
Formation et Analyse d'Images

 James L. Crowley

ENSIMAG 3 Premier Sémestre 2008/2009

Séance 8 18 décembre 2008

Describing Contrast with Gaussian Derivatives

Lesson Outline:

1 Gaussian Derivative Operators as basis description...2

1.1 The Sampled Gaussian Functions ...2
1.2 Using the Gaussian to compute image derivatives...5

2 Gaussian Scale Space ..6
2.1 Image Scale Space: ...6
2.2 Discrete Scale Space ...7
2.3 Resampled Pyramid ..7
2.4 Cascade Convolution Pyramid Algorithm:..9
2.5 Scale Invariant Interest Points ..10
2.6 Color Opponent Scale Space...12

 8-2

1 Gaussian Derivative Operators as basis description

Appearance is what you see.

We seek a set K local basis functions, dk(x,y) to describe "appearance" around a point
in an image.

!

xk =
y="R

R

#
x="R

R

p(xo + x, yo + y)dk (x, y)

Projection of the image neighborhood P(xo,yo) onto this set of functions gives a

"feature" vector for appearance,

!

r
X =

x
1

x
2

...

x
K

"

$
$
$
$

%

&

'
'
'
'

Ideally these functions should be orthogonal

!

y="R

R

#
x="R

R

dm (xo + x, yo + y)dn(x, y) = 0 if n $m

Such a basis can be obtained by a taylor series representation of a function f(x)
around a point, a, is

!

f (x) = f (a)+
1

1!
fx (x " a)+

1

2!
fxx (x " a)

2
+
1

3!
fxxx (x " a)

3
+ ...

The basis set for a taylor series is the series of local derivatives.
These are used to define a basis jet for local appearance.
This is called the "local jet".

1.1 The Sampled Gaussian Functions

2D Gaussian Receptive Field:

!

G(i, j,") =
1

A
WR (i, j) # e

$
(i
2

+ j
2
)

2" 2

Typically: for R should be ≥ 3σ . Recommend R=4σ

!

wR(i, j) =
1 for - R " i " R and – R " j" R

0 otherwise

$
%

 8-3

 Finite windw, wR(i,j) has N2 = (2R+1)2 coefficients

(Attention: i, j are INTEGERS, not complex numbers!)

The normalization factor

!

A =
i="R

R

e
"
(i
2
+ j

2
)

2$ 2

j="R

R

% 2&$

This factor is slightly smaller than 2πσ when the Gaussian is evaluated over a finite
window wR(i,j) of size NxN pixels. This factor can be determined from the filter, and
can be ignored in discussing the properties of the Gaussian.

Separability:

!

G(i, j,") =WR (i, j) # e
$
(j
2
+ j

2
)

2" 2

= (WR(i) # e
$
i
2

2" 2

)% (WR(j) # e
$
j
2

2" 2

)

Scale property:

!

G(i, j, 2") =G(i, j,")#G(i, j,")

Derivative Filters:

!

Gx (i, j,") = –
i

" 2
G(i, j,")

!

Gxx (i, j,") =
i
2
#" 2

" 4
G(i, j,")

!

Gxy(i, j,") =
ij

" 4
G(i, j,")

!

Gxxx (n,") = –
i
3
i" 2

" 6
G(i, j,")

Laplacian:

!

"
2
Gx (i, j,#) =Gxx (i, j,#) +Gyy (i, j,#)

Diffusion Equation:

!

"
2
Gx (i, j,#) =Gxx (i, j,#) +Gyy (i, j,#) =

$G(i, j,#)

$#

We can use these sampled functions to create a basis set of receptive fields:

!

r
G (i, j,") = (Gx ,Gy,Gxx ,Gxy,Gyy,Gxxx ,Gxxy,Gxyy,Gyyy)

 8-4

The Gaussian receptive fields Gx, Gy, Gxx, Gxy, Gyy, Gxxx, Gxxy, Gxyy, …

These can be used to compute a local description known as the "local jet".

!

r
L (i, j,") = P *

r
G (i, j,")

A subset of the derivatives in the local jet can be steered to a normalization angle θ.

Steerability:

!

G"

1
(x, y,#) = cos(") $Gx (x, y,#)+ sin(") $Gy(x, y,#)

!

G"

2
(x, y,#) =Cos(")2Gxx (x, y,#)+Cos(")Sin(")Gxy(x, y,#)+ Sin(")

2
Gyy(x, y,#)

!

G"

3
(x, y,#) =Cos(")3Gxxx (x, y,#)+Cos(")

2
Sin(")Gxxy(x, y,#)+Cos(")Sin(")

2
Gxxy(x, y,#)+ Sin(")

3
Gyyy(x, y,#)

Note the scale parameter σ determines the "resolution" of the derivatives.
You MUST specify σ. The smallest σ is not always the best.
Many computer vision algorithms give unpredictable results because the researchers
forget to specify the scale σ at which the algorithm was validated.

 8-5

1.2 Using the Gaussian to compute image derivatives

For an image P(i, j), the derivatives can be approximated by convolution with
Derivatives of Gaussians

!

Px (i, j) " P *Gx (i, j,#)

!

Py(i, j) " P *Gy(i, j,#)

!

Pxx (i, j) " P *Gxx (i, j,#)

!

Pxy(i, j) " P *Gxy(i, j,#)

!

Pyy(i, j) " P *Gyy(i, j,#)

Note: it is NECESSARY to specify σ. Small σ is not necessarily best.

The Gradient

!

r
" P(i, j) is calculated by

!

P(i, j)*
r
" G(i, j,#)

where

!

r
" G(i, j,#) =

Gx (i, j,#)

Gy (i, j,#)

$

%
&

'

(
)

Gradient:

!

r
" P(i, j) =

Px (i, j)

Py(i, j)

$
%

&

'
()

r
" (P *G(i, j,*)) = P *

r
" G(i, j,*) =

P *Gx (i, j,*)

P *Gy(i, j,*)

$
%

&

'
(

Laplacien:

!

"
2
P(i, j) = P *"

2
G(i, j,#) = Pxx (i, j)+Pyy(i, j) $ P *Gxx (i, j,#)+P *Gyy(i, j,#)

Gaussian Derivatives are Steerable:

!

G
1

"
(x, y,#) = cos(") $Gx (x, y,#)+ sin(") $Gy(x, y,#)

Thus:

1st order

!

P
1

"
(i, j) =Cos(")Px (i, j)+ Sin(")Py(i, j)

2nd order

!

P
1

"
(i, j) =Cos(")2Pxx (i, j)+ Sin(")

2
Pyy(i, j)+ 2Cos(")Sin(")Pxy(i, j)

3rd order

!

P
3

"
(i, j) =Cos(")3Pxxx (i, j)+Cos(")

2
Sin(")Pxxy(i, j)+Cos(")Sin(")

2
Pxyy(i, j)+ Sin(")

3
Pyyy(i, j)

By steering the derivatives to the local orientation, we obtain an "invariant" measure
of local contrast. We can also "steer" in scale to obtain invariance to size.

Note, we can NOT steer the mixed derivatives, i.e Pxy(i,j)

 8-6

2 Gaussian Scale Space

!

p(t,s) = x(t) * k(
t

s
)

x(t) A signal (t is time or space)
k(t) A kernel function
p(t,s) A multi-scale representation of x(t) (s is scale)

 Scaling x(t) translates p(t,s) in scale

However, to obtain "equvariant" scaling, we need to use Log(s).

!

p(t, s) = x(t)* k(
t

2
s
)

In this way, doubling the size of x(t) translates the signal by s+1.

2.1 Image Scale Space:

Continuous Case.

 Let P(x,y) be the image.
 Let G(x, y, 2s) by a Gaussian function of scale σ=2s

Continuous x, y, s: P(x, y, s) = P(x,y)* G(x, y, 2s)

y

x
x

Sca le

(Resolution)

The appearance of a pattern in the image results in a unique struction in P(x, y, s).
This structure is "equvariant" in position, scale and rotation.
Translate the pattern by ∆x, ∆y and the structure translates by ∆x, ∆y in P(x, y, s).
Rotate by θ in x,y and the structure rotates by θ in P(x, y, s).
Scale by a factor of 2s, and the structure translates by s in P(x, y, s).

 8-7

Scale space :
 Separates global structure from fine detail.
 Provides context for recognition.
 Provides a description that is invariant to position, orientation and scale.

2.2 Discrete Scale Space

Let P(i,j) be an image of size MxM pixels

We propose to sample scale a ∆σ = 21/2 so that σk=2k/2

Let G(i,j,k) be a kernel filter for σk=2k/2

The filter support is Rk = 4σκ so that Nk = 2Rk +1 = 2(22)2k/2+1

 Nk=2k/2+3+1

Pyramid Definition: P(i,j,k) = P(i,j) * G(i,j, 2k/2)

for 1 ≤ k ≤ M–4

Diffusion Equation:

!

"
2
Gx (i, j,#) =Gxx (i, j,#) +Gyy (i, j,#) =

$G(i, j,#)

$#

As a consequence: ∇2G(i,j,σ) ≈ G(i,j,σ1) – G(i,j, σ

2
)

This typically requires σ1≥ 2 σ2

Thus it is common to use:

 ∇2P(i,j,k) = <p(i,j),∇2G(i,j,σk)> ≈ P(i,j,k) – P(i,j, k–1)

2.3 Resampled Pyramid

Discrete scale space is highly redundant. The low resolution images may be
represented by a subset of pixels.

Because G(i,j,k) is a low pass filter, we can resample each pyramid image, P(i,j,k)
 at ∆xk = σk/2=2(k-1)/2 with aliasing of less than 1% of signal energy.

for k odd, ∆xk

 = {1, 2, 4, 8…}
for k even, ∆xk = {√2, 2√2, 4√2, 8√2, …}

 8-8

How ? with the diagonal sampling operator S√2{}

For k even, the √2 resampling operator, S√2

k{}, selects even columns of even rows
and odd columns of odd rows.
For k odd, diagonal sample operator eliminates every second column (starting with
even columns on even rows and odd columns on odd rows). For k odd, resampling
eliminates every second row (odd rows).

!

S
2
k {P{x, y)} =

P(x, y) if (x + y)2 Mod 2k-1 = 0

0 otherwise

"

$

Data Structure

The even numbered images are diagonally sampled, eliminating half the pixels.

For an image of size MxM, Number of pixels is

 8-9

 P = MxM x (1 + ½ + ¼ + …) = 2M2

Cost of computing p(i,j,k) is

 C= O(M2((N0+1)2+(N1+1)2+(N2+1)2+…+(NM-4+1)2))

if we use "seperable" convolution:

 P(i,j) * G(i,j, 2k/2) = P(i,j) * G(i, 2k/2) * G(j, 2k/2)

then

 C= O(M2·2(N0+N1+N2+N3+…+NM–4+M–4+1)

 C= O(M2·2(8+16+32+64+…+ NM–4)+6).
Practically, the computational cost is exorbitant.
We can use Cascade Convolution Methods to reduce cost

Within such a structure, the derivatives can be approximated as differences:

!

Px (i, j,k) =< P(i, j),Gx (i, j,") # P(i + $xk, j,k) % P(i %$xk, j,k)

!

Py (i, j,k) =< P(i, j),Gy (i, j,") # P(i, j + $xk,k) % P(i, j + $xk,k)

!

Pxx (i, j,k) =< P(i, j),Gxx (i, j,") # P(i + $xk, j,k) % P(i, j,k) + P(i %$xk, j,k)

!

Pxy (i, j,k) =< P(i, j),Gxx (i, j,")

 # P(i + $xk, j + $xk,k) % P(i %$xk, j + $xk,k)
 % P(i + $xk, j %$xk,k) + P(i %$xk, j %$xk,k)

!

Pyy (i, j,k) =< P(i, j),Gyy (i, j,") # P(i, j + $xk,k) % P(i, j,k) + P(i, j + $xk,k)

2.4 Cascade Convolution Pyramid Algorithm:

 8-10

2.5 Scale Invariant Interest Points

It is common to detect "keypoints" as maxima in the lapacian.

Recall

!

"#

2
P(i, j) = P *"2

G(i, j,#) =
P *"2

G(i, j,#)

P *"2
G(i, j,#)

$

%
&

'

(
) * P *"

2
G(i, j,#

1
) – P *"2

G(i, j,#
2
)

Thus for σ1/σ2 = √2

!

"
2
P(i, j,k) ="

#=2k / 2

2
P(i, j) $ P(i, j,k) – P(i, j,k %1)

We can detect scale invariant keypoints as

 (i,j,k)n =

!

arg"max
i, j,k

{#
2
P(i, j,k)}

Examples:

 8-11

The scale σi is an "invariant" for the appearance at P(i,j).

!

" i = arg#max
"

{P *$
2
G(i, j,")}

" i = arg#max
"

{$
"=2k

2
P(i, j)}

" i = arg#max
k

{P(i, j,k) – P(i, j,k #1)}

Maximally stable invariant points are found as :

!

X(i, j,k) = arg"max
i, j ,k

{P(i, j,k) – P(i, j,k "1)}

Such points are used for tracking, for image registration, and as feature points for
recognition.

(this will be the subject of our next séances).

 8-12

2.6 Color Opponent Scale Space

 (R, G, B) ⇒ (L, C1, C2)

!

L

1C

2C

"

$
$
$

%

&

'
'
'

=

0.33 0.33 0.33

(0.5 (0.5 1

0.5 (0.5 0

"

$
$
$

%

&

'
'
'

R

G

B

"

$
$
$

%

&

'
'
'

This representation separates luminance and chrominance.

RGB B-W R-G R+G-B

This makes it possible to "steer" the chrominance to an illumination color

!

L

1C

2C

"

$
$
$

%

&

'
'
'

=

0.33 0.33 0.33

(0.5 (0.5 1

0.5 (0.5 0

"

$
$
$

%

&

'
'
'

)
1
R

)
2
G

)
3
B

"

$
$
$

%

&

'
'
'

We then compute 3 pyramids : L(i,j,k), C1(i,j,k), and (i,j,k),

