Intelligent Systems: Reasoning and Recognition

James L. Crowley

ENSIMAG 2/ MoSIG M1 Second Semester 2010/2011

Lesson 6 18 February 2011

Rule based programming - Introduction to CLIPS 6.0
Production System Architectureccccoeevviiiiiinnnnnnnn. 2

CLIPS : “C Language Integrated Production System”3
Rules In CLIPS ... 3
Variables ... 4

Rule Based programming with CLIPS Lesson 6

Production System Architecture

MATCH
(Rete) [

Mémoire de Travail
("Facts List")

Interface
Utilisateur

Exécution |« Sélection

The system implements an "inference engine" that operates as a 3 phase cycle:
y p g P p y

The cycle is called the "recognize act" cycle.

The phases are:
MATCH: match facts in Short Term memory to rules
SELECT: Select the correspondence of facts and rules to execute
EXECUTE: Execute the action par of the rule.

6-2

Rule Based programming with CLIPS Lesson 6

CLIPS : “C Language Integrated Production System”

Rules in CLIPS

CLIPS rules allow programming of reactive knowledge.
Rules are defined by the "defrule" command.

(defrule <rule-name> [<comment>]

[<declaration>] ; Rule Properties

<conditional-element>* ; Left-Hand Side (LHS)
=>

<action>*) ; Right-Hand Side (RHS)

If the rule with the same name exists, it is replaced.
else the rule is created.

There is no limit to the number of conditions or actions (* means O or more).
Actions are executed sequentially.

Rules with no condition are activated by (Initial-Fact)

The syntax for condition elements is complex:

<conditional-element> ::= <pattern-CE> |
<assigned-pattern-CE> |
<not-CE> |
<and-CE> |
<or-CE> |
<logical-CE> |
<test-CE>

A condition element (CE) can be a list or a template or user defined object.

List: (<constant-1> ... <constant-n>)
Deftemplate:

(<deftemplate-name> (<slot-name-1> <constant-1>)

(<slot-name-n> <constant-n>))

A CE can contain constant values or variables.
6-3

Rule Based programming with CLIPS Lesson 6

Variables

Variables are represented by 7x
There are two sorts of variables in CLIPS:

Index Variables: are assigned the index of a fact that matches a CE.
Attribute Variables: Contain the value of a item that matched a CE.

Index Variables
Variable : 7x

Index variables are used to identify a fact that has matched a CE
This can be used to retract of modify the fact.

(defrule rule-A
?2f <- (a)

=>
(printout t "Retracting " ?2f crlf)
(retract ?f)

)

(deftemplate A (slot B (default 0)))

(defrule rule-A
?2f <- (A (B 0))

=>
(printout t "Changing " ?f crlf)
(modify ?f (B 1))

6-4

Rule Based programming with CLIPS Lesson 6
Attribute Variables

Attribute variables are assigned the value of an item that matched a CE.
These can be used to

1) Recover the value for computation

2) Detect matching facts.

Syntax for attribute variables.
?var - Defines a variable named var.
The matching value is assigned to ?var.
7$list -Defines a list of variables named list
? - An unnamed variable. No data is stored.
?$ - An unnamed list. no data is stored.

WITHIN condition elements, values implicitly bound to variables.
Examples :

(assert (a b ¢))
(assert (abcdef))
(assert (d e 1))

(defrule choose-1
(abc)

=>

(printout t "a b ¢" crlf)

)

(defrule choose-3
(ab 7x)
=>
(printoutt "ab and ?x =" 7x crlf)

)

(defrule choose-1-of-3
a?7 7

=>

(printout t "x =" ?x crlf)

)

(defrule process-a-list

6-5

Rule Based programming with CLIPS

(a $7x)
=>
(printout t "The list is " $?x crlf)
)

(defrule make-a-big-list
(a$7x $7)
=>
(printout t "The list is " $?x crlf)
)

The following "trick" is used to obtain the elements of a list:

(defrule process-a-list2
(a$? 7x $7)

=>

(printout t "x =" ?x crlf)

)

(defrule increment-x
" <- (a 7x)

=>
(printout t "x =" 7x crlf)
(bind 7x (+ ?7x 1))
(printout t "now x =" 7x crlf)
(retract ?f)
(assert (a 7x))

(defrule increment-x-example
" <-(a x)

=>
(printout t "x =" 7x crlf)
(bind ?x (+ 7x 1))
(printout t "now x =" 7x crlf)
(modify 7f (a 7x))

)

(deftemplate a (slot x))

Lesson 6

6-6

Rule Based programming with CLIPS Lesson 6

(defrule increment-x-exampls
" <-(a (x X))

=>
(printout t "x =" 7x crlf)
(bind ?x (+ ?7x 1))
(printout t "now x =" 7x crlf)
(modify 7f (x 7x))

)

WITHIN the action part of a rule, values may be assigned by
(bind ?Var Value)
e.g. (bind ?7x 3) assigns 3 to 7x

ATTN: DO NOT use (bind) in condition elements

Rule Activations (associations of a rule with facts that match conditions)
are placed on the agenda.

(deftemplate person
"A record for a person'
(slot family-name)
(slot first-name)

)

(assert (person (family-name DOE) (first-name John)))
(assert (person (family-name DOE) (first-name Jane)))

(defrule Find-same-name

?P1l <- (person (family-name ?f) (first-name ?nl))

?P2 <- (person (family-name ?f) (first-name ?n2))
=>

(printout t 2?nl " " 2f" and " ?n2 " " ?2f " have the
same family name" crlf)

)

CLIPS> (assert (person (family-name DOE) (first-name John)))
<Fact-1>
CLIPS> (assert (person (family-name DOE) (first-name Jane)))

<Fact-2>

CLIPS> (defrule Find-same-name
?Pl <- (person (family-name ?f) (first-name ?nl))
?P2 <- (person (family-name ?f) (first-name ?n2))

6-7

Rule Based programming with CLIPS

(printout t
same family name" crlf)

)

CLIPS> (run)

Jane
Jane
John
John

Question: Why does the rule execute 4 times?

DOE and
DOE and
DOE and
DOE and

Jane
John
Jane
John

?2nl "

DOE
DOE
DOE
DOE

have
have
have
have

?fll

and

the
the
the
the

sSame
same
sSame
Same

?nz n n

family
family
family
family

?2f "

name
name
name
name

Lesson 6
have the

6-8

