Intelligent Systems: Reasoning and Recognition

James L. Crowley

ENSIMAG 2 and MoSIG M1 Lecture 3 Winter Semester 2011 9 February 2011

Planning as Search: BlocksWorld

The Intelligent Agent	2
Planning and Problem Solving	2
Blocks World	4
Planning as Graph Search :	7

The Intelligent Agent

To provide a formal basis for studying intelligence, Nils Nilsson has proposed the Intelligent Agent as a fundamental concept for formalizing intelligence.

The Intelligent Agent has 3 components: (A, B, C)A) Actions; The ability to act; A physical body;B) Goals. (In French "Buts")C) Knowledge; The ability to choose actions to accomplish goals.

The "Intelligent Agent" acts based on the principle of Rationality.

Rational behavior: Actions are chosen to accomplish goals

Nilsson proposed to define intelligence as rationality:

Rational Intelligence: The ability to choose actions to accomplish goals.

An agent is <u>intelligent</u> if it 1) can act, 2) has goals, and 3) Can choose its actions to accomplish it's goals.

Rational intelligence leads to a formulation of intelligence as problem solving and planning.

Planning and Problem Solving

Planning: The search for a sequence of actions leading to a goal.

Rationality leads to a formulation of intelligence as planning Rational intelligence is formalized using a Problem space.

A problem space is defined as1) A set of states {U},2) A set of operators for changing states {A} (Actions).

A problem is $\{U\}$, $\{A\}$ plus an initial state $i \in \{U\}$ a set of Goal States $\{G\} \subset \{U\}$

Planning as Search

A plan creates a sequence of actions $A_1, A_2, A_3, A_4,...$ that lead from the state S to one of the states $g \in \{G\}$

States: A state, s, is a "partial" description of the real universe.

A state is defined as a conjunction of predicates (Truth functions) based on measured (observed) values. The measured values are called "observations".

Examples:

Mobile Robotics: Near(x, y, t)

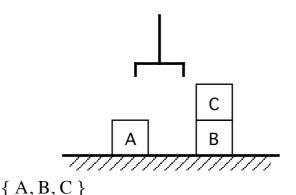
Blocks World: OnTable (A) \land On (A, B) \land HandEmpty

Blocks World

Blocks world is an abstract, toy world for exploring problems. Blocks world is a "Closed" world. It has a finite number of states.

Blocks world is composed of a finite number of blocks in a finite number of states.

Blocks world is composed of:


- A set of blocks
- An agent that can act on blocks to change their state

Classic Definitions:

- 1) A universe composed of a set of cubic blocks and a table
- 2) Blocks are mobile, the table is immobile
- 3) The agent is a mobile hand,
- 4) A block can sit on a table, on another block, or in the hand.
- 5) There cannot be more than one block on another block
- 6) The table is large enough for all blocks to be on the table.
- 7) The hand can move only one block at a time.

The state of the universe is formalized using first order predicates.

For example:


```
Blocks:
Predicates:
```

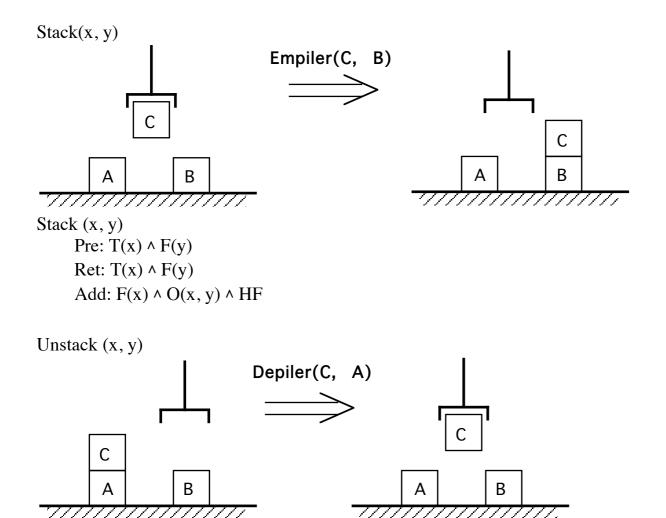
incates.		
On(A, B)	S(A, B)	Block A is On Block B.
OnTable(A)	OT(A)	Block A is On the Table.
Held(A)	H(A)	Block A is in the hand.
Free(A)	F(A)	No block is On A :
		$\neg \exists x (On(x,A)) \text{ or } \forall x (\neg On(x,A))$
HandFree	HF	The hand is empty, or $\neg \exists x (H(x))$

Planning as Search

The state of the universe is expressed as a conjunction of predicates:

 $HF \land OT(A) \land OT(B) \land O(C, B) \land F(C) \land F(A)$

Actions:


Actions are state change operators. Actions are atomic. Nilsson proposed to formalize actions with STRIPS : (Stanford Research Institute Problem Solver) (1971).

Principle: explicitly list all state changes.

Action: Name(Variables)

Precondition: Must be true for the action to operate Retract: rendered false by the action Add: rendered true by the action.

Grasp(x)Prendre(C) C В A В С Grasp(x)Pre: HF \wedge F(x) \wedge OT(x) Ret: $HF \land F(x) \land OT(x)$ Add: H(x)Pose(x) Poser(C) С В A В С Pose (x) Pre: H(x) Ret: H(x) Aj: $F(x) \wedge OT(x) \wedge HF$

Unstack(x, y)Pre: $F(x) \land O(x, y) \land HF$ Ret: $F(x) \land O(x, y) \land HF$ Add: $T(x) \land F(y)$

Question:Why do we need Pose(x). Is not Stack(x, table) equivalent?Response:If we execute Stack(x, table) the predicate Free(table) is not true.

Planning as Graph Search :

A problem is defined by a universe, {U}, an initial state, i A set of Goal states, {G}.

Planning is the generation of a sequence of actions to transform i to a state $g \in \{G\}$

The "paradigm" for planning is "Generate and Test".

Given a current state, s 1) Generate all neighbor states $\{N\}$ reachable via 1 action. 2) For each $n \in \{N\}$ test if $n \in \{C\}$. If such arit

- 2) For each $n \in \{N\}$ test if $n \in \{G\}$. If yes, exit
- 3) Select a next state, $s \in \{N\}$ and loop.

Planning requires search over a graph for a path.

A taxonomy of graph search algorithms includes the following

- 1) Depth first search
- 2) Breadth first search
- 3) Heuristic Search
- 4) Hierarchical Search

The first three are unified within the GRAPHSEARCH algorithm of Nilsson.

Graph searching has exponential algorithm complexity. "knowledge" can be used to reduce the complexity.