# Formation et Analyse d'Images 

James L. Crowley

ENSIMAG 3
Séance 1

## Two lines make a point, two points make a line

Given two points $\quad \overrightarrow{\mathrm{P}}=\left(\begin{array}{l}\mathrm{x} \\ \mathrm{y} \\ 1\end{array}\right) \quad$ and $\quad \overrightarrow{\mathrm{Q}}=\left(\begin{array}{l}\mathrm{u} \\ \mathrm{v} \\ 1\end{array}\right)$ and two lines $\quad \vec{L}=(\mathrm{abc}) \quad$ and $\quad \vec{M}=(\mathrm{def})$

1) Two lines make a point. $\quad \vec{P}=\vec{L} \times \vec{M}$
a) Use the cross product to derive the formula for the coefficients for the point $\overrightarrow{\mathrm{P}}$ at the intersection of two lines $\overrightarrow{\mathrm{L}}, \overrightarrow{\mathrm{M}}$
b) Derive the formula for the same coefficients using the determinant.
2) Two points make a line $L^{T}=\vec{P} \times \vec{Q}$
a) Use the cross product to derive the formula for the coefficients for the line LT passing through two points $\overrightarrow{\mathrm{P}}, \overrightarrow{\mathrm{Q}}$
b) Derive the formula for the same coefficients using the determinant. .
