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Notation 
x   a variable 
X   a  random variable (unpredictable value)   
  

! 

! x  →     A vector of D variables.   
  

! 

! 
X    A vector of D random variables.   
D   The number of dimensions for the vector    

! 

! x 
 
 or   

! 

! 
X  

E   An observation. An event.  
k   Class index 
K   Total number of classes 
ωk   The statement (assertion) that E  ∈ Tk 
M   Total number of examples.  
{Xm}   A set of M examples of the feature X for events 
{Tm}   A set of class labels (indicators) for the samples 
{

! 

Xm
k }  A set of Mk examples for the class k.  

   
  

! 

{Xm} = !
k=1,K

{Xm
k }   

Mk   Number of examples for the class k. (think M = Mass) 

   

! 

M = Mk
k=1

K

"  
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Probability and Uncertainty 
 
One could even say that recognition is a problem of assigning signals to categories in 
the presence of uncertainty. The core problem of recognition is uncertainty.   
 
We can distinguish two separate kinds of uncertainties:  Confidence and Accuracy 
(Precision).  
 
Confidence:   Freedom from doubt, belief in the truth of a proposition.  
Accuracy :  Reproducibility of a measurement.  
 
Confidence concerns the truth of a statement. The proposition is generally formalized 
as a predicate. It is either true or false.    
 
Accuracy concerns a selecting an entity from an ordered set.  Generally there is some 
order between the possible values with an associated distance metric.  The accuracy 
refers to the size of a subset of possible values or the distance spanned by possible 
values.  
 
In popular language, accuracy is often confused with precision.  
In informatics:   
  Accuracy is the degree to which a measurement can be reproduced.  
  Precision is the detail with which a measurement is represented.  
 
For example, a measurement may be represented with 32 bits of precision, but be 
accurate to only 8 bits (1 part in 256).  
In common usage, precision and accuracy are often used for the same concept.  
 
Probability is a powerful tool for both Confidence and Accuracy.  
 
Both confidence and precision may be addressed in using Bayesian probabilities.  
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Probability as Frequency of Occurence.  
 
A frequency based definition of probability is sufficient for many practical problems.   
 
Suppose we have M observations of random events, {Em}, for which Mk of these 
events belong to the class k.  The probability that one of these observed events 
belongs to the class k is: 
 

 Pr(E ∈ Tk ) = 
Mk
M     

 
If we make new observations under the same observations conditions (ergodicity), 
then it is reasonable to expect the fraction to be the same. However, because the 
observations are random, there may be differences.  These differences will grow 
smaller as M grows larger.   
 
The average (root-mean-square) error for  
 

 Pr(E∈Tk ) = 
Mk
M     

 
will be proportional to Mk and inversely proportional to M.  
 
 

Axiomatic Definition of probability 
An axiomatic definition makes it possible to apply analytical techniques to the design 
of classification systems.  Only three postulates (or axioms) are necessary:   
In the following, let E be an event, let S be the set of all events, and let Tk be set of 
events that belong to class k with K total classes.   

  

! 

S = Tk
k=1,K
!   

 
Postulate 1 :  ∀ Tk ∈ S  :  p(E∈Tk ) ≥ 0 
Postulate 2 :  p(E∈S) = 1 
Postulate 3 :  
∀ Ti, Tj ∈ S  such that   Ti ∩ Tj = ∅ :  p( E∈ Ti ∪ Tj) = p(E∈Ti) + p(E∈Tj)  
 
A probability function is any function that respect these three axioms.  
A probability is the truth value produced by a probability function.  
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Histogram Representation of Probability 
We can use histograms both as a practical solution to many problems and to illustrate 
fundamental laws of axiomatic probability.  
 
When we have K classes of events, we can build a table of frequency of occurrence 
for events from each class  h(E  ∈ Tk).  
 
The table of "frequency of occurrence" is also known as a "histogram", h(x).  
The existence of computers with gigabytes of memory has made the computation of 
such tables practical.  
 
The table h() can be implemented as a hash table, using the labels for each class as a 
key. Alternatively, we can map each class onto K natural numbers k <- Tk 
 
 
  ∀m=1, M  : if Em ∈ Tk  then h(k) := h(k) + 1;  
 
After M events, given a new event,  E,   
 

   

! 

p(E " Tk ) = p(k) =
1
M
h(k) 

 
Problem: How many observations, M, do we need?  
 
Answer:    Given N possible values of X, h(x) has Q = N cells.  
 
For M observations, in the worst case the RMS error between an estimated h(X) and 
the true h(x) is  proportional to  O(Q/M).  
 
For most applications,   M ≥  10 Q  (10 samples per "cell") is reasonable.  
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Bayesian Probability 
Bayesian probability can be seen as an extension of logic that enables reasoning with 
uncertain statements. Bayesian probability interprets probability as "a measure of a 
state of knowledge", rather than as "frequency of occurrence".  
 
In Bayesian probability, the confidence of a proposition is represented by a 
probability number between 0 and 1.  
 
To evaluate the confidence of a hypothesis, we determine a prior probability 
This prior is then updated by observing new evidence.  
 
The Bayesian interpretation provides a standard set of procedures and formulae to 
perform this calculation.  
 
"Bayesian" refers to the 18th century mathematician and theologian Thomas Bayes 
(1702–1761), who provided the first mathematical treatment of a non-trivial problem 
of Bayesian inference.  Bayesian probability was made popular by Simon Laplace in 
the early 19th century.  
 
The rules of Bayesian logic can be justified by requirements of rationality and 
consistency and interpreted as an extension of logic. Many modern machine learning 
methods are based on objectivist Bayesian principles.   
 
Although Bayesian logic is based on axiomatic probability, we can use histograms to 
illustrate the  fundamental rules.  
 

Illustrating Bayes Rule with Histograms 
 
Suppose we have a set of events described by a pair of properties.  
For example, consider the your grade in 2 classes C1 and C2.  
Assume your grade is a letter grade from the set {A, B, C, D, F}.  
 
We can build a 2 dimensional hash table, where each letter grade acts as a key into 
the table  h(x1, x2).  
 
This hash table has  Q= 5 x 5 = 25 cells.  
 
 
Each student is an observation with a pair of grades (x1, x2).     
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  ∀m=1, M  : if  h(x1, x2) := h(x1, x2)  + 1;  
 
Question: How many students are needed to fill this table? 
Answer  M ≥ 10Q = 250.  
 
An example, consider the table as follows:  
 
             X2 \ X1 A B C D F Total 
 A 2 5 3 1   11 
 B 5 16 8 1   30 
 C 2 12 20 3 1 38 
 D   2 6 2 2 12 
 F     4 4 1 9 
 Total 9 35 41 11 4 100 
 
Any cell, (x1, x2) represents the probability that a student got grade X1 for course C1 
and grade X2 for  course C2. 
 
 p(X1 = x1 ∧ X2 = x2) = 

! 

1
M
h(x1, x2 ) 

 
Let us note the sum of column i as ci and sum of row j as rj and the value of cell i,j as 
hi,j 
 

 

! 

ci = h(
j=A,B,....F
" i, j)  

! 

rj = h(
i=A,B,....F
" i, j)  

! 

hij = h(i, j)  

 
for example  rB

 
 = 30,  cB = 35, hBB = 16 

 
From this table we can easily see three fundamental laws of probability:  
 

Sum Rule:   

! 

p(X1 = x1) = p(X1 = x1,X2 = x2 ) =
x2=A,B,...,F
" 1

M
h(x1, x2 ) =

rx1
Mx2=A,B,...,F

"  

 

example:   

! 

p(x1 = B) = p(x1 = B, x2 ) =
x2=A,B,...,F
" 1

M
h(B, x2 ) =

rB
Mx2=A,B,...,F

" =
30
100

 

 
from which we derive the sum rule:  
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! 

p(X1 = x1) = p(X1 = x1,X2 = x2 )
X2

"  

 
or more simply 
 

 

! 

p(X1) = p(X1,X2 )
X2

"  

 
This is sometimes called the "marginal" probability, obtained by "summing out" the 
other probabilities.  
 
Conditional probability :   
We can define a "conditional" probability as the fraction of one probability given 
another.  
 
 

! 

p(X1 = i | X2 = j) =
hij
rj

      and  

! 

p(X2 = j | X1 = i) =
hij
ci

 

 
For example.  
 
  

! 

p(X1 = B | X2 = B) =
hBB
rB

=
16
30

 and 

! 

p(X2 = B | X1 = B) =
hBB
cB

=
16
35

 

 
 From this, we can derive Bayes rule :  
 
 

! 

p(X1 = i | X2 = j) " p(X2 = j) =
hij
rj
" rj = hij =

hij
ci
" ci = p(X2 = j | X1 = i) " p(X1 = i) 

 
or more simply 
 
 

! 

p(X1 | X2 ) " p(X2 ) = p(X2 | X1) " p(X1) 
 
or more commonly written: 
 
 

! 

p(X1 | X2 ) =
p(X2 | X1) " p(X1)

p(X2 )
 

 
Product Rule:   
 
We can also use the histogram to derive the product rule.  
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Note that 

! 

p(X1 = i,X2 = j) = hij   
 
  

! 

p(X1 = i | X2 = j) =
hij
ri

 

and  
 
 

! 

p(X1,X2 ) = p(X1 | X2 ) " p(X2 ) 
 
These rules show up frequently in machine learning and Bayesian estimation.  
 

Co-occurrence of classes and features 
We can also mix classes and features in a table of co-occurrences.  
 
Features are properties of events that be used to classify the event.  
 
Our problem is to build a box that maps a set of features   

! 

! 
X   into a class Tk from a set 

of K possible Classes.  
 

 
 
Just as we can compute the table of probabilities for classes of events, we can 
compute probabilities for values of feature, whether the values are symbolic or 
numeric.   
 
This is equivalent to considering each value of the feature as a class. We can then 
compute a frequency table of possible values.  
 
For example, suppose we have events E described by a feature X that can take on one 
of N values.  
Given a training set of M events {Xm} where each event is labeled with a ground truth 
class label {Tm} ∈  {1, 2,…, K}.  
 
We can build a NxK frequency table h(x, k):  ∀m=1, M  : h(Tm, Xm) = h(Tm, Xm)+1 
 
 
The table h(k,x) gives the joint probability p(Tm=k, X=x)  
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As before:  

  

! 

P(X = x) =
1
M

h(k, x)
k=1

K

"  

  

! 

P(T = k) =
1
M

h(k, x)
x=1

N

"  

  

! 

P(X = x |T = k) =
h(k, x)

h(k, x)
k=1

K

"
 

  

! 

P(T = k | X = x) =
h(k, x)

h(k, x)
x=1

N

"
 

 
 x=1 x=2 … x=N  

k=1      
k=2      
…     p(T=k|X=x) 

k=K      
   p(X=x|T=k)   

 
Note that we did not need to use numerical values for T or X.   
 
If the features are symbolic,  h(T,X) is a hash, and the feature and class labels act as a 
hash key.  In this case h(T,X) is called a bag.  
 
"Bag of Features" methods are increasingly used for learning and recognition.  
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Probability of Numerical  Features. 
  
Frequency tables can, of course, also be used for numerical features.  
For numerical features, there is a natural order relation (e.g. ">") between the values 
of the features.  This order relation makes possible additional operations.  
 
For example, suppose we have M observations of an event described by a feature, X, 
where X can have one of N values from set  X ∈ [xmin, xmax].  
To simplify, we can map X onto the natural numbers {1, 2, …, N} 
 
Is observed features are continous values, we can always map these to the natural 
numbers:  
 if X ≤ xmin then n = 1 
 if X ≥ xmax then n = N.  
 else  

! 

n =Trunc(N "
X # xmin
xmax # xmin

)+ 1 

 
We can use a frequency tables, h(x) with Q=N cells  to compute the probability of 
obtaining a particular value.  
 
Given M observations, and build a table of frequencies for each value.  
 
 ∀m=1, M  : if Xm ∈ x  then h(x) := h(x) + 1;  
 
after M events, the probability of an observation having value X = x is:  
 

 

! 

p(X = x) =
1
M
h(x) 

 
Consider a problem of assigning an event E to one of two classes, {A, B} based on a 
numerical "feature" X, and that the numerical feature X is mapped to the natural 
numbers [1, ..., N].  
 
Assume that we have a Training Sets with MA observations of class A:  {

! 

Xm
A}  

and MB observations of class B {

! 

Xm
B}.  The total training data is composed of  

 
 M=MA+MB observations  

! 

{Xm} = {Xm
A}"{Xm

B} 
 
We can build frequency tables:   hA(x), hB(x)and h(x).  
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  ∀m=1, MA  : if 

! 

Xm
A  = x  then hA(x) := hA(x) + 1;  

  ∀m=1, Mb  : if 

! 

Xm
B  = x  then hB(x) := hB(x) + 1;  

  ∀m=1, M  : if 

! 

Xm  = x  then h(x) := h(x) + 1;  
 
 Note that h(x) = hA(x) + hB(x).  
 
then   
  

! 

p(X = x) =
1
M
h(x) 

  

! 

p(X = x | E = A) =
1
MA

hA (x) 

  

! 

p(X = x | E = B) =
1
MB

hB (x) 

and   

! 

p(E = A) =
MA

M
=

MA

MA +MB

 

 
From Bayes Rule:    

 

! 

p(E = A | X = x) =
p(X = x | E = A)p(E = A)

p(X = x)
=

1
MA

hA(x)
MA

M
1
M

h (x)
=
hA (x)
h (x)

 

The probability that event E is class A given feature X is x is simply the ratio of the 
histogram for class A divided by the histogram of X for all classes.  
 
Thus we can extend Bayes Rule to computing the probability of a proposition based 
on numerical values of features.  
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Histograms and the Curse of Dimensionality 
Computers and the Internet make it possible to directly apply histograms to very 
large amounts of data, and to consider very large feature sets. For such applications it 
is necessary to master the size of the histogram and the quantity of data.  
 
Assume a feature vector   

! 

! 
X , composed of D features, where each feature has one of N 

possible values.  
 
The histogram "capacity" is the number of cells  Q=ND. Obviously, this grows 
exponentially with D. It is often convenient to reason in powers of 2 here.  
 
Note  210=Kilo,  220=Meg,  230=Giga,  240=Tera,  250=Peta,  
  
Here is a table of numbers of cells, Q, in a histogram of D dimensions of N values.  
  N  \    d 1 2 3 4 5 6 

2  21 22 23 24 25 26 

4  22 24 26 28 210 =1 Kilo 212 =2 Kilo 

8  23 26 29 212 215 218 

16  24 28 212 216 220 = 1 Meg 224 = 4 Meg 

32 25 210 =1 Kilo 215 220 = 1 Meg 225 230 = 1 Gig 

64 26 212 218 224 230 = 1 Gig 236  

128 27 214 221 = 2 Meg 228  235  242 =2 Tera 

256 28 216 224 232 = 2 Gig 240 = 1 Tera 248  
 
In this case, the RMS error between a histogram and the underlying density is  
 
 ERMS (h(X)-P(X)) =  O(Q/M).  
 
As a rule, it is recommended to have 10 samples per cell.   M ≥ 10 Q.  
The worst case occurs when the true underlying density is uniform.     

 
For example, for D=5 features each with N = 32 values, the histogram has 1 Meg 
cells and you need 10 Meg of data.  
 
For D= 6 features with N=64 values, h() has 1 Gig of cells and you need 10 Giga of 
samples. 
For higher numbers of values or features, it is more convenient to work with 
probability densities.  
 


