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Notation 
 
x   A variable 
X   A  random variable (unpredictable value)   
N   The number of possible values for x (Can be infinite).   
  

! 

! x  →     A vector of D variables.   
  

! 

! 
X    A vector of D random variables.   
D   The number of dimensions for the vector    

! 

! x 
 
 or   

! 

! 
X  

E   An observation. An event.  
Ck   The class  k 
k   Class index 
K   Total number of classes 
ωk   The statement (assertion) that E  ∈ Tk 
Mk   Number of examples for the class k. (think M = Mass) 
M   Total number of examples.  

   

! 

M = Mk
k=1

K

"  

{

! 

Xm
k }  A set of Mk examples for the class k.  

   
  

! 

{Xm} = !
k=1,K

{Xm
k } 
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Bayesian Recognition 
 
Recognition is a fundamental ability for intelligence, and indeed for all life.  
To survive, any creature must be able to recognize food, enemies and friends.   
 
Recognize: To identify an object or an entity as known:  
 
Two forms of recognition: Identify and Classify 
 
Identify: To recognize an object or entity as an individual 
Classify: To recognize an object or entity as a member of a class.  
 
Categorize is sometimes used in place of classify.  
  
A class is a form of set, defined by a membership test. The set may be defined by 
listing its members (closed set) or by listing properties that define members (open 
set). These correspond to the two methods to define a set:  
 
Extension: Provide a list of members.  
Intension: Provide a conjunction of predicates.  
 
Classification is a process of associating an event to a class. The event is described by 
a vector of features, provided by an observation.  
 
The event (or observation)  E  is described by a vector of features,   

! 

! 
X  

Features are provided by sensors.  
 
Features: observable properties that permit assignment of events to classes.  
A set of D features, xd, are assembled into a feature vector   

! 

! 
X   

 

  

  

! 

! 
X =

x1
x2
...
xD
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' 
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A classifier is a process that maps an event, E,  to a class label, Ck, based on features.  
The result is the proposition  ωk = E ∈ Class Ck 
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Class(x1,x2, ..., x d
!̂
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d

x
x

x
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The techniques from pattern recognition and statistics provide a variety of methods to 
construct membership tests for classification of observations. The most appropriate 
technique depends on the number and nature of the classes and the features.  
  
There are two families of technique:  extensive and intensive 
 
Extensive methods compare the features from an observation to a set of prototype 
examples, using a similarity function. 
 

 
  

! 

ˆ " k = arg#max
k

Sim(
! 
X ,
! 
X m

k ){ } 

 
Distance is often used to define similarity.  
 
For an extensive class definition, we enumerate the M examples of each of K class. 
The estimate is the most similar, as provided by some similarity function.  
 
Thus for an observed unknown event E, described by the features X,  the "estimated" 
class, 

! 

ˆ " k    is given by :  

 

 
  

! 

ˆ " k =#k#m : arg$max
k

Sim(
! 
X ,
! 
X m

k ){ } 

 
This approach is often used for generative methods for machine learning.  
 
For an intensive class definitions, we apply a set of tests, one for each class.  
 

 
  

! 

ˆ " k = arg#max
k

Test # for # k(
! 
X ){ } 

 
This approach is used for discriminative methods to machine learning.  
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Bayesian Classification 
 
"Bayesian" refers to the 18th century mathematician and theologian Thomas Bayes 
(1702–1761), who provided the first mathematical treatment of a non-trivial problem 
of Bayesian inference.  Bayesian probability was made popular by Simon Laplace in 
the early 19th century.  
 
The rules of Bayesian logic can be justified by requirements of rationality and 
consistency and interpreted as an extension of logic. Many modern machine learning 
methods are based on objectivist Bayesian principles.   
 
With a Bayesian approach, the tests are designed to minimize the number of errors. 
False positives and false negatives count equally as errors, but can have different 
costs associated.  
 
This approach makes it possible to include the cost of error, which may not be the 
same for a false positive and a false negative.  
 
Let ωk be the proposition that the event belongs to class k: ωk = E ∈ Tk 

 
 ωk   Proposition that event E  ∈ the class k 
 p(ωk) = p(E ∈Tk) Probability that E is a member of class k 
   
Given an observation  X 

→
, the decision criteria is  

 

 
  

! 

ˆ " k = arg#max
k

Pr("k |
! 
X ){ }  

 where 

! 

"k # E $ Tk  
 
The meaning of "given" is provided by Bayes Rule:  
 

 
  

! 

p(" k |
! 
X ) =

P(
! 
X |" k )p(" k )

P(
! 
X )  

 
Applying Bayes rule for classification will require us to define probability.  
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Probability and Uncertainty 
 
Bayes rule provides a method to accumulate evidence to reduce uncertainty.  
 
The core problem of recognition is uncertainty.  One could even say that recognition 
is a problem of assigning signals to categories in the presence of uncertainty.  
 
We can distinguish two separate kinds of uncertainties:  Confidence and Accuracy 
(Precision).  
 
Confidence:   Freedom from doubt, belief in the truth of a proposition.  
Accuracy:  Reproducibility of a measurement.  
 
Confidence concerns the truth of a statement. The proposition is generally formalized 
as a predicate (truth function). Predicates are generally defined a boolean truth 
functions (True or false).  It is possible to define  probabilistic truth functions.  
 
Accuracy concerns a selecting an entity from an ordered set.  Generally there is some 
order between the possible values with an associated distance metric.  The accuracy 
refers to the size of a subset of possible values or the distance spanned by possible 
values.  
 
In popular language, accuracy is often confused with precision.  
In informatics:   
  Accuracy is the degree to which a measurement can be reproduced.  
  Precision is the detail with which a measurement is represented.  
 
For example, a measurement may be represented with 32 bits of precision, but be 
accurate to only 8 bits (1 part in 256).  
In common usage, precision and accuracy are often used for the same concept.  
 
Probability is a powerful tool for both Confidence and Accuracy.  
 
Both confidence and precision may be addressed in using Bayesian probabilities.  
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Probability as Frequency of Occurence.  
 
A frequency based definition of probability is sufficient for many practical problems.   
 
Suppose we have M observations of random events, {Em}, for which Mk of these 
events belong to the class k.  The probability that one of these observed events 
belongs to the class k is: 
 

 Pr(E ∈ Tk ) = 
Mk
M     

 
If we make new observations under the same observations conditions (ergodicity), 
then it is reasonable to expect the fraction to be the same. However, because the 
observations are random, there may be differences.  These differences will grow 
smaller as M grows larger.   
 
The average (root-mean-square) error for  
 

 Pr(E∈Tk ) = 
Mk
M     

 
will be proportional to Mk and inversely proportional to M.  
 
 


