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Notation 
x   a variable 
X   a  random variable (unpredictable value)   
  

! 

! x  →     A vector of D variables.   
  

! 

! 
X    A vector of D random variables.   
D   The number of dimensions for the vector    

! 

! x 
 
 or   

! 

! 
X  

! 

ym{ }   A set of class labels (indicators) for the samples. 
   For a 2 Class problem, tm is -1 or +1 

  

! 

S =
! 
X m , ym{ }  A set of M Training samples M samples and their indicator variable.  

M   Total number of training samples. (think M = Mass) 
 

Inner Project :   
  

! 

! x , ! z = xd
d=1

D

" zd  
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Perceptrons 
 
A perceptron is an incremental learning method for linear classifiers invented by 
Frank Rosenblatt in 1956.  The perceptron is an on-line learning method in which a 
linear classifier is improved by its own errors.   
 
A perceptron learns a hyper-plane to separate training samples.  When the training 
data are perfectly separated the data is said to be "separable".  Otherwise, the data is 
said to be non-separable.  
 
The "margin", γ,  is the smallest separation between the two classes. (The distance to 
the point closest to the hyper-plane).  
   
When all the training samples are separable, the algorithm uses the errors to update 
the hyperplane plane until there are no more errors.  When the training data is non-
separable, the method may not converge, and must be arbitrarily stopped after a 
certain number of iterations.  
 
The perceptron linear decision function is  
 

   

! 

if  ( ! w T
! 
X + b) > 0 then positive else negative  

 

This is sometimes written as :     

! 

f (! x ) =
! w T ! x + b  

   

! 

h(! x ) = sign( ! w T ! x + b)  
     
Assume that we have a training set  of M samples   

! 

S =
! 
X m , ym{ }   

where ym=+1 for positive detection and -1 for negative detection.  
 
A classifier is defined by a D coefficient weight vector   

! 

! 
W and a bias b.  

 
A classifier correctly classifies the sample   

! 

(
! 
X m , ym ) if  

 
   

! 

ym (
! w T
! 
X m+ b) > 0  

  
The learning algorithm uses the update rule:  
 

   

! 

if  ym ( ! w i
T ! X m+ b) " 0 then ! w i+1

T #
! w i

T$ ym

! 
X m  
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where  η is a learning rate.  
 
The result is a linear combination of the training samples:  
 

 
  

! 

! w T = am ym

! 
X m

m=1

M

"   where am ≥ 0.  

 
Only mistakes are used to drive learning. The coefficient am reflects the difficulty of 
classifying the training sample   

! 

(
! 
X m , ym ) .  

  
Algorithm:  
   

! 

! w o " 0;bo " 0;i" 0; 
 R ← max { || X 

→

m || } 
  REPEAT 
  FOR m = 1 TO  M DO  
     

! 

if  ym ( ! w i
T ! X m+ bi ) " 0 then ! w i+1

T #
! w i

T$ ym

! 
X m  

    bi+1 ← bi + η ym R2; 
    i ← i + 1;  
   END IF 
  END FOR 
 UNTIL no mistakes in FOR loop.  
 
The margin, γ is the minimum distance of a sample from the hyperplane 
 

 
 

If the coefficients are normalized:   
 
 

! 

" W i =
Wi

||Wi ||
  

! 

" b i =
bi

||Wi ||
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Then after each stage the margin for each sample, m, is  
 
   

! 

"m = ym (
! w i

T ! X m+ bi )  
 
and the margin is  γ=min{γm} 
 
The quality of the perceptron is give by the histogram of the margins.  
 
  

Duality of Perceptrons.  
 
The dual representation for a perceptron is :  
 

 
  

! 

f (
! 
X ) =

! w T
! 
X + b = am ym

! 
X m ,
! 
X 

m=1

M

" + b  

 

where 
  

! 

! w T = am ym

! 
X m

m=1

M

"  

 
The update rule can be rewritten as  
 

 
  

! 

if  ym am ym

! 
X m ,
! 
X 

m=1

M

" + b # 0 then am $ am +%  

 
Note that in the dual representation, data only appears inside the inner product.  
This is an important property for kernel methods.  
 
A perceptron is a sort of Support Vector machine.   
All SVM's have the property of duality.  
 
Perceptrons and SVMs are called "Linear Learning Machines" or LLMs 
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Using Linear Learning Machines for non-linear problems.  
 
Linear classifiers are easy to learn, and can execute very fast.   
However,  
1) they are sensitive to noisy data 
2) They require linearly separable data 
3) They can only be applied to Numerical feature Vectors.  
 
We can apply linear classifiers to non-linear problems using a non-linear mapping of 
the feature space. 
 
Map a non-linear problem onto a space where the data is linearly separable:  
 

 
 
However, there this can require VERY large D.  
 
Solution: Kernel methods 
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Introduction to Kernel Methods 
 
Kernel Methods transform map a non-linear function into a linear function in a much 
higher dimensional space. Thus they enable linear discriminant methods to be applied 
to a large class of problems where the data are dispersed in a non-linear manner.  
 
As an example, consider the appearance manifold in PCA space of the a normalized 
face imagette, under changes in face orientation.  The imagettes map to a continuous 
manifold in the PCA space, but the manifold is a very non-linear subspace of PCA.  
 
Linear methods are very well suited for use with very high dimensional feature space 
provided that the patters can be separated by a plane.  
 
Kernel Methods provide an elegant solution for clustering and classifying patterns in 
complex non-linear data by mapping the data into a higher dimensional space where 
the data can be separated by a linear method.  
 

 
 
Kernels make it possible to  
1) Solve the computational problems of high dimensional spaces 
2) Be extended to infinite dimensional spaces 
3) Be extended to non-numerical and symbolic data! 
 

Dual representation for an LLM:  
  

! 

f (
! 
X ) = am ym

! 
X m ,
! 
X 

m=1

M

" + b  

 
To apply a kernel, we replace two arguments by the dot product of a function, φ(X) 
 

   

! 

! 
X 1,
! 
X 2 " k(

! 
X 1,
! 
X 2 ) = #(

! 
X 1),#(

! 
X 2 )  
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This gives an LLM of the form:  
 

 
  

! 

f (
! 
X ) = am ym "(

! 
X m ),"(

! 
X )

m=1

M

# + b  

 
SVM's are Linear Learning Machines that  
 
1) Use a dual representation and  
2) Operate in a kernel induced space  
 

Kernel Functions and Kernel Methods 
 
A Kernel is a function that returns the inner product of a function applied to two 
arguments.   The Kernel matrix is also known as the Gram Matrix.  
 
 

 
  

! 

f (
! 
X ) = am ym "(

! 
X m ),"(

! 
X )

m=1

M

# + b  

 
The key notion of a kernel method is an inner product space.  
 

  
  

! 

! x , ! z = xd
d=1

D

" zd  

 
In general, we will define a kernel function as a quadratic mapping of a feature space, 
φ(x) 
 
   

! 

k(
! 
X 1,
! 
X 2 ) =

! 
" (
! 
X 1)

T ! " (
! 
X 2 ) 

 
Note that the kernel is a symmetric function of its arguments, so that  
 
   

! 

k(
! 
X 1,
! 
X 2 ) = k(

! 
X 1,
! 
X 2 ) 

 
There are a large variety of possible kernel functions that can be used, depending on 
the problem. 
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example:  Polynomial Kernel: 
 

 
 
Spiral (separated with Gaussian Kernels) 
 

 
 
In order to be "valid", a kernel must correspond to a scalar product of some feature 
space.  That is, there must exist a space  such that  
 

 
  

! 

k(
! 
X 1,
! 
X 2 ) =

! 
" (
! 
X 1)

T ! " (
! 
X 2 ) = "n(

! 
X 1) #

n=1

N

$ "n(
! 
X 2 ) 

 
For example, consider a quadratic kernel in a space where D=2.  
 
In this case,    

! 

k(! x , ! z ) = (! x T ! z )2 = (x1z1 + x2z2 )
2 = (x1

2z1
2 + 2x1z1x2z2 + x2

2z2
2 ) 

 
This can be expressed as an inner product space where 
 
   

! 

"(! x ) = x1
2 + 2x1x2 + x2

2  
 
giving:  
 
   

! 

k(! x , ! z ) =
! 
" (! x )T

! 
" (! z ) 

 
A necessary, and sufficient condition that a Kernel function be "valid" is that the 
GRAM matrix be positive and semidefinite for all choices of    

! 

{
! 
X m}  
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A GRAM (or Grammian) Matrix for   

! 

! x  is   

! 

! x T ! x  
 
The linear vector   

! 

! x  is projected onto a quadratic surface  
 

Gaussian Kernel 
 
The Gaussian exponential is very often used as a kernel function.  
In this case:  
 
 

  

! 

k(! x , ! " x ) = e#
! x # ! " x 
2$ 2  

 
This is often called the Gaussian Kernel. It is NOT a probability density.  
We can see that it is a valid kernel because:  
 
   

! 

! x " ! # x 2 =
! x T ! x " 2 ! x T ! # x +

! 
# x T ! # x  

 
Among other properties, the feature vector has infinite dimensionality.  
 
Kernel functions can be defined over graphs, sets, strings and text! 
 
Consider for example, a non-vectoral space composed of a Set of words S.  
Consider two subsets of S  A1 ⊂ S and A2 ⊂ S  
 
The can compute a kernel function of A1and A2 as  
 

   

! 

k(! x , ! " x ) = 2 A1#A2    
 
where |A| denotes the number of elements (the cardinality)  of a set.  
 
Probabilistic generative models tend to be more robust with missing data and data of 
variable length, while Probabilistic Discriminative models tend to give better 
performance and lower cost.  
 
We can combine generative and discriminative models using a kernel. 
 
 Given a generative model p(X) we can define a kernel as:  
 
   

! 

k(! x , ! " x ) = p(! x )p(! " x )  
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This is clearly a valid kernel because it is a 1-D inner product.   Intuitively, it says 
that two feature vectors, x, are similar if they both have high probability.  
 
We can extend this with conditional probabilities to  
 

 
  

! 

k(! x , ! " x ) =
n=1

N

# p(! x | n)p(! " x | n)p(n) 

 
Two vectors,    

! 

! x , ! " x  will give large values for the kernel, and hence be seen as 
similar, if they have significant probability for the same components.  
 
Kernel functions enable application of linear classifiers to non-linear problems.  
Let us look at some linear classifiers and how they can be used.  
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Fisher Linear Discriminant.  
 
The Discrimination problem can be viewed as a problem of projecting the D 
dimensional feature space onto a lower dimensional K dimensional space.  
 
The tool for such projection is the Fisher discriminant.  
 

Two Class solution 
The principle of the Fisher linear discriminant is to project the vector X with Dx onto 
a variable z (D=1) by a linear projection F such that the classes are most separated.  
 
   

! 

z =
! 
F T "
! 
X  

 
A Fisher metric, J(F) is used to choose F such that the two classes are most separated.   
 

x1

x2

 

x1

x2

 
 
The error rates of the classification (FP, FN) depends on the direction of   F.   
  
Note that F is commonly normalized  so that    

! 

! 
F =1  

 
Assume a set of Mk training samples for each class,   

! 

{
! 
X m

k }  
 
The average for each class is:  
 

 
  

! 

! 
µ k = E{

! 
X k} =

1
M k

! 
X m

k

m=1

M k

"  
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Moments are invariant under projections. Thus the projection of the average is the 
average of the projection.   
 
   

! 

µz
k = E{FT "

! 
X m

k } = FT "E{
! 
X m

k } = FT "
! 
µ k   

 
The inter-class distance between between classes 1 and 2  is  
 
   

! 

d12 = µz
1 "µz

2 =
! 
F ( ! µ 1 "

! 
µ 2 ) 

 
The Fisher metric is designed to make the inter-class distance, d12, as large as 
possible.  The key concept is the "scatter" of the samples.  Scatter can be seen as 
unormalised covariance.  
  
The “scatter” for the Mk samples   

! 

{
! 
X m

k }  of the  set k is a matrix : Sk.  
This is the same as an "unnormalised" covariance. 
  

 
  

! 

Sk = M k"k = (
! 
X m

k #
! 
µ k )(
! 
X m

k #
! 
µ k )T

m=1

M k

$  

 
The transformation F projects the vector 

  

! 

! 
X  onto  a scalar z.  

 
   

! 

z =
! 
F T "
! 
X  

 
The scatter of the class after projection is  
 

  

! 

Sz
k = (zm

k "µz
k )2

m=1

Mk

#  

 
The fisher criteria tries to maximize the ratio of the separation of the classes 
compared to their scatter by maximizing the ratio of within and between class scatter. 
 

 

! 

J(F) =
µz
1 "µz

2( )2

sz
1 + sz

2
 

 
Let us define the between class scatter as     

! 

SB = ( ! µ 1 "
! 
µ 2 )(
! 
µ 1 "
! 
µ 2 )

T  
 
then     

! 

µz
1 "µz

2( )2 = FT ( ! µ 1 "
! 
µ 2 )(
! 
µ 1 "
! 
µ 2 )

T( )F = FTSBF  
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And let us define within class scatter as  
 

 
  

! 

SW = S1 + S2 = (
! 
X m
1 "
! 
µ 1)

m=1

M1

# (
! 
X m
1 "
! 
µ 1)

T + (
! 
X m
2 "
! 
µ 2 )

m=1

M 2

# (
! 
X m
2 "
! 
µ 2 )

T
 

 
Then 
  

 

! 

sz
1 + sz

2 = FT (S1 + S2 )F = FTSWF  
 
Then  
 

 

! 

J(F) =
µz
1 "µz

2( )2

sz
1 + sz

2 =
FTSBF
FTSWF  

 
Taking the derivative with respect to F, we find that J(F) is maximized when  
 
 

! 

FTSBF( )SWF = FTSWF( )SBF  
 
Because 

! 

SBF  is always in the direction   

! 

! 
µ 1 "
! 
µ 2 

 
Dropping the scale factors  

! 

FTSBF( ) and

! 

FTSWF( )  we obtain 
 
   

! 

SWF =
! 
µ 1 "
! 
µ 2  

 
and thus   

! 

F = SW
"1 ! µ 1 "

! 
µ 2( )  

  
 

Fisher's Discriminant for Multiple Classes.  
 
Fisher's method can be extended to the derivation of K > 2 linar discriminants.  
Let us assume that the number of features is greater than the number of classes,  
D > K.  
 
We will look for functions that project the D features on D' < D features to form a 
new feature vector,   

! 

! 
Y = ! w T

! 
X   (note that there is no constant term).  

 
as before, we define the class Mean,   

! 

! 
µ k , class Scatter 

! 

Sk  and within-class scatter SW   
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Class Mean:  
  

! 

! 
µ k =

1
M k

! 
X m

k

m=1

M k

"  

Class Scatter: 
  

! 

Sk = (
! 
X m

k

m=1

M k

" #
! 
µ k )(
! 
X m

k #
! 
µ k )

T   

Within Class Scattter 
  

! 

! 
µ k =

1
M k

! 
X m

k

m=1

M k

"  

 
We need to generalisation of the between class covariant.  
The total mean is:   
 

 
  

! 

! 
µ =

1
M

! 
X m

k

m=1

M k

"
k=1

K

" =
1
M

M k
k=1

K

" ! 
µ k  

 
The between class scatter is:  
 

 
  

! 

SB = Mk (
! 
µ k

k=1

K

" #
! 
µ )( ! µ k #

! 
µ )T  

 
Which gives the total scatter as 
 
 

! 

ST = SW + SB  
 
We can define similar scatters in the target space:  
 

 
  

! 

! 
µ k =

1
M k

! 
Y m

k

m=1

M k

"   
  

! 

! 
µ =

1
M

! 
Y m

k

m=1

M k

"
k=1

K

" =
1
M

M k
k=1

K

" ! 
µ k  

 

 
  

! 

" S W =
k=1

K

# (
! 
Y m

k

m=1

M k

# $
! 
µ k )(
! 
Y m

k $
! 
µ k )

T  

 

 
  

! 

" S B = M k (
! 
µ k

k=1

K

# $
! 
µ )( ! µ k $

! 
µ )T  

 
We want to construct a set of projections that maximizes the between class scatter 
 
 J(W)=Tr{W·SW·WT)-1(WSBWT) 
 
The W values are determined by the D' eigenvectors of  

! 

SW
"1SB  that correspond to the 

D' largest Eigenvalues.  
 


