
Intelligent Systems: Reasoning and Recognition

James L. Crowley

ENSIMAG 2 and MoSIG M1 Winter Semester 2012

Lecture 2 3 February 2012

Outline:

Introduction to Expert Systems2
Application Domains.. 2
Programming Techniques for Expert Systems. 3

The MYCIN Expert System ..5
MYCIN: An Antibiotics Therapy Advisor.................................. 6
Facts... 8
PARAMETERS ... 10
The MYCIN Confidence Factor ... 10
RULES... 11
Evidential Reasoning and combining Hypotheses : 12
Control ... 13

Introduction to Expert Systems: MYCIN

2-2

Introduction to Expert Systems
Application Domains

Expert systems are a class of software that is useful for domains that are
 Subjective,
 Poorly formalized, and
 require manipulating large numbers of poorly related facts.

Examples include diagnosis, counseling, debugging, game playing, design in
complex spaces and problem solving.

 Expert system provides an alternative to algorithmic programming.

Expert Systems are typically constructed by hand coding symbolic expressions of the
expertise provided by a "domain expert".

Such systems are typically constructed by iterative refinement through the
collaboration of a programmer and a domain expert. The programmer "imitates" the
system behavior, evoking corrections and advice by the expert. The programmer then
encodes these as fact, rules and data structures.

The result is a system that proposes solutions to problems using superficial reasoning.

Such systems may appear to understand but are in fact superficial. They tend to
reason without regard to meaning. The system can make non-sense statements if
applied outside their domain.

 The classic formula for an expert system is :

 Program = symbolic knowledge + inference.

The symbolic knowledge encodes poorly structured facts, connected by symbolic
(syntactic) reasoning. The classic formula proposed by E. Feigenbaum, is

 Expertise = A lot of (symbolic) knowledge + a little bit of (syntactic) reasoning

An expert system combines a domain independent "inference engine" with a database
of domain knowledge. The domain knowledge is encoded symbolically as rules and
facts. The inference engine provides a form of reasoning.

Introduction to Expert Systems: MYCIN

2-3

This view decomposes intelligence into two problems:

1) The design of processes for domain independent reasoning, and
2) The symbolic representation of knowledge.

Programming Techniques for Expert Systems.

We can identify three categories of expert system technologies:
1) Rule based systems
2) Schema based systems
3) Logic programming.

Most expert systems rely on combinations of two of these or all three.

Rules:

Rules have the form:

 IF condition THEN action
or IF condition THEN conclusion DO action

Forward chaining rules systems reason by matching conditions to facts to determine
actions. Such systems view rules as conditioned reflexes.

Backward chaining rule system reason by matching conclusions to search for
conditions that "explain". In such systems, rules are used as representation of causal
relations.

In some systems rules can be used for both forward and backward chaining.
In either case, the core problem is "matching" available facts to either the "condition"
part of the rule (forward chaining) or the conclusion part (backward chaining).

Examples that we will see:

Forward Chaining :
OPS-5 -> ART -> CLIPS (C-Language Integrated Production Systems).

Backward Chaining:
MYCIN -> E-MYCIN

Introduction to Expert Systems: MYCIN

2-4

Schema Systems:

 Schema systems provide a form of structured symbolic knowledge. They are
often used to "declarative" knowledge. Examples include "Frames", "Scripts" and
"Semantic Nets".

 Schema systems encode facts as "objects" and are naturally encoded with
object-oriented programming. Schema systems enable expression of symbolic
hierarchies and allow reasoning by inheritance and message passing.

Examples :
 KRL -> KEE -> Nexpert
 -> Knowledge Craft (Integrates OPS-5, Prolog and KRL).

Logic Programming:

Symbolic logic is the mathematics for expert systems.

Expressing ideas and natural language with symbolic logic is a powerful tool for
analysis and communications.

Logic expressions are often used for communication of declarative knowledge, and to
express superficial reasoning.

Logical programming can be implemented with a universal inference rule named
Resolution using Horn Clauses.

At one point, logic programming was proposed as a universal tool for informatics.
However, logic programming suffers from a problem of algorithmic complexity.

 Example : Prolog-1 => Prolog-2 => Prolog-3

Introduction to Expert Systems: MYCIN

2-5

The MYCIN Expert System

In the 1970's, at Stanford University, Edward Feigenbaum directed a research group
named the "Heuristic Programming Project". Their central thesis was

 Intelligence = Large quantity of domain knowledge and a little bit of reasoning.

This led to an investigation into Knowledge Representation Techniques.

From 1970 to 1973 the sought to build a system that could interpret data from Mass
Spectrograms.

A Mass Spectrograph is a device that uses electrical or magnetic fields to determine
the masses of atoms or molecules in a sample. A beam of ions is passed through the
electrical or magnetic field. The field deflects the ions at different angles depending
on their masses, thereby breaking the beam into separate, identifiable bands.

The result of their project was a system named DENDRAL.
DENDRAL was an un-maintainable "hack". However, by 1973 the group had learned
to express declarative knowledge as "rules". It was decided to start over, building a
"rule based" system for "anti-biotic Therapy".

Penicillin was discovered in 1929 and came into widespread use as an antibiotic in
the 1940's. During the 1950's and 1960's a variety of new antibiotics were discovered.
Each had unique properties and uses. By the 1970s, most medical doctors required
consultation with a specialized expert to prescribe antibiotics.

The Stanford University Medical School was a world famous center for research in
antibiotics. The Medical School asked the Computer Science School for help.
Feigenbaum proposed to construct an "Artificial Expert" antibiotic therapy advisor.

The system developed from 1973 to 1978. It evolved into the first true "Expert
System". As such it became the model for a new class of systems.

Introduction to Expert Systems: MYCIN

2-6

MYCIN: An Antibiotics Therapy Advisor.

By 1975, a large variety of Antibiotics were available. Each antibiotic was effective
against a specific set of microbes, and triggered a specific set of side effects.

Patients were often allergic to certain families of antibiotics.
MYCIN was designed to be used by ordinary doctors who lacked the specialized
training required to develop anti-biotic therapies.

Specifications: The system was required to be:

• Easy to use
• Reliable
• Able to manipulate large numbers of unrelated facts.
• Able to use inexact and incomplete facts

Able to explain its advice.

MYCIN was composed of approximately 500 rules, manipulating a large base of
structured facts. The rules provided procedural knowledge to

1) Request or infer the required information
2) Apply specialized knowledge to determine a therapy
3) Provide advice to doctors
4) Respond to questions about its reasoning.

Introduction to Expert Systems: MYCIN

2-7

Utilisateur

Interface Homme-Machine

Explication

Moteur d'Inférence

Acquisition de Connaissance

Connaissance du Domaine

Connaissance du Problème

ExpertInformaticien

Trace

Introduction to Expert Systems: MYCIN

2-8

Facts

All facts in MYCIN are represented by a "quadruple":

 (CONTEXT, PARAMETER, VALUE, CF)

CONTEXTs structure reasoning and thus provide control.
For the MYCIN antibiotic therapy advisor, 10 contexts were required.

PERSON: Data about the patient
OPERS: Past Medical procedures
CURCULS: Medical cultures taken from the patient
CURDRUGS: Current drug therapies for the patient
CURORGS: Known microbial infections in the patient
OPDRUGS: Drugs used during recent medical procedures
PRIORCULS: Past medical cultures
PRIORDRUGS: Past medical therapies
PRIORORGS: Past infections.

Contexts are organized in a tree.

MYCIN Context Tree was structured to respond to 4 questions.
1) What symptoms does the patient show
2) What microbes infect the patient
3) What antibiotics are effective against the microbes
4) What is the most appropriate antibiotic.

The context tree was called the "Dynamic Tree", and was composed of instances of
each context.

Introduction to Expert Systems: MYCIN

2-9

Patient-1

Culture-1 Culture-2 Operation-1

Organism-1 Organism-2 Drug-1 Drug-2

Drug-3

The context tree served to focus reasoning.

Introduction to Expert Systems: MYCIN

2-10

PARAMETERS

Each context was composed of a number of parameters. Each parameter was
described by a data structure.

Attributes of Parameters included:

Expect : {Y/N, NUMB, ONE_OF, ANY_OF}
PROMPT : A sentence to ask for the value of the parameter.
LABDATA (Y/N) : Whether the parameter should be requested from the doctor or
inferred automatically by the system.
 (LABDATA was later renamed "ASK-FIRST")
LOOKAHEAD: A list of rules for inferring the value of a Parameter.
TRANS: An English language explanation of the parameter and the meaning of its
values.

Extensive pre-coding of English sentences allowed to system to appear capable of
intelligent dialog. The MYCIN system could almost pass the Turing Test!

PARAMETER Categories:
 SingleValued: Parameter could take a single value. If multiple values are
provided the most likely must be determined.
 MultiValued: The parameter could have multiple values. A fact was created for
each value.
 Binary: A Boolean value; A single value that can be Yes or No

Reasoning between alternative single valued parameters required some for me
evidential reasoning. For this, the MYCIN team invented a "Confidence Factor".

The MYCIN Confidence Factor

ALL facts in MYCIN are labeled with a confidence Factor CF ∈ [-1, 1]
ALL rules in MYCIN are labeled with a FORCE: CF ∈ [-1, 1].

Introduction to Expert Systems: MYCIN

2-11

RULES

MYCIN reasons with goal directed backward chaining rules.

Rules in MYCIN implement a form of "ABDUCTION".

 A ∧ B CFR > C

At any instant, MYCIN is trying to PROVE a GOAL (C).
The goal is the conclusion part of a rule. For this MYCIN attempts to prove the
condition part of the rule, A ∧ B

 A ∧ B CFR > C = To prove C, try to prove A and B.

Allowed Rule Structures:

 A ∧ B ∧ C -> D
 A ∧ (B ∨ C) -> D
 (A ∨ B ∨C) ∧ (D ∨E) -> F

Disjunctions of conjunctions are not formally required. However, doctors to explain
reasoning often use them.

Not allowed
 A ∨ B ∨ C -> D
 A ∧ (B ∨(C ∧ D)) -> E

MYCIN contains templates that allow it to interpret the chain of reasoning as English
language sentences

Introduction to Expert Systems: MYCIN

2-12

Evidential Reasoning and combining Hypotheses :

Given two hypotheses H1 and H2

 H1 ∧ H2 -> H3

Conjunction: The confidence for H1 ∧ H2 is :

 CF(H1 ∧ H2) = min{ CF(H1), CF(H2) }

Disjunction : Confidence for H1 or H2

 CF(H1 ∨ H2) = max { CF(H1), CF(H2) }

Rules apply a force "CFR"

 A ∧ B CFR > C CFC = CFR * min { CFA , CFB}

A ∧ (B ∨ C) CFR > D CFD = CFR * min { CFA , max{CFB, CFC}}

An important case is when two independent paths reach the same hypothesis:

The MYCIN team invented a rule called COMBINE

Combine(CF1,CF2) =

 CF1 + CF2 (1 - CF1) Si CF1 ≥ 0 et Si CF2 ≥ 0

 CF1 + CF2 Si CF1 • CF2 < 0
 1 - min{ | CF1| , | CF2 | }

 -Combine(-CF1, -CF2) Si CF1 ≤ 0 et Si CF2 ≤ 0

Alors :
(H1, CF1) et (H2 , CF2) et (H1 = H2) -> (H1, CF1 = Combine (CF1, CF2))

En MYCIN CF(¬H) = - CF(H)

Introduction to Expert Systems: MYCIN

2-13

 Control

Two interleaved procedures are used:

MONITOR :

Introduction to Expert Systems: MYCIN

2-14

FINDOUT:

Introduction to Expert Systems: MYCIN

2-15

Interactions :

 At any instant the user may ask

WHY? The system provide an interpretation of the trace of reasoning
HOW: The system provides the source for a fact.

Coupled with the extensive use of preprogrammed sentences, this made the system
appear to be intelligent. However the knowledge was shallow.

