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Notation 
x   a variable 
X   a  random variable (unpredictable value)   
N   The number of possible values for X (Can be infinite).   
  

! 

r x  →     A vector of D variables.   
  

! 

r 
X    A vector of D random variables.   
D   The number of dimensions for the vector    

! 

r x 
 
 or   

! 

r 
X  

E   An observation. An event.  
Tk   The class (tribe) k 
k   Class index 
K   Total number of classes 
ωk   The statement (assertion) that E  ∈ Tk 
p(ωk) =p(E ∈Tk) Probability that the observation E is a member of the class k. 
   Note that p(ωk) is lower case.  
Mk   Number of examples for the class k. (think M = Mass) 
M   Total number of examples.  

   

! 

M = Mk
k=1

K

"  

{

! 

Xm
k }  A set of Mk examples for the class k.  

   
  

! 

{Xm} = U
k=1,K

{Xm
k } 

P(X)   Probability density function for X 
P(  

! 

r 
X )   Probability density function for    

! 

r 
X 

 
 

P(  

! 

r 
X 

 
| ωk)    Probability density for   

! 

r 
X 

  
the class k. ωk  = E  ∈ Tk.  

h(n)   A histogram of random values for the feature n.   
hk(n)   A histogram of random values for the feature n for the class k.  

   

! 

h(x) = hk
k=1

K

" (x)  

Q   Number of cells in  h(n).  Q = ND 
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Bayesian Classification (Reminder) 
 
Our problem is to build a box that maps a set of features   

! 

r 
X  from an Observation, E 

into a class Tk from a set of K possible Classes.  
 

 

Class(x1,x2, ..., x d)} !̂

x1
x2
...
xd

 
 
Let ωk be the proposition that the event belongs to class k: ωk = E ∈ Tk 

 
 ωk Proposition that event E  ∈ the class k 
 
In order to minimize the number of mistakes, we will maximize the probability that 

! 

"k # E $ Tk  
 

 
  

! 

ˆ " k = arg#max
k

Pr("k |
r 
X ){ }  

We will call on two tools for this:  
 
1) Baye's Rule : 
 

 
  

! 

p(" k |
r 
X ) =

P(
r 
X |" k )p(" k )

P(
r 
X )

 

 
2) Normal Density Functions  
 
 

  

! 

P(
r 
X |"k ) =

1

(2#)
D
2 det(Ck )

1
2

e–1
2
(

r 
X – r 

µ k )
T Ck

–1 (
r 
X – r 

µ k )    

 
Last week we looked at Baye's rule.  Today we concentrate on Normal Density 
Functions.  
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Linear Transforms of the Normal Multivariate Density 
 
The Normal (Gaussian) function is a defined only by its moments.  
It is thus invariant to transformations of its moments, that is affine transformations.  
The affine transformations include rotation, translation, scale changes and other 
linear transformations.  
For example consider a rotation vector of cosine angles about each component of X :  
Rotation is projection onto a vector   

! 

r 
R  

 

 

  

! 

r 
R =

cos("1)
cos("2 )
...

cos("D )

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

 

 
 Note that   || R 

→
 || = 1.  

A vector   

! 

r 
X  may be rotated by projection onto   

! 

r 
R   

  
   

! 

r 
Y =

r 
R T

r 
X  

 
Projection of a Gaussian is the Gaussian of the projection.   
For a projection R :     

! 

r 
Y =

r 
R T

r 
X  

 
 µy  = R 

→Τ
µ 
→

x,      σy2   = R 
→ΤCx R 

→
  

 
For the Covariance:  
Projection of a covariance requires pre- and post- multiplication by    

! 

r 
R .  

 
For     

! 

Cx = E{
r 

V 
r 

V T} where    

! 

r 
V m =

r 
X m "E{

r 
X m} =

r 
X m "

r 
µ m  

 
    

! 

CY = E{(
r 
R T

r 
V )(

r 
R T

r 
V )T}   

! 

= E{(
r 
R T

r 
V )(

r 
V T

r 
R )}   

! 

= E{(
r 
R T (

r 
V 

r 
V T )

r 
R )}   

! 

= E{(
r 
R TCX

r 
R )} 

 
 P(Y) = N(y;  R 

→Τ
µ 
→

x,  R 
→ΤCx R 

→Τ) = N(y; µy, σy2) 
 
This can be computed by projecting the moments or by projecting the data and 
recomputing the moments.  
 
 µy  = E{P(Y)} =  R 

→Τ  µ 
→

x    σy2 = E{(P(Y)–µy)(P(Y)–µy)}  = R 
→Τ Cx R 

→
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Quadratic Discrimination 
 
Classification is a process of estimating the membership of an observation in a class 
based on the features of the observation,   X 

→
.  

 

Class(x1,x2, ..., x d)} !̂

x1
x2
...
xd  

 
  ω ^k  = Class(E) = Decide(E ∈ Αk)  
 
 ω ^k is the proposition that   (E ∈ ωk). 
 
The classification fonction can be decomposed into two parts:  d() and gk(): 
 
  ω ^k =  d(g(X 

→
)).   

 
 g(X 

→
) :   A discriminant function : RD → RK 

 d() :  a decision function    RK → {ωK} 

Discrimination 
 
 g(X 

→
) :   Is a discrimination function that maps from RD → RK 

 

 

  

! 

r g (
r 
X ) =

g1(
r 
X )

g2 (
r 
X )
...

gD(
r 
X )

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

 

 
Quadratic discrimination functions can be derived directly from p(ωk | X) 
 
 

  

! 

p("k |
r 
X ) =

P(
r 
X |"k )p("k )

P(
r 
X )

 

 
To minimize the number of errors, we will choose k such that   
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  k = arg-max  
k  

{gk(X)} = arg-max  
k  

{p(ωk | X 
→

) } = 
  

! 

arg"max
k

{
P(

r 
X |#k )p(#k )

P(
r 
X )

}  

 
but because P(X)  is constant for all k, it is common to use:  
 
 k = 

  

! 

arg"max
k

{P(
r 
X |#k )p(#k )}  

 
Thus the classifier is decomposed to a selection among a set of parallel discriminant 
functions.   
 

 

x1

x2

•
•
•

xn

g1

gK

•
•
•

Maxg2

 
 
This is easily applied to the multivariate norm:  
  
 
 P(X 

→
|ωk)  = N( X 

→
; µ 

→

k ,Ck )  
 
or with a sum of normals (Gaussian Mixture Model).  
 

 P(X 
→

|ωk)  =   ∑
n=1

 N
  αnN(X 

→
; µ 

→

kn ,Ckn )   
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Discrimination using Log Likelihood 
 
Let D=1, with  
 

 p(X=x | ωk) =  N( x; µk, σk2)  = 
1

2πσk      e 
–
(x–µk)2

2σk2
       

 
The discrimination function takes the form:   
 

 gk(X) =  p(ωk)  
1

2πσk      e 
–

(x–µk)2
2σk2

       

 
 
Note that  k = arg-max  

k  
{gk(X)}  =   arg-max  

ωk  
{Log{gk(X)}}  

 
because Log{} is a monotonic function.  
  

 k = arg-max  
k  

{Log{ 
1

2πσk      e 
–
(x–µk)2

2σk2
    } + Log{p(ωk)} } 

 

 k = arg-max  
k  

{Log{ 
1

2πσk    } + Log{e 
–
(x–µk)2

2σk2
  } + Log{p(ωk)} } 

 

 k = arg-max  
k  

{–Log{ 2π   σk}  –
(x–µk)2

2σk2     + Log{p(ωk)} } 

 

 k = arg-max  
k  

{–Log{σk}  –
(x–µk)2

2σk2     + Log{p(ωk)} } 

 
 
 



Bayesien Discriminant Functions Lesson 16 

 16-8 

Example for K > 2 and D > 1 
 
In the general case, there are D characteristics.  
 

 
gk(X 

→
 ) = p(ωk | X 

→
 ) p(ωk)  

 
 
The decision rule is 
 

 
  ω ^i   :  si ∀ j≠i   gi(X 

→ 
)  > gj(X 

→ 
)   

 
   
Thus the classifier is a machine that calculates K functions gk(X 

→) 
Followed by a maximum selection.   
 
The discrimination function is  gk(X 

→
) =  p(X 

→
 | ωk ) p(ωk)  

 
On sélection la classe ωk pour laquelle arg-max  

k  
{gk(X 

→
 )} 

par règle de Bayes :  
 arg-max  

k  
{p(ωk | X 

→
 ) }  =  k = arg-max  

k  
{ p(X 

→
 | ωk ) p(ωk) }      

 
 = arg-max  

k  
{Log{p(X 

→
 | ωk )} + Log{p(ωk)}    

        
Si les caractéristiques suivent une densité Normale :  
 
 p(X 

→
 | wk )  =N(X 

→
 ,  µ 

→

k ,Ck)   
 
 

  

! 

Log(P(
r 
X |"k )} = Log{ 1

(2#)
D
2 det(Ck )

1
2

e–1
2
(

r 
X – r 

µ k )
T Ck

–1 (
r 
X – r 

µ k )}  

 
 

  

! 

Log(P(
r 
X |"k )} = – D

2
Log(2#)$ 1

2
Log{Det(Cx )} –

1
2
(
r 
X – r 

µ k )
T Ck

–1(
r 
X – r 

µ k ) 
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We observe that   – 
D
2     Log{2π}  can be ignored because it is constant for all k.   

The discrimination function becomes:  
 

  

! 

gk (
r 
X ) = – 1

2
Log{det(Ck )} –

1
2
(
r 
X – r 

µ k )
T Ck

"1(
r 
X – r 

µ k )+ Log{p(#k )} 

 

 
  

! 

gk (
r 
X ) = – 1

2
Log{det(Ck )} –

1
2
(
r 
X – r 

µ k )
T Ck

"1(
r 
X – r 

µ k )+ Log{p(#k )}  

 
Different families of Bayesian classifiers can be defined by variations of this formula.  
This becomes more evident if we reduce the equation to a quadratic polynomial.  
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Canonical Form for the discrimination function 
 
 
The quadratic discriminant can be reduced to a standard (canonical) form.  
 

  

! 

gk (
r 
X ) = – 1

2
Log{det(Ck )} –

1
2
(
r 
X – r 

µ k )
T Ck

"1(
r 
X – r 

µ k )+ Log{p(#k )}  

 
Let us start with the term   

! 

(
r 
X – r 

µ k )
T Ck

"1(
r 
X – r 

µ k ).  
 
This can be rewritten as :  
 
   

! 

(
r 
X – r 

µ k )
T Ck

"1(
r 
X – r 

µ k ) =   

! 

r 
X TCk

"1 r 
X –

r 
X TCk

"1 r µ k "
r 
µ k

TCk
"1 r 

X + r 
µ k

TCk
"1 r µ k  

 
We note that   

! 

r 
X TCk

"1 r µ k =
r 
µ k

TCk
"1 r 

X  
and thus :   

! 

"
r 
X TCk

"1 r µ k "
r 
µ k

TCk
"1 r 

X =   

! 

"(2Ck
"1 r µ k )

T r 
X  

 
we define:   

! 

r 
W k = "2Ck

"1 r µ k  
to obtain   

! 

"
r 
X TCk

"1 r µ k "
r 
µ k

TCk
"1 r 

X =   

! 

r 
W k

T r 
X  

 
Let us also define  

! 

Dk =

! 

"
1
2
Ck

"1  

 
The remaining terms are constant. Let us defined the constant  
 
 bk = 

  

! 

"
1
2

r 
µ k

TCk
"1 r µ k " Log{det(Ck )}+ Log{p(#k )} 

 
which gives a quadratic polynomial  
 

 

  

! 

gk (
r 
X ) =

r 
X T Dk

r 
X +

r 
W k

T r 
X + bk  

 
 
where:     

! 

Dk =

! 

"
1
2
Ck

"1  

       

! 

r 
W k = "2Ck

"1 r µ k  
and    bk = 

  

! 

"
1
2

r 
µ k

TCk
"1 r µ k " Log{det(Ck )}+ Log{p(#k )} 
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A set of K discrimination functions gk(  

! 

r 
X ) partitions the space   

! 

r 
X  into a disjoint set of 

regions with qudratic boundaries.  The boundaries are points for which  
 
   

! 

gi(
r 
X ) = gj (

r 
X ) "  gk (

r 
X )#k $ i, j  

 
The boundaries are the functions    

! 

gi(
r 
X )" gj (

r 
X ) = 0  
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Noise and Discrimination 
 
Under certain conditions, the quadratic discrimination function can be simplified by 
eliminating either the quadratic or the linear term.  
 
If we could perfectly model the universe, then sensor reading would be a predictable 
value,   

! 

r x . The normal density attempts to represent this with the "average" feature   

! 

r 
µ k  

 
 In reality, the features of a class are generally dispersed by un-modeled phenomena.  
These may be effects that are beyond the abilities of the available sensors, or they 
may be effects that we choose to ignore because they are "unimportant".  
 
Although the true variation my not be additive, we will model it as an additive 
random term Nk. The term is random because we are unable to predict it.  
 
 Thus the observed feature is random:   

! 

r 
X = r x + Nk  

 
For example, the color of your eyes could be predicted from your genetic code, but in 
the absence of a genetic decoder, this becomes random.  
 
In addition, every observation system (or sensor) is subject to some form of sensor 
noise.  This sensor Noise is modeled as an additive random term Ns. Sensor noise is 
generally independent of the class k.  
 
Thus the sensor returns a random feature   

! 

r 
X = r x +

r 
N k +

r 
N s  

 
The Normal density function represents these two forms of "noise" as a second 
moment of the class, Ck.  
 
Thus  Ck = E{(

! 

E{(Nk + Ns )(Nk + Ns )
T}  

 
Depending on the nature of   

! 

r 
N k and

r 
N s  different simplifications are possible.  

 
For example if   

! 

r 
N s  >>   

! 

r 
N k   then the term Ck  will be nearly constant for all k.  

In this case, the discrimination function can be reduced to a linear equation.  
 
   

! 

gk (
r 
X ) =

r 
W k

T r 
X + bk  
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This is very useful because there are simple powerful techniques to calculate the 
terms of such an equation.  
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Decision Surfaces for different Noise assumptions  
In the more general case we can not make any assumptions on   

! 

r 
N k  and   

! 

r 
N s    

Depending on the nature    

! 

r 
N k  we may find a variety of different second order decision 

surfaces :   
 
For eaxample (K=2, D=2) 
 
Hyper-sphere :  
 Let Ck = σk2 I  
       and det{C1} > det{C2}  
 

· ·

Z1 Z2

1
2

 

Hyper-ellipsoid :    
 For  σx12 > σx22 
 and  det{C1} > det{C2}  · ·

Z1 Z2

1
2

 
Hyper-paraboloid :  
 for  σ2x1k=1 >> σ2x1k=2 
 et σ2x2k=1 > σ2x2k=2 · ·

Z1

Z2

1
2

 
Hyper-hyperboloids : 
 

· ·

Z1

Z2

1
2

Z2

 
Hyperplanes.  
 · Z1

Z21
Z2

2
·

Z1

 



Bayesien Discriminant Functions Lesson 16 

 16-15 

µ 
→

1 = µ 
→

2  et   C1 << C2 
 with σ11 = σ22  et σ12 = σ21 = 0.  
 
a hypershere.  
 
  

·
·

Z2

2 ·1 Z1
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Two classes with equal means 
 

 
 

Suppose tht we have 2 classes i, j such that   
 
 µ 

→

i = µ 
→

j  and   det(Ci)   >  det(Cj).  
 
Is it possible to assign an observation to one of the classes? 
 

 gi(X 
→

)  – gj(X 
→

) = 0   
 
takes the form of a sphere with observations assigned to Ti outside the sphere and Tj 
on the inside.   
 

   

! 

gk (
r 
X ) =

r 
X T Dk

r 
X +

r 
W k

T r 
X + bk  

 
 
 
 


