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Notation 
x   a variable 
X   a  random variable (unpredictable value)   
N   The number of possible values for X (Can be infinite).   
  

! 

! x  →     A vector of D variables.   
  

! 

! 
X    A vector of D random variables.   
D   The number of dimensions for the vector    

! 

! x 
 
 or   

! 

! 
X  

E   An observation. An event.  
Tk   The class (tribe) k 
k   Class index 
K   Total number of classes 
ωk   The statement (assertion) that E  ∈ Tk 
p(ωk) =p(E ∈Tk) Probability that the observation E is a member of the class k. 
   Note that p(ωk) is lower case.  
Mk   Number of examples for the class k. (think M = Mass) 
M   Total number of examples.  

   

! 

M = Mk
k=1

K

"  

{

! 

Xm
k }  A set of Mk examples for the class k.  

   
  

! 

{Xm} = !
k=1,K

{Xm
k } 

P(X)   Probability density function for X 
P(  

! 

! 
X )   Probability density function for    

! 

! 
X 

 
 

P(  

! 

! 
X 

 
| ωk)    Probability density for   

! 

! 
X 

  
the class k. ωk  = E  ∈ Tk.  

h(n)   A histogram of random values for the feature n.   
hk(n)   A histogram of random values for the feature n for the class k.  

   

! 

h(x) = hk
k=1

K

" (x)  

Q   Number of cells in  h(n).  Q = ND 
 
 



Classical Baysien Classifiers Séance 15 

 15-3 

Bayesian Classification (Reminder) 
 
Our problem is to build a box that maps a set of features   

! 

! 
X  from an Observation, E 

into a class Tk from a set of K possible Classes.  
 

 

Class(x1,x2, ..., x d)} !̂

x1
x2
...
xd

 
 
Let ωk be the proposition that the event belongs to class k: ωk = E ∈ Tk 

 
 ωk Proposition that event E  ∈ the class k 
 
In order to minimize the number of mistakes, we will maximize the probability that 

! 

"k # E $ Tk  
 

 
  

! 

ˆ " k = arg#max
k

Pr("k |
! 
X ){ }  

We will call on two tools for this:  
 
1) Baye's Rule : 
 

 
  

! 

p(" k |
! 
X ) =

P(
! 
X |" k )p(" k )

P(
! 
X )

 

 
2) Normal Density Functions  
 
 

  

! 

P(
! 
X |"k ) =

1

(2#)
D
2 det(Ck )

1
2

e–1
2
(
! 
X – ! µ k )

T Ck
–1 (
! 
X – ! µ k )    

 
Last week we looked at Baye's rule.  Today we concentrate on Normal Density 
Functions.  
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Normal Density Functions 
 
Whenever a random variable is determined by a sequence of independent random 
events, the outcome will be a Normal or Gaussian density function. This is 
demonstrated by the Central Limit Theorem.  The essence of the derivation is that 
repeated convolution of any finite density function will tend asymptotically to a 
Gaussian (or normal) function.  
 
The exception is the dirac delta P(X) = δ(X).  
In all other cases:  
 
 as N →∞    P(X)*N → N(x; µ, σ)   

  

 P(X) =  N(x; µ, σ) = 
1

2πσ     e 
–
(x–µ)2

2σ2        

 µ µ+!µ"!
x

N(x; µ, !)

 
 
The parameters of N(x; µ, σ) are the first and second moments.  
Assume M observations   {Xm} for which we compute  
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The average value is the first moment of the samples 
 
The "expected value" for {Xm}, E{X} is defined as the average or the mean:   
 

 

! 

E{X} =
1
M

Xm
m=1

M

"  

 
 

! 

µx = E{X} is the first moment (or center of gravity) of {Xm}.  
 
This is also true for a histogram.  Map {Xm} → {nm} in the range [1, N] as described 
above and compute the histogram h(n).  
 
  

! 

"m =1,M :h(nm )# h(nm )+1 
 
The mass of the histogram is the zeroth moment, M 
 

 

! 

M = h(n)
n=1

N

"  

 
The center of gravity (or mean or average) is the first moment µn 

 

 

! 

µn =
1
N

h(n)
n=1

N

" #n  

 
This is also the expected value of n.  
 

 

! 

µn = E{n} =
1
M

nm
m=1

M

"  

 
Thus the center of gravity of the histogram is the expected value of the random 
variable:  
 

 

! 

µn = E{n} =
1
M

nm
m=1

M

" =
1
N

h(n)
n=1

N

" #n  

 
And of course, the same is true for the continuous random variable {Xm} and the pdf 
P(X).  
 

 

! 

E{X} =
1
M

Xm
m=1

M

" = P(X) # X dX
$%

%

&  
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Note that for a pdf the mass is 1 by definition:   

! 

S = P(X) dX
"#

#

$ =1 
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The variance is the second moment of the samples 
 
A similar relation exists for the Variance or Second Moment: σ. 
  
For a set of observations of continuous random variable {Xm} 
The variance is the "expected value" for of the squared difference from the average.  
 

 

! 

" x
2 =

1
M

(Xm
m=1

M

# – µx )
2  

 
For a histogram h(n), from {Xm} → {nm} in the range [1, N] as described above 
 
The second moment  is  

 

 

! 

" n
2 =

1
N

h(n)
n=1

N

# $ (n – µn )
2  

 
This is also the variance of the set {nm}  of samples.  
 

 

! 

" n
2 = E{(n – µn )

2} =
1
M

(nm – µn )
2

m=1

M

#  

 
Thus the variance of the sample set is the second moment of the histogram 
 

 

! 

" n
2 = E{(n – µn )

2} =
1
M

(nm – µn )
2

m=1

M

# =
1
M

h(n)
n=1

N

# $ (n – µn )
2  

  
And of course, the same is true for the continuous random variable {Xm} and the pdf 
P(X).  
 

 

! 

" x
2 = E{(X – µx )

2} =
1
M

(Xm – µx )
2

m=1

M

# = P(X) $ (X – µx )
2 dX

%&

&

'  
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Multi-Variate Normal Density Functions 
 
In most practical cases, an observation is described by D features.  
In this case a training set   

! 

{
! 
X m}  an be used to calculate an average feature   

! 

! 
µ  

 

  

  

! 

! 
µ = E{

! 
X } =

1
M

! 
X 

m=1

M

" =

µ1
µ2

...
µD

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

=

E{X1}
E{X2}
...

E{XD}

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

 

 
If the features are mapped onto integers from [1,N]:   

! 

{
! 
X m}" {! n m}  we can build a 

multi-dimensional histogram using a D dimensional table:  
 
   

! 

"m =1,M :h(! n m )# h(! n m )+1 
  
As before the average feature vector,   

! 

! 
µ , is the center of gravity (first moment) of the 

histogram.  
 

 
  

! 

µd = E{nd} =
1
M

ndm
m=1

M

" =
1
M

... h(n1,n2,...,nD )
nD =1

N

"
n2=1

N

"
n1=1

N

" #nd =
1
M

h(! n ) #
! n =1

N

" nd = µd  

 

  

! 

! 
µ = E{! n } =

1
M

! n m
m=1

M

" =
1
M

h(! n ) #
! n =1

N

" ! n =

1
M

h(! n ) #
! n =1

N

" n1

1
M

h(! n ) #
! n =1

N

" n2

...
1
M

h(! n ) #
! n =1

N

" nD

$ 

% 

& 
& 
& 
& 
& 
& 
& 
& 

' 

( 

) 
) 
) 
) 
) 
) 
) 
) 

=

µ1
µ2

...
µD

$ 

% 

& 
& 
& 
& 

' 

( 

) 
) 
) 
) 

 

 
For Real valued X:  
 
  

 

! 

µd = E{Xd} =
1
M

Xdm
m=1

M

" = ... P(x1, x2,...xD ) # xd dx1,dx2,...,dxD
$%

%

&
$%

%

&
$%

%

&  

 
In any case:  
 

 

  

! 

! 
µ = E{

! 
X } =

E{X1}
E{X2}
...

E{XD}

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

=

µ1
µ2

...
µD

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
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For D dimensions, the second moment is a co-variance matrix composed of N2 terms:  
 

 

! 

"
ij

2 = E{(Xi – µi )(Xj – µ j )} =
1
M

(Xim –
m=1

M

# µi )(Xjm – µ j )  

  
This is often written 
 
   

! 

CX = E{(
! 
X – E{

! 
X })(

! 
X – E{

! 
X })T}  

 
and gives 
 

 

! 

CX =

"11
2 "12

2 ... "1D
2

" 21
2 " 22

2 ... " 2D
2

... ... ... ...
" D1
2 " D2

2 ... " DD
2

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

 

  
This provides the parameters for  

    

! 

P(
! 
X ) = N (

! 
X ; ! µ x ,Cx ) =

1

(2")
D
2 det(CX )

1
2

e– 1
2
(
! 
X – ! µ )T CX

–1 (
! 
X – ! µ )

 

x1

x2  
 
 

The term     (2π)
D
2   det(Cx)

1
2     is a normalization factor.  

 
 

   

! 

... e– 1
2
(
! 
X – ! µ )T CX

–1 (
! 
X – ! µ )

dx1dx2...dxD""" = (2#)
D
2 det(CX )

1
2
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The determinant, det(C) is an operation that gives the volume of C.   
 

for D=2    det ⎝⎜
⎛

⎠⎟
⎞a b

c d      =  a·b–c·d 
 
for D=3 

 det 
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞ a b c

 d e f
 g h i

     = a·det ⎝⎜
⎛

⎠⎟
⎞e f

h i      + b·det ⎝⎜
⎛

⎠⎟
⎞f d

i g      + c· det ⎝⎜
⎛

⎠⎟
⎞d e

g h       

   = a(ei-fh)+ b(fg-id)+ c(dh-eg) 
 
for D > 3 this continues recursively.  
 
The exponent is positive and quadratic (2nd order). This value is known as the 
"Distance of Mahalanobis".  
 

   

! 

d (
! 
X ; ! µ x ,C x )

2
= –

1
2 (
! 
X – ! µ x )

T
C X

–1
(
! 
X – ! µ x )   

 
This is a distance normalized by the covariance.  In this case, the covariance is said to 
provide the distance metric. This is very useful when the components of X have 
different units.  
 
The result can be visualized by looking a equi-probably contours.  
   

Contours  d'équi-probabilité

p(X | µ, C)

x2

x1  
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The matric C is positive and semi-definite.  
The det(C) ≥ 0 
 
If xi and xj are statistically independent, then   σij

2 
 =0 

For positive values of σij
2, xi and xj  vary together:  For example Height and weight 

For negative values of σij
2, 

 xi and xj  vary in opposite directions.  
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Linear Algebraic Form for Moment Calculation 
 
Calculation of the mean and covariance are often expressed using linear algebra.  
Such expressions are widely used in machine learning.  
 
As before, assume a set of Mk training examples for the class k. {

! 

Xm
k }  

The complete set of M examples is  
  

! 

{Xm} = !
k=1,K

{Xm
k } 

 
Recall 

 

  

! 

! 
µ = E{

! 
X } =

1
M

! 
X 

m=1

M

" =

µ1
µ2

...
µD

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

=

E{X1}
E{X2}
...

E{XD}

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

 

 
Let us define   

! 

! 
V m =

! 
X m "E{

! 
X m} =

! 
X m "

! 
µ m  

 
and thus  
 
   

! 

Cx = E{
! 

V 
! 

V T} 
 
We can compose a matrix with M columns and D rows from {Vm}.  
 

 

! 

V =

v11 v12 ... v1M
v21 v22 ... v2M
... ... ...
vD1 vD2 ... vDM

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

 

 
This can be used to write  
 

  Cx ≡ V  VT   =  ⎣
⎢
⎡

⎦
⎥
⎤  •  •  •  •  •  •  •  •  •

  •  •  •  •  •  •  •  •  •
  •  •  •  •  •  •  •  •  •
  •  •  •  •  •  •  •  •  •

  

⎣⎢
⎢
⎢
⎢⎡

⎦⎥
⎥
⎥
⎥⎤

 •  •  •  •
 •  •  •  •
 •  •  •  •
 •  •  •  •
 •  •  •  •
 •  •  •  •
 •  •  •  •
 •  •  •  •
 •  •  •  •

   =  
⎣
⎢
⎡

⎦
⎥
⎤ •  •  •  •

 •  •  •  •
 •  •  •  •
 •  •  •  •

   

Cx   ≡ V  VT 
 is a  D x D matrix that captures the "co-variance" of the elements of i,j 

of  the vector X in {Xm}  
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Note that we can also write  Cm =  VT 

 V  of size  M x M.   
 
Cm  is the co-variance of the vectors in {X}.  
 

Linear Transforms of the Normal Multivariate Density 
 
The Normal (Gaussian) function is a defined only by its moments.  
It is thus invariant to transformations of its moments, that is affine transformations.  
The affine transformations include rotation, translation, scale changes and other 
linear transformations.  
 
For example consider a rotation vector of cosine angles about each component of X :  
 

 

  

! 

! 
R =

cos("1)
cos("2 )
...

cos("D )

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

 

 
 Note that   || R 

→
 || = 1.  

 
Rotation is projection onto  R 

→
 

 
A vector   

! 

! 
X  may be rotated by   

! 

! 
R  

  
   

! 

! 
Y =
! 
R T
! 
X  

  
For the covariance:   

! 

CY = E{(
! 
R T
! 
V )(
! 
R T
! 
V )T} 

      

! 

= E{(
! 
R T
! 
V )(
! 
V T
! 
R )}  

      

! 

= E{(
! 
R T (
! 
V 
! 
V T )
! 
R )}  

      

! 

= E{(
! 
R TCX

! 
R )} 

 
( R 

→Τ  V 
→

)Τ = (V 
→Τ  R 

→
) 

 
Thus rotation of a covariance requires pre and post multiplication by  R 

→
.  

 
Projection of a Gaussian  is the Gaussian of the projection.   
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 µy  = R 
→Τ  µ 

→

x,      σy2   = R 
→Τ Cx R 

→
  

 
 P(Y) = N(Y;  R 

→Τ  µ 
→

x, R 
→Τ Cx R 

→Τ) = N(y; µy, σy2) 
 
This can be computed by projecting the moments or by projecting the data and 
recomputing the moments.  
 
 µy  = E{P(Y))} =  R 

→Τ  µ 
→

x    σy2 = E{(P(Y)–µy)(P(Y)–µy)}  = R 
→Τ Cx R 

→
   

 


