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1 Gaussian Derivative Operators as basis description

Appearance is what you see.

We seek a set K local basis functions, di(x,y) to describe "appearance" around a point
in an image.

R R
'xk = E E p(x0+x’yo+y)dk(x9y)

x=—Ry=-R

Projection of the image neighborhood P(x,,y,) onto this set of functions gives a
X
"feature" vector for appearance, X = x2

Xk

Ideally these functions should be orthogonal

R

R
E E d”’(x0+x’y0+y)dn(x7y)=o ifn#m

x=—Ry=-R

Such a basis can be obtained by a taylor series representation of a function f(x)
around a point, a, is

f(x)=f(a)%ﬂ(x—a)%@@—a)z%fmu—a)%...

The basis set for a taylor series is the series of local derivatives.
These are used to define a basis jet for local appearance.
This is called the "local jet".

1.1 The Sampled Gaussian Functions

(@)

2D Gaussian Receptive Field: G(, j,0) = %WR (G,j) e 2

Typically: for R should be > 30 . Recommend R=40

1 for -R=<i=Rand —R=<j=<R

0 otherwise

WR(iaj)={
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Finite windw, wg(i,j) has N”= (2R+1)* coefficients

(Attention: 1, j are INTEGERS, not complex numbers!)
R G+/D)

R —_
The normalization factor A= E Ee 20 2o

i=—R j=-R

This factor is slightly smaller than 2no when the Gaussian is evaluated over a finite
window wg(i,j) of size NxN pixels. This factor can be determined from the filter, and

can be ignored in discussing the properties of the Gaussian.

KOye) i

)
J

Separability: G(i, j,0) =Wy(i,j) e 27 =(Wy(i) e 27 )x(Wy(j) e )

Scale property: G(i, j,A20) = G(i, j,0) = G(i, j,0)

Derivative Filters:

.. i ..
Gx(l,],()') = __ZG(I’J’G)
O
2_g?
O,4

Gxx(l’,ha) =

G(,j,0)

.. ij ..
G, (i, j,0)=-2L-G(, j,0)
(02

i’ —io?
0_6

G, (no)=- G(,j,0)

Laplacian:
VG (i, j,0) = G, (i, j,0) + G, (i, },0)

Diffusion Equation: V?G,(i,},0) =G, (i,j,0)+ G (i, j,0) = Py

We can use these sampled functions to create a basis set of receptive fields:

GG,j,0)=(G,,G,,G.G,G,,G...G.. .G, .G, )

dG(i, j,o)

M- X"
= 1l ' =
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The Gaussian receptive fields Gy, Gy, Gxx, Gyy, Gyy, Gxxxo Gxxys Gxyys -
These can be used to compute a local description known as the "local jet".
L(i, j,0)=P*G(i, j,0)
A subset of the derivatives in the local jet can be steered to a normalization angle 6.

Steerability:

G,(x,y,0)=cos(0) G (x,y,0)+ sin(6)- G,(x,y,0)

G;(x,y,0)=Cos(0)G . (x,y,0)+ Cos(0)Sin(0)G (x,y,0)+Sin(0)’ G, (x,y,0)
G, (x,y,0)=Cos(0)’G,,,(x,y,0)+Cos(0)’ Sin(0)G ., (x,y,0) + Cos(0)Sin(0)’ G, (x,y,0) + Sin(0)’ G, (x,y,0)
Note the scale parameter o determines the "resolution" of the derivatives.
You MUST specify o. The smallest o is not always the best.
Many computer vision algorithms give unpredictable results because the researchers
forget to specify the scale o at which the algorithm was validated.
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1.2 Using the Gaussian to compute image derivatives

For an image P(i, j), the derivatives can be approximated by convolution with
Derivatives of Gaussians

P, j))=P*G.(1,j,0)
P(i,))=P*G,(,j,0)
P (1, j)=P*G_(i,j,0)
P (i,j)=P*G (i, },0)
Pyy(i’j) = P*ny(i,j,()')

Note: it is NECESSARY to specify 0. Small o is not necessarily best.
The Gradient VP(,j) is calculated by P(, j)*VG(, j,0)

) G (i
where VG(,j,0) =( 5 G))

G, (i, j,0)

P.(0,))

Gradient: VP, j)= (P i)

o o (P*Gxa,j,a))
=~V(P*G(,j,0)=P*VG(,j,0)=

P*G (i, },0)
Laplacien: V*P(i,j)=P*V’G(i,j,0) =P, (i, )+P,(i,))= P*G (i, j,0 )+ P*G (i,j,0 )
Gaussian Derivatives are Steerable:

G]B(x,y,o) =cos(0): G (x,y,0)+ sin(0)- G),(x,y,o)
Thus:

Istorder  P°(i,j)=Cos(O)P,(i, j)+Sin(0)P,(, j)
2nd order  P’(i, j) = Cos(0)’ P, (i, j)+ Sin(0)* P,,(i, j) + 2Cos(0)Sin(0) P, (i, j)
3rd order
P{(i, j)=Cos(0)’ P,,.(i, j)+ Cos(0)’ Sin(O)P, (i, j) + Cos(0)Sin(0)’ P, (i, j) + Sin(0)’ P, (i, j)

xyy Yyy

By steering the derivatives to the local orientation, we obtain an "invariant" measure
of local contrast. We can also "steer" in scale to obtain invariance to size.

Note, we can NOT steer the mixed derivatives, 1.e P,,(i,j)
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2 Gaussian Scale Space

plt,5) = x(£)* k(§>

x(t) A signal (tis time or space)
k(t) A kernel function
p(t,s) A multi-scale representation of x(t) (s is scale)

Scaling x(t) translates p(t,s) in scale

However, to obtain "equvariant" scaling, we need to use Log(s).
Plt.) = X(1) k()
In this way, doubling the size of x(t) translates the signal by s+1.

2.1 Image Scale Space:
Continuous Case.

Let P(x,y) be the image.
Let G(x,y, 2°) by a Gaussian function of scale 0=2°

Continuous X, y, s: P(x,y,s) = P(x,y)* G(x, y, 2°)
Scale
(Resolution)
7'
/ y
S~ /

pd / —z = _.

X

The appearance of a pattern in the image results in a unique struction in P(x, y, s).
This structure is "equvariant" in position, scale and rotation.

Translate the pattern by Ax, Ay and the structure translates by Ax, Ay in P(x,y, s).
Rotate by 0 in x,y and the structure rotates by 0 in P(x, y, s).

Scale by a factor of 2°, and the structure translates by s in P(x, y, s).
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Scale space :
Separates global structure from fine detail.
Provides context for recognition.
Provides a description that is invariant to position, orientation and scale.

2.2 Discrete Scale Space
Let P(i,j) be an image of size MxM pixels

2" 50 that 0,=2"2

We propose to sample scale a Ao = 2

Let G(i,j,k) be a kernel filter for o,=2"*

The filter support is Ry = 40, so that N, = 2R, +1 = 2(2%)2"*+1
N=2K234 1

Pyramid Definition: P(i,j,k) = P(i,j) * G(i,j, 2%

for 1<k <M-+4

JG(, j,0)

Diffusion Equation: V?G,(i,},0)=G,.(i,j,0)+ G (i, j,0) = Py

As a consequence: V2G(i,),0) = G(1,,0,) —G(1], 0,)

This typically requires o©1> V2 o

Thus it is common to use:

V2P(i,j,k) = <p(i,)),V2G(i,j,00)> = P(i,j.k) — P(i,j, k-1)

2.3 Resampled Pyramid

Discrete scale space is highly redundant. The low resolution images may be
represented by a subset of pixels.

Because G(i,j,k) 1s a low pass filter, we can resample each pyramid image, P(i,j,k)
at Ax, = 0,/2=2"""? with aliasing of less than 1% of signal energy.

for k odd, Ax,= {1, 2,4, 8...}
for k even, Ax,= {V2, 2V2, 4V2,8V2, ...}
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How ? with the diagonal sampling operator Sy, {}

o o o o _|_ o _|_

e} e} e} e} Sﬁ{} o ‘|— o] —I_
o o o o I:> + o + o
o o o o o —|— o _|_
P(x,y) S SAP(x,y)}

For k even, the V2 resampling operator, S\,*{}, selects even columns of even rows
and odd columns of odd rows.
For k odd, diagonal sample operator eliminates every second column (starting with
even columns on even rows and odd columns on odd rows). For k odd, resampling
eliminates every second row (odd rows).

S (PLo}- {P(x,y) if (x+y)> Mod 2" =0

otherwise

Data Structure

Log(o)

Il_

k=3 k=4

—

k=1 k=2

MxM pixel Image buffer P=2 MxM pixel pyramid buffer

For an image of size MxM, Number of pixels is
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P=MxMx (1 +%+%+..)=2M
Cost of computing p(i,j,k) 1s

C= O(M*(No+ 1) (N + 1) +(No+ 1)+ +(Naa+1)%))
if we use "seperable" convolution:

P(i,j) * G(ij, 2*) = P(i,j) * G(i, 2%) * G(j, 2%)
then

C= O(M*2(N¢+N N, +N3+. ..+ Ny 4+ M—4+1)

C= O(M*2(8+16+32+64+. ..+ Ny4)+6).

Practically, the computational cost is exorbitant.
We can use Cascade Convolution Methods to reduce cost

Within such a structure, the derivatives can be approximated as differences:
P (i,j,k)=<P(i,),G, (@ jo)=P@i+Ax,jk)-P(i-Ax,jk)

P.(i,j,k) =< P(i, )),G, (i, },0) = P(i, j + Ax, k) = P(i, j + Ax;, k)

P_(i,j.k) =< P(i, j),G_.(i, j,0) = P(i + Ax,, j,k) - P(i, j,k) + P(i - Ax,, j.k)

P, (i, j,k) =< P(,)),G,.(j,0)
~P@{+Ax,,j+Ax,,k)- P(i—Ax,,j+ Ax, k)
-P(i+Ax,,j—-Ax k) + P(i—Ax,,j - Ax k)

P, (i, j,k) =< P(i, )),G,,(i, j,0) = P(i, j + Ax, . k) = P(i, j,k) + P(i, j + Ax, . k)

2.4 Cascade Convolution Pyramid Algorithm:
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Window Buffer

2D Binomial Convolution
7

2D Binomial Convolution [—>
\/

1/2 Resample
\/

2D Binomial Convolution |~
N Pyramid
+/2 Resample Buffer
\/

2D Binomial Convolution T
N

N
2D Binomial Convolution |[—

2.5 Scale Invariant Interest Points
It is common to detect "keypoints" as maxima in the lapacian.

Recall
P*V’G(i, j,0)

ViP(,j)=P*V’G(,j,0)=
! CID7 pavica, jo)

)”P “V2G(i, j,0,) - P*V?G(i, j,0,)

Thus for 01/02 = \/2

V2P, j,k)=V> .. P, )= P(i, j,k)— P(i, j,k—1)

We can detect scale invariant keypoints as

(1,j,k), = arg- max{V°P(, j,k)}
i,j.k

Examples:
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The scale o;1s an "invariant" for the appearance at P(i,j).

e 3 & & 4 4 08 5 o

o, = arg-max{P *V’G(i, j,0)}
o, =arg-max{V’_, P(i, )}
0, =arg-max{P(, j,k)- P(,j.k-1)}
k
Maximally stable invariant points are found as :

X(l’.]’k) =arg- maX{P(l9Jak)_P(l’Jak_l)}

ijk

Such points are used for tracking, for image registration, and as feature points for
recognition.

(this will be the subject of our next séances).
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2.6 Color Opponent Scale Space
L 0.33 0.33 0.33\R

(R, G, B) = (L, Cl, Cz) Ci|=1-0.5 -0.5 1 G
C> 05 -05 O AB

This representation separates luminance and chrominance.

R+G+B

I

RGB B-W R-G R+G-B

This makes it possible to "steer" the chrominance to an illumination color

L) (033 033 033\ qR
ci|l=|-05 -05 1 |aG
c.) (05 -05 0 la,B

We then compute 3 pyramids : L(i,j,k), C,(i,j,k), and (1,5,k),
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