 )( )  
 
This is called a Difference of Gaussian (DoG) and typically requires   σ1≥ 1.4 σ2 
It is common to use:  

! 

"2G(x, y,# ) $ G(x, y, 2# )%G(x, y,# ) 
 
But note that from the scale property :   

! 

G(x, y, 2" ) # G(x, y," )*G(x, y," )  
 
so that  

! 

"2G(x, y,# ) $ G(x, y,# )*G(x, y,# )%G(x, y,# ) 
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We can use these functions to create a basis set of receptive fields for appearance 
 
  G = (Gx, Gy, Gxx, Gxy, Gyy, Gxxx, Gxxy, Gxyy, Gyyy)  

 
 

    
 

    
 

The Gaussian receptive fields Gx, Gy, Gxx, Gxy, Gyy, Gxxx, Gxxy, Gxyy, Gyyy. 
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4.4 Using the Gaussian to compute image derivatives 
 
For an image p(i,j), the derivatives can be approximated by convolution with 
Derivatives of Gaussians.   
 
 

! 

"p(i, j)
"x

*G(x, y) =
"
"x
* p(i, j)*G(x, y) =

"
"x
*G(x, y)* p(i, j) =

"G(x, y)
"x

* p(i, j)  

 
Thus we can approximate an image derivative as 

! 

Px (i, j) " Gx *P(i, j) 
However to compute Gx, it is NECESSARY to specify σ.   
Small σ is not necessarily best.     
  
 

! 

px (i, j," ) # Gx (x, y," )* p(i, j) 
 
or more simply 

! 

px (i, j," ) # Gx (" )* p(i, j) 
 
Simarly:  
 

! 

py(i, j," ) # Gy(" )* p(i, j) 
 

! 

pxx (i, j," ) # Gxx (" )* p(i, j) 
 

! 

pxy(i, j," ) # Gxy(" )* p(i, j) 
 

! 

pyy(i, j," ) # Gyy(" )* p(i, j) 
 
The Gradient of the image   

! 

! 
" p(i, j) is calculated by   

! 

! 
" G(# )* p(i, j)    

 

where  
  

! 

! 
" G(# ) =

Gx (# )
Gy(# )
$ 

% 
& 

' 

( 
)     This gives:  

 

Gradient: 
  

! 

! 
" p(i, j,# ) =

px (i, j,# )
py(i, j,# )
$ 

% 
& 

' 

( 
) *
! 
" G(# )* p(i, j) =

Gx (# )* p(i, j)
Gy(# )* p(i, j)
$ 

% 
& 

' 

( 
)  

  
Laplacien: 

! 

"2p(i, j,# ) ="2G(# )* p(i, j) = pxx (i, j,# )+pyy(i, j,# ) $ Gxx (# )* p(i, j)+Gyy(# )* p(i, j) 
 
To use Gaussian functions to describe images we need to sample the Gaussian an 
limit its extent. That is, we must define Gaussian Filters.  
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5 Gaussian Funtion as digital Filters 
 
Computers represent image as 2D sampled digitized signals. Because they are 
sampled, processing requires convolution with a sampled filter.  
 
To obtain a digital Gaussian filter we must perform two operations: 
1) Sample the spatial axis x, y at a rate of ∆x, and ∆y 
2) Limit the spatial extent with a window WN(x,y)  
 
5.1 Sampling 
 
Let us consider the case of a 1-D Gaussian.  
 

  

! 

G(x," ) = e
#
x2

2" 2  
 
To sample we replace x with n∆x.  
 

 

! 

G(n"x,# ) = e
$
(n"x)2

2# 2  
 
This is modeled as multiplication by an infinite pulse chaine.  
 

  
 
We can set the sample size to ∆x=1.   This gives a sampled function 
 

 

! 

G(n," ) = e
#
n2

2" 2  
 

 

 xei(t)  = x(t) . Te δΤe(t)  =  Te ∑
n=∞

∞
 x(t) δ(t – nTe)  

 
Sampling converts the Fourier Transform from an infinite function to a periodic 
function.  The ideal sample function is a  
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X(f)

f
–fe 0 fe 2fe–2fe  

For a spectrum:   
X(f)

f 
 
Sampling creates multiple copies intervals of fe.    
The Nyquist frequency is 

! 

fn =
fe
2

=
1
2"x

 

 
X(f)

f
–fe 0 fe 2fe–2 fN fN 2 fN– fN  

 
The fourier Transform of the Gaussian is  

 

! 

F{e
"
x2

2# 2 } =G($,# ) = 2% # e
"

1
2
# 2 (2%f )2

 
 
The tail of the Gaussian beyond fN = ½∆x   will be converted to noise.  
We need to insure that the integral from fn to infinite is small.  
 
Rule of thumb : assure that   ∆x ≤  σ 
 
5.2 Setting the Spatial Extent (Window Size).  
 
To represent this in a computer we must also specify the spatial extent (number of 
samples), N of the filter.   We set N = 2R + 1 where R is the "radius" of the function.  
 
This gives us 2 parameters to control:  
 
 1) The scale of the Gaussian σ/∆x 
 2) the size of the support N = 2R+1 
 
Truncating a function to a finite support is equivalent to multiply by a window WN(n) 



 
 

17 

 
When we limit G(x,σ) to a finite support, we multiply by a window 
  

 G(n, σ) = G(n, σ) · wN(n) where 

! 

wN (n) =
1     for - R " n " R
0    otherwise        
# 
$ 
% 

 

 
Multiplying by a finite window is equivalent to convolving with the Fourier 
transform of the finite window:  
 
 

! 

F{G(n," ) # wN (n)} =G($," ) *WN ($) 
 

where    

! 

WN (") =
sin("N 2)
sin(" 2)

     and     

! 

G(",# ) = 2$  # e
%

1
2
# 2" 2

 

 

    
 
For N <  7, the ripples in WN(w) dominate the spectrum and corrupt the resulting 
Gaussian. 
 
At N=7 the effect is tolerable but significant.  
 
At N≥ 9 the effect becomes minimal 
  
In addition for  σ/∆x < 1, the phenomenon of aliasing folds a significant amount of 
energy at the nyquist frequency, corrupting the quality (and the invariance) of the 
Gaussian function.  
 
Finally, it is necessary to assure that the "gain" of the Gaussian filter is 1. This can be 
assured by normalizing so that the sum of the coefficients is 1. If the Gaussian were 
infinite in extent, then 
 

 

! 

e
"
x2

2# 2

x="$

$

% = 2&#    

 
However, because we truncate the Gaussian to an extent n ±R, we must calculate the 
sum of the coefficients, A:  
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! 

A = e
"
n2

2# 2

n=–R

R

$  

 
The Gaussian filter is thus normalized by dividing by A to give a unit gain Receptive 
Field.  

 

! 

G(n," ) =
1
A
e
#
n2

2" 2

 

 
The sampled Gaussian and its derivatives are:  

 

! 

G(n," ) = e
#
n 2

2" 2  
 

 

! 

Gx (n," ) = – n
" 2 G(x," ) = – n

" 2 e
#
n2

2" 2
  

 

 

! 

Gxx (n," ) =
n2 #" 2

" 4 G(n," ) =
n2 #" 2

" 4 e
#
n2

2" 2  

  

 

! 

Gxxx (n," ) = – n
3 # n" 2

" 6 G(n," ) = – n
3 # n" 2

" 6 e
#
n2

2" 2  

 
Note that there is only one parameter: σ. This determines the limit of the resolution 
for the position of a contrast point.  
 
Note the scale parameter σ determines the "resolution" of the derivatives.  
You MUST specify σ. The smallest σ is not always the best.  
Many computer vision algorithms give unpredictable results because the researchers 
forget to specify the scale σ at which the algorithm was validated. 
  
 
 


