
June 1, 2002
Copenhagen, Denmark

In Conjunction with
European Conference on Computer Vision (ECCV’02)

In Cooperation with
IEEE Computer Society and IEEE PAMI-TC

Proceedings

Third IEEE International Workshop on
Performance Evaluation of
Tracking and Surveillance (PETS’2002)

PETS’2002

Supported by

PETS’2002 is supported by the IEEE Computer Society, the European Union under
FGNet (Face and Gesture Recognition Working Group) IST-2000-26434,

British Machine Vision Association, BlueArc, Intel and The University of Reading, UK.

BMVA

Proceedings

Third IEEE International Workshop on
Performance Evaluation of
Tracking and Surveillance

(PETS’2002)

June 1, 2002
Copenhagen, Denmark

In conjunction with
European Conference on Computer Vision (ECCV’02)

In cooperation with IEEE Computer Society and IEEE PAMI-TC

Edited by

James M. Ferryman
Computational Vision Group
Department of Computer Science
The University of Reading
Whiteknights
Reading RG6 6AY
UK

Apart from any fair dealing for the purposes of research or private study, or criticism or review,
as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be
reproduced, stored or transmitted, in any form or by any means, with the prior permission in
writing of the publishers, or in the case of reprographic reproduction in accordance with the
terms of licenses issued by the Copyright Licensing Agency. Enquiries concerning reproduction
outside those terms should be sent to the authors of the papers.

© James M. Ferryman and IEEE. All Rights Reserved.

The use of registered names, trademarks, etc. in this publication does not imply, even in the
absence of a specific statement, that such names are exempt from the relevant laws and
regulations and therefore free for general use.

The publisher makes no representation, express or implied, with regard to accuracy of the
information in these proceedings and cannot accept any legal responsibility for any error or
omissions that may be made.

PETS’2002
Proceedings of the Third IEEE International Workshop on Performance Evaluation of Tracking
and Surveillance
June 1, 2002
Copenhagen, Denmark

First Edition

ISBN 0-7695-1698-X

Cover design depicts images taken from contributions within the proceedings.

Compiled in England at The University of Reading, UK.
Printed and bound at INRIA Rhône-Alpes, Grenoble, France.

Table of Contents
Third IEEE International Workshop on PETS

Foreword ___ v

Workshop Organisers ___ vi

Programme Committee __ vi

Event-based Activity Analysis in Live Video using a Generic Object Tracker ____ 1
J. H. Piater, S. Richetto and J. L. Crowley,

Laboratoire GAVIR-IMAG, INRIA Rhône-Alpes, France

From Cluster Tracking to People Counting _______________________________ 9
A. E. C. Pece,

Institute of Computer Science, The University of Copenhagen, Denmark

Detecting Moving Objects and their Shadows:
An Evaluation with the PETS2002 Dataset ______________________________ 18

R. Cucchiara, C. Grana and A. Prati,
Department of Information Engineering,
University of Modena and Reggio Emilia, Italy

Performance Metrics and Methods for Tracking in Surveillance ______________ 26
T. Ellis,

Information Engineering Centre, School of Engineering,
City University, London, UK

An Open Development Environment for Evaluation of
Video Surveillance Systems_________ _________________________________ 32

C. Jaynes, S. Webb, R. M. Steele and Q. Xiong,
Metaverse Laboratory, Department of Computer, University of Kentucky, USA

Auto Calibration in Multiple-Camera Surveillance Environment _____________ 40
G. A. Jones, J. Renno and P. Remagnino,

Digital Imaging Research Centre, Kingston University, London, UK

Tracking People with Probabilistic Appearance Models ____________________ 48
A. Senior,

IBM T.J. Watson Research Center, NY, USA

Tracking and Counting Multiple Interacting People in Indoor Scenes__________ 56
L. Marcenaro, L. Marchesotti and C. S. Regazzoni,

DIBE, University of Genoa, Italy

iv

Foreword

Welcome to the proceedings of the Third IEEE International Workshop on Performance
Evaluation of Tracking and Surveillance (PETS’2002), held on June 1, 2002 in Copenhagen,
Denmark. This workshop is being held in conjunction with the European Conference on
Computer Vision (ECCV’02).

The workshop continues the theme of the highly successful PETS’2000 and PETS’2001
workshops held in Grenoble, France (FG’2000), and Kauai, Hawaii (CVPR’01) respectively.
The principal motivation for this workshop is that recent advances in visual tracking/
surveillance research have not been met with complementary systematic performance
evaluation. It is especially difficult to draw comparisons between algorithms if they have been
tested on different datasets under widely varying conditions. In PETS, all participants are
applying their algorithms to the same datasets. For this workshop, the datasets include an indoor
environment with people moving in front of a shop window, and static hand postures.

PETS this year is more industrially motivated both by the datasets and the speakers. The people
tracking datasets were collected by the Consortium of Project IST VISOR BASE (IST-1999-
10808). The Jochen Triesch hand posture dataset was provided by Sebastian Marcel, IDIAP,
Switzerland.

We would like to thank all of those who have contributed papers to the workshop. Each paper
was reviewed by at least two reviewers with a third reviewer in many cases. The final
programme consists of 11 contributed presentations including four invited speakers, and a
discussion session. The final paper decisions were based on technical content and application
to, and evaluation of results based on, the PETS’2002 datasets.

We would also like to thank the members of the programme committee and additional reviewers
for their prompt and detailed reviewing of the papers. Finally, thanks to the ECCV organisers
and Conference Secretariat for coordination and help with the organisation of the workshop.

We hope that you enjoy the proceedings and look forward to your active participation.

PETS’2002 Steering Committee
June 2002

v

Workshop Organisers

Programme Chair

James Ferryman

Department of Computer Science
The University of Reading

Whiteknights
Reading RG6 6AY UK

Steering Committee

James L. Crowley, I.N.P. Grenoble, France
James Ferryman, The University of Reading, UK

Programme Committee

Terrance Boult, Lehigh University, USA
Andrew Bulpitt, The University of Leeds, UK

Tim Cootes, The University of Manchester, UK
Patrick Courtney, Perkin Elmer Life Science, Cambridge, UK

James L. Crowley, I.N.P. Grenoble, France
Larry Davis, The University of Maryland, USA

Shaogang Gong, Queen Mary, University of London, UK
Erik Granum, Aalborg University, Denmark

Eric Grimson, MIT AI Lab, USA
Yuri Ivanov, MIT Media Lab, USA

Graeme Jones, Kingston University, UK
Andreas Lanitis, Cyrus College, Nicosia, Cyprus
Sebastian Marcel, IDIAP, Martigny, Switzerland
Steve Maybank, The University of Reading, UK

Arthur Pece, The University of Copenhagen, Denmark
Justus Piater, I.N.P. Grenoble, France

Gerhard Rigoll, Gerhard-Mercator-University, Duisburg, Germany
Simon Rowe, Canon Research Centre Europe, UK

Stan Sclaroff, Boston University, USA
Andrew Senior, IBM T.J. Watson Research Centre, USA

Tieniu Tan, Institute of Automation, Beijing, China
Ramesh Visvanathan, Siemens Corporate Research, USA

vi

Event-based Activity Analysis in Live Video using a Generic Object Tracker

Justus H. Piater, Stéphane Richetto, and James L. Crowley

Projet PRIMA, Laboratoire GAVIR-IMAG
INRIA Rhône-Alpes

655 avenue de l’Europe, Montbonnot
38334 Saint Ismier cedex, France

Abstract

In earlier work we introduced a generic, modular tracker
architecture that combines the advantages of several sim-
ple and rapidly performing tracking algorithms. The adap-
tive choice of critical system parameters such as process-
ing regions and resolution results in robustness to varying
frame rates and computational constraints. In this paper,
we describe the embedding of our tracker into a distributed
infrastructure for visual surveillance applications via an
event-based mechanism. The tracker generates application-
independent events on the basis of generic incidents and
target interactions detected in the video stream. These
events can then be received and interpreted by application-
specific clients. We report experimental results on the shop-
window datasets of PETS 2002.

1. Introduction
A central aim of most video surveillance applications is the
automatic detection of particular incidents of interest. In se-
curity applications, for instance, such incidents may include
the appearance of an intruder, the recognition of a particular
face, or a piece of unattended luggage. Other applications
seek to gather statistics of specific aspects of human activ-
ity. In this paper we describe the application of our generic,
video-rate tracking system [8] to a such an application. The
aim is to collect data about commercially relevant human
behavior in relation to a shop window.

We employ our multi-purpose, modular object tracker
that is currently being developed as part of a project aimed
at creating an infrastructure for distributed video surveil-
lance applications. Most of the relevant technical details
about our tracker have already been described at last year’s
PETS workshop [8]. In this paper, we summarize the key
aspects of the underlying multi-purpose tracking system,
and then describe the embedding of our system into the dis-
tributed environment through an interface of light-weight

This work has been sponsored by Project IST-1999-10808 VISOR BASE.

data structures, and how these can be used by specific appli-
cations. We report experimental results on the shop-window
data of this year’s PETS workshop.

Two key characteristics of our system are its generality
and its speed. Since we aim to address a very wide variety of
tracking applications [9], we avoid the use of task-specific
knowledge and models to the largest possible extent. Such
knowledge can substantially bolster performance on spe-
cific applications, but it is costly to implement and often
also computationally expensive [10, 6, 2, 4, 14]. Instead, we
explore the performance achievable within the self-imposed
limitations of a very general and efficient system.

A key to achieving robustness in general scenarios lies in
rapid processing at or close to video frame rates. Therefore,
we employ simple algorithms that perform very rapid tar-
get detection. Several different such algorithms can be used
without loss of processing speed if more than one CPU is
available. This modular architecture permits the selection
of complementary algorithms to balance their respective ad-
vantages and drawbacks, though only one is used for the
purpose of this paper.

The system attempts to track each moving (or temporar-
ily stationary) object as an individual target. Targets that
come very close to each other are merged. If a target sep-
arates into spatially distinct objects, it is split into two tar-
gets. In this way, interacting objects can be tracked [10, 7].
As a result, the system is robust to certain scene and sys-
tem parameters such as the number and proximity of mov-
ing objects and the video processing frame rates. All de-
tection algorithms are based on adaptively parameterized
regions of interest (ROIs). Therefore, the overall compu-
tational demands depend more on the number of simulta-
neously tracked targets than on the size of the processed
frames. This is a great advantage over frame-based meth-
ods when only a minor fraction of the image is covered
by target ROIs. Almost all current work on object track-
ing focuses on such “sparse” scenarios, since any tracking
task becomes considerably more difficult if the majority of
a frame is occupied by moving targets.

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

1

Shop−Window

People Counter

events

results

other algorithms...

Video Source

Background−Difference
Tracker

Estimator

Recursive Supervisor

Detection Modules Integration and AnalysisInput Video

video frames

from local or

remote source

CORBA Bus

events interaction
userG

en
er

ic
A

p
p

lic
at

io
n

Figure 1: Architecture of the robust multi-modal tracker, and its integration into a distributed video surveillance system.
Thick arrows indicate flow of pixel data, and thin arrows parametric data.

2. Architecture
The architecture of the multi-purpose tracking system is
shown in the top half of Figure 1. Arrows indicate data
flow. A video source provides a video stream, originat-
ing from a frame grabber or a file, by writing frames into
buffers where they are accessed by the detection modules,
while avoiding unnecessary copying of pixel arrays. Each
detection module implements a specific tracking algorithm.
Since they are mutually independent, the detection modules
can be executed in parallel, and can in principle operate at
different frame rates. Additional detection modules can be
implemented as desired.

The results of individual detection modules are inte-
grated by a recursive estimator. A supervisor performs
high-level control and analysis at the symbolic level. The
supervisor maintains a listU of currently known targets.
For each frame, the following procedure is performed:

1. The supervisor handsU over to the recursive estimator.

(a) The recursive estimator passes a copyu′ of each
targetu ∈ U to each detection module. Each
detection module asynchronously updates its in-
stancesu′ according to its algorithm.

(b) The recursive estimator obtains an updated tar-
get u′ from a detection module, and recursively
updates its estimate of the target parameters:

u← update(u,u′) (1)

This step is repeated until all targets have been
processed.

(c) The recursive estimator asks a designated detec-
tion module to generate a listUnew of new targets
(which may be empty).

(d) The recursive estimator returnsU ← U∪Unew to
the supervisor.

2. The supervisor examines the listU of targets in order
to remove expired or spurious targets, perform splits
and merges, and to generate any events based on target
interactions or movements if so desired by the applica-
tion context. It may also call upon other modules, e.g.
a face recognizer. Such auxiliary modules may also
access the video source and may trigger events.

Specific applications can tap into the CORBA bus to re-
trieve events generated by the tracker, as indicated in the
bottom half of Figure 1. In Section 6 we describe how this
architecture is used to address the PETS shop-window sce-
nario.

3. Detection Modules
The purpose of a detection module is to measure the cur-
rent location and sizeu of a target in the current image,
given its estimated location and sizeû. The observed tar-
get description̂u consists of an estimate of the location and
spatial extent of a target, and is given by the the pixel coor-
dinates of the target center and the three spatial covariance
parameters:

û = [x̂, ŷ, σ̂xx, σ̂xy, σ̂yy]
T (2)

The detection module looks for the target inside a Gaus-
sian region of interest reflecting the uncertainty about the
current estimate of the target:

ROI(u) = G(x; µu, Σ̃u) = e−
1
2 (x−µu)T Σ̃−1

u (x−µu) (3)

where the mean vectorµu = [x̂, ŷ]T is simply the predicted
location of targetu in the current image, provided by the

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

2

recursive estimator. The spatial covarianceΣ̃u reflects the
size of the target, as well as the uncertainty about the current
target location and size:

Σ̃ =

[
σ̂xx σ̂xy

σ̂xy σ̂yy

]
+ ∆t

[
qxx + qσxx 0

0 qyy + qσyy

]
(4)

The first term is the current estimate of the spatial extent
of the target, and the second term specifies the growing un-
certainty about the location (qxx andqyy) and spatial extent
(qσxx andqσyy) of the target. All these values are provided by
the recursive estimator. Proportionally to the elapsed video
frame time, the ROI grows into an increasingly axis-parallel
ellipse thanks to the second term in Equation 4 that speci-
fies the estimator’s idea of possible horizontal and vertical
target velocities and growth, without bias toward a diagonal
slant.

For efficiency, the Gaussian ROI is cut off at a reason-
able size, e.g. at a radius of 2σ horizontally and vertically.
Within this area, the detection module produces adetec-
tion image Dthat encodes, for each pixel, the probability
(or a pseudo-probability) of that pixel being part of the tar-
get. The difference between detection modules lies in the
method of computingD; other than that, all detection mod-
ules within our framework are identical.

The detection imageD is multiplied by a mask, that, for
the moment, is simply the Gaussian ROI, and is then thresh-
olded to yield a binary image representing the target:

MASK(u) = ROI(u) (5)

D′ = thresh(D ×MASK(u), t) (6)

The thresholdt is easily adjusted for each detection module
by visual inspection ofD, and can in principle be computed
probabilistically by collecting statistics ofD in non-target
image regions, or, in a Bayes-optimal way, using hand-
selected regions representing target and non-target regions.

The measurement of the target parametersu =

[x̄, ȳ, σxx, σxy, σyy]T is then formed by computing the spa-
tial means and covariances of the pixel coordinates, masked
by the pixel values of the binarized detection imageD′.

The thresholding step in Equation 6 is not strictly nec-
essary; in principle, the spatial moments can be computed
by weighting each pixel by its value inD′ = D×MASK(u)
[11]. However, it is not generally clear that a high pixel
value in D should have a high influence on the target pa-
rameters, and vice versa. In general, if a spatially coherent
collection of pixels inD have marginally higher values than
would be expected if no target is present, then the collective
evidence in favor of a target is high despite the relatively
low pixel values. This effect is achieved by thresholding the
detection image. In fact, we have found empirically that a
binarized detection imageD′ usually produces more precise
and stable target approximations than the non-thresholded
version.

At this point, the task of the detection module is done,
and the parameter vectoru is passed to the recursive estima-
tor. The following section describes the detection module
that we used to generate the results described in Section 7.

3.1 Background-Difference Detection

The background-difference detector maintains an internal
background image B, and produces a monochromatic de-
tection imageD using the current frameI according to the
equation

D = min
(
|Ired− Bred| +

∣∣∣Igreen− Bgreen

∣∣∣ + |Iblue− Bblue| , Imax

)
,

(7)
whereImax denotes the upper limit of the intensity range in
one image band.

The performance of background-difference detectors de-
pends crucially on the accuracy of the background repre-
sentationB. Therefore, the background is updated using a
weighted average

Bt = αI + (1− α)Bt−∆t,

excluding regions that belong to tracked targets.
For reasons of computational efficiency, we chose this

simplistic background model. For increased robustness in
combination with high sensitivity, one can model the back-
ground as pixel-wise Gaussian distributions [13] or mix-
tures of Gaussians [5].

3.2. Other Detection Modules
In the experiments reported in this paper, only the
background-difference detector is used. A variety of other
detection modules are possible. We also have extensive
experience with a motion-history detector [3] and a color-
histogram detector [12, 11] that are described elsewhere
[8, 9]; other modules with complementary properties are
currently under development.

4. Recursive Estimator
The recursive estimator tracks five parameters of each tar-
getu, specifying the position and spatial extent of the target
(Equation 2). It integrates sensor measurements across de-
tection modules and over time. To perform this fusion, we
use a conventional first-order Kalman filter [1]. In addition
to the five target parameters, the Kalman filter estimates the
2-D velocity vector of each target. Compared to a zeroth-
order Kalman filter, this increases the precision and robust-
ness of target localization while allowing smaller ROI sizes,
if the processing frame rates are high in relation to the ve-
locity changes of targets. This condition is easily met for
the types of objects of interest in surveillance applications.

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

3

The Kalman filter must be parameterized according to
the accuracy of the measurements ofu by each detection
module, and to the expected velocity changes of moving
objects. This can be done by careful calibration using mea-
sured data, or simply by rough estimation as the perfor-
mance is quite robust to imprecise parameterization. The
parametersq that occur in Equation 4 with various sub-
scripts are precisely those coefficients specifying the ex-
pected velocity changes of moving objects.

5. Supervisor
The supervisor maintains the list of currently known targets,
and performs the following principal functions:

• Activation of detection modules for tracking of exist-
ing and detection of new targets in each frame,

• Maintenance of the target list by adding newly detected
targets, deleting lost or exited targets, and performing
target splits and merges,

• Launching of events based on the above, as well as on
other target characteristics,

• User interaction,
• Dynamic re-parameterization of the tracking system

to maintain desired performance characteristics over a
range of conditions (currently under investigation).

5.1. Target List Maintenance
Each target has an associatedconfidence factor. If a target is
successfully tracked by one or more detection modules, the
confidence factor is incremented (up to a limit). Otherwise,
the confidence factor is decremented. In this case, the target
is considered temporarily out of sight. Note that this target’s
ROI size grows automatically in accordance with the grow-
ing uncertainty of the Kalman estimate of the target location
and size (Eqn. 3). Targets with zero confidence are elimi-
nated. If, however, an undetected target is located inside a
designatedexit region, the target is considered to have left
the scene. Accordingly, its confidence is immediately set to
zero, causing it to disappear.

Targets are merged if they draw so close to one another
that they can no longer be reliably kept separate at the para-
metric level. A target is split if it separates into clearly dis-
tinct subregions at the pixel level. The details of this proce-
dure and examples have been given elsewhere [8].

One or more designated detection modules look for new
targets in specialtrigger regions. This is useful if it is
known by the application context that new targets only ap-
pear in certain regions, because it is much more efficient
than processing the entire image, and also increases robust-
ness to noise. On the other hand, it is perfectly permis-
sible to define a trigger region that covers the entire image.
The detection procedure is generally exactly the same as the

tracking algorithms described above, except that no MASK
is applied. Instead, pixels marked as occupied by a known
target are ignored.

Additionally, dynamic trigger regions may be attached to
target ROIs, covering a certain region around the periphery
of a target. This permits the detection of minuscule sub-
targets that split off existing targets. Dynamic trigger re-
gions are not used in the experiments reported in this paper.

5.2. Event Generation
An ultimate purpose of most tracking systems is the ex-
traction of symbolic descriptions of scene activity. In our
architecture, this task is divided into two parts: Firstly,
application-independent events are generated by the super-
visor. A local module dispatches these events to any regis-
tered local or remote clients. Secondly, the clients analyze
these events to extract information relevant to the applica-
tion. Each event consists of a light-weight data structure
that contains the identifier and parameters of the affected
target(s), as well as further information such as frame num-
bers and time stamps. The following events are currently
defined in our system:

NewTarget A new target was detected in a static trigger
region.

ConfirmTarget A recently detected target (cf.NewTar-
get) has passed a given confidence threshold for the
first time. This event is useful because the Kalman-
filtered parametric approximation of target parameters
requires some number of frames to converge, and also
becauseNewTarget events are sometimes signalled for
spurious targets that disappear soon after.

MoveTarget A target has moved. Since this event is usu-
ally launched for almost all targets at almost every
frame, incurring a high communication overhead, the
system can be configured to trigger this type of event
at most once in everyn frames for each target. For this
paper, however, we always usedn = 1.

SplitTarget A target was split into two new targets as
briefly described above.

SplitOffTarget A new target was detected in a dynamic
trigger region as described above. This new target is
considered to have been split off the existing target that
owns that trigger region.

MergeTargets Two targets were merged into a new target.

ExitTarget A target disappeared inside an exit region.

LostTarget A target’s confidence value dropped to zero,
not inside of any exit region.

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

4

DeleteTarget A target was deleted by an external event.
Currently, this can be a user who deletes a target by
virtue of a mouse click.

ObservRegion A target entered into or passed out of a
designatedobservation region.

Observation regions constitute a versatile concept for gath-
ering statistics about target numbers and spatial behaviors.
Our system allows any number of observation regions to
be defined, and allows any kind of spatial relation between
them, including containment and partial overlaps.

5.3. User Interaction
Since our system is part of a distributed infrastructure, it
is designed to be fully remotely interoperable and config-
urable. For this purpose, the supervisor polls for incoming
interaction requests after processing each frame. Any com-
mands contained in these requests are dispatched to the cor-
responding modules within the architecture, and feedback is
returned via the same communication channel. Moreover, a
remote user can request the transmission of live video, and
some event types can carry image data such as face snap-
shots or entire frames as an extended payload.

6. The Shop-Window Scenario
The goal in the PETS Show-Window scenario is to gather
the following information at each frame:

cur in the number of people currently in front of the shop
window,

cumul in the cumulative number of individuals having
passed by the shop window,

cur st the number of people currently stopping and look-
ing into the shop window, and

cumul st the cumulative number of individuals having
looked into the shop window.

This task is difficult to solve for our system because, being
largely model-free, it is not equipped to retrieve any of this
information directly. Based on the events described pre-
viously, we can nevertheless obtain reasonable approxima-
tions to all of these. Figure 3 shows our setup with three
corresponding entry and exit regions, and one large obser-
vation region – consisting of three pieces for experimental
reasons – along the width of the window. In seeking to ob-
tain the desired statistics, our system faces three principal,
interrelated difficulties:

First, since our system has no model of a person, it can-
not determine how many individuals are represented by a
given target. We address this by estimating, for each tar-
get, the number of people based on the width of the target,
along with simple correction mechanisms to ensure consis-
tency across splits and merges.

The second difficulty is that our system cannot identify
individuals. We therefore have no direct way to match iden-
tities of individuals over time, which is required to obtain
accurate values for the cumulative statistics. To address this,
our shop-window client keeps its own list oftreated targets.
A given target becomes interesting to the client, and is said
to have been treated, once it enters the observation region
for the first time. Moreover, the targets created by splits
and merges have been treated (by definition) if at least one
of the parents has been treated. Using this list, we remem-
ber, for each target, whether it has passed by or stopped in
front of the window, helping us to accurately estimate the
cumulative statistics.

The third difficulty lies in the fact that, lacking a model
of a person, we cannot determine the direction of gaze of a
person. We therefore make the strong simplifying assump-
tion that all people represented by a stationary target inside
the observation region are looking into the shop window,
and no person represented by a moving target inside the ob-
servation region or by any target outside of it is looking into
the shop window.

An interesting way to address the first and third diffi-
culties would be to use our color histogram detection mod-
ule [9] to detect potential face regions inside the targets.
It could also be used to try to discriminate people on the
basis of the color distributions of their garments, address-
ing the second difficulty. However, pilot experiments soon
indicated that the rather degenerate color information con-
tained in the benchmark sequences is insufficient for these
purposes. In particular, the apparent color of human skin is
very close to the majority of the background.

The key idea then is to keep track of the following pa-
rameters for each treated target, across merges and splits:

tt np the estimated number of people represented by the
target,

tt in whether the target is currently inside the observation
region,

tt stc whether the target is currently stationary,
tt stp whether the target has previously been stationary in-

side the observation region.

Given this information, it is straightforward to determine
the two non-cumulative statisticscur in andcur st. In the
following, we describe how the client exploits events in or-
der to maintain the above four parameters for the treated
targets, and to update the two cumulative statisticscumul in
andcumul st:

MoveTarget To updatett stc and tt stp: A target is con-
sidered stationary if ˙x <

√
σ̂xx/second. This criterion

was chosen empirically.

ObservRegion The target’s parametertt in is updated ac-
cordingly.

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

5

SplitTarget Both children inherit thett stc and tt stp pa-
rameters from the parent, and theirtt in parameters are
determined according to their positions. The values
tt np of the children are determined by splitting the
parent’s value according to the ratio of the widths ˆσxx

of the children, while making sure that each child con-
tains at least one person. If the parent hadtt np = 1,
and the parent was inside the observation region (and
stationary), then the population estimate is corrected
by incrementingcumul in (andcumul st).

MergeTargets The child’stt np number is the sum of the
parents’ values, andtt stc andtt stp are determined by
the boolean disjunctions of the corresponding values
of the parents. If the child is inside the observation re-
gion, then the people represented by those parent(s), if
any, that were outside the observation region are added
to the cumulative count by incrementingcumul in by
the corresponding value(s), if any, oftt np. A cor-
responding update is performed forcumul st. The
child’s value oftt in is determined according to its po-
sition relative to the observation region.

ObservRegion If an entering target has not yet been
treated, it is added to the list of treated targets, setting
tt in to true. Its value oftt np is estimated based on its
width as described above, andcumul in is incremented
by tt np. If the entering target has already been treated,
all that happens is that itstt in parameter is set totrue.
If the event signals an exiting target, itstt in parameter
is set tofalse.

7. Experiments
We tested our system on the three PETS shop-window test
sequences in the original MPEG-1 format. The background
model of the background-difference tracker was initialized
at start-up using an image of the empty scene. We used the
same parameters for all three videos.

Figure 3 shows a typical sequence of events that is cor-
rectly processed. At Frame 360, a target has just entered
the observation region. According to its width, the num-
ber of people contained therein is correctly estimated at two
(cf. Figure 4). Between Frames 400 and 460, one of the
two people has walked away. The target is split, and the
number of people in front of the window has been adjusted.
At Frame 550, the same person has re-entered the obser-
vation region. Since the system knows that he had already
passed by, the cumulative number of passing people is left
unchanged. At the bottom image, the two targets have been
merged again, without affecting the number of people. At
the same time, the person entering from the right has been
correctly counted.

730

740

Figure 2: A missed split that causes a false count (Video 3).

7.1. Typical Errors
There are two types of errors made by our system: those that
stem from limitations of our algorithm with respect to this
particular task, and those caused by failures of our track-
ing system. A typical situation of the first kind is shown in
Figure 5. The target is correctly estimated to contain three
persons (cf. Figure 4). Since all persons within a target are
treated the same, all three are counted as watching the win-
dow, even though one of them is passing behind the others
and barely glances at the window. Video 2 contains a cou-
ple of other minor errors of this type where the algorithm
worked correctly but is not equipped to fully grasp the situ-
ation.

During the second half of Video 3 our underlying tracker
made a few minor errors that subsequently caused wrong
counts. For example, Figure 2 shows a situation where a tar-
get split was missed because a critical part of the scene was
hidden behind the letters in the foreground. Therefore, the
person who left the other was undetected, causing a wrong
people count of two for the remaining target. Currently, our
system will not recover from such elevated counts. Other
errors of similar kind accumulated to leave the system with
an elevated count at the end of the video.

This illustrates the most serious limitation of our current
system: Since people counts are currently only adjusted up-
wards (e.g. by splitting a target that was estimated to rep-
resent a single person) but never downwards, our system
tends to overestimate the numbers of people. This can be
remedied by adding a mechanism to re-estimate the number
of people represented by a target.

7.2. Computation Times
The bottom row in Figure 4 displays the number of targets
currently tracked, and the computation time expended on

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

6

0 100 200 300 400 500 600
0

1

2

3

4

5

6

7

8

Frame number

C
ou

nt

Video 1

people passing
people stopping

0 500 1000 1500
0

1

2

3

4

5

6

7

8

Frame number

C
ou

nt

Video 2

people passing
people stopping

0 200 400 600 800 1000 1200
0

1

2

3

4

5

6

7

8

Frame number

C
ou

nt

Video 3

people passing
people stopping

0 100 200 300 400 500 600
0

1

2

3

4

5

6

7

8

Frame number

C
ou

nt

Video 1

cumulative # passing
cumulative # stopped

0 500 1000 1500
0

1

2

3

4

5

6

7

8

Frame number

C
ou

nt

Video 2

cumulative # passing
cumulative # stopped

0 200 400 600 800 1000 1200
0

1

2

3

4

5

6

7

8

Frame number

C
ou

nt

Video 3

cumulative # passing
cumulative # stopped

0 100 200 300 400 500 600
0

1

2

3

4

5

6

7

8
Video 1

Frame number

C
ou

nt

targets

0 100 200 300 400 500 600
0

0.01

0.02

0.03

0.04

0.05

0.06

se
co

nd
s

pe
r

fr
am

e

computation time

0 500 1000 1500
0

1

2

3

4

5

6

7

8
Video 2

Frame number

C
ou

nt

targets

0 500 1000 1500
0

0.01

0.02

0.03

0.04

0.05

0.06

se
co

nd
s

pe
r

fr
am

e
computation time

0 200 400 600 800 1000 1200
0

1

2

3

4

5

6

7

8
Video 3

Frame number

C
ou

nt

targets

0 200 400 600 800 1000 1200
0

0.01

0.02

0.03

0.04

0.05

0.06

se
co

nd
s

pe
r

fr
am

e

computation time

Figure 4: Quantitative Results.

each frame using a 1 GHz Pentium III running Linux. This
time does not include the decoding of the MPEG video
or any graphic display. They were measured by counting
CPU clock cycles, and are therefore overestimates because
of other processes running on the machine. Our algorithm
was set to operate only on every other row and column of
pixels, which corresponds to subsampling each image by a
linear factor of two.

The regular spikes are caused by the adaptive back-
ground algorithm that was set to update the background
model every 25 frames. This is the only image-wide opera-
tion in our algorithm. Other than that, the computation time
is roughly proportional to the number of targets currently
tracked. With the exception of two consecutive frames in

Video 2 and eleven frames in Video 3, all computation eas-
ily fit into a single frame time of 0.04 seconds. In all of the
exceptional frames, four or five targets were tracked simul-
taneously. For up to two targets, our system would attain
frame-rate performance on a machine of half that clock fre-
quency.

8. Conclusions
Building on our general, live-video object tracker intro-
duced at last year’s PETS workshop [8], we described its in-
tegration into a distributed infrastructure using event-based
communication. Generic, application-independent events
can be exploited to extract application-specific information.
We described how this methodology permits us to obtain

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

7

reasonable approximations of the desired statistics in the
PETS shop-window scenario, even though our tracking sys-
tem contains no functionality dedicated to extracting the re-
quested information.

References

[1] K. Brammer and G. Siffling. Kalman-Bucy Filters. Artech
House Inc., Norwood, MA, 1989.

[2] F. Brémond and M. Thonnat. Tracking multiple non-rigid
objects in video sequences.IEEE Transaction on Circuits
and Systems, special issue on Video Technology, 8(5), Sept.
1998.

[3] J. W. Davis and A. F. Bobick. The representation and recog-
nition of action using temporal templates. InProc. Com-
puter Vision and Pattern Recognition. IEEE, 1997.

[4] T. Ellis and M. Xu. Object detection and tracking in an
open and dynamic world. InProc. 2nd IEEE Intl. Workshop
on Performance Evaluation of Tracking and Surveillance,
2001.

[5] W. E. L. Grimson, C. Stauffer, R. Romano, and L. Lee. Us-
ing adaptive tracking to classify and monitor activities in
a site. InProc. Computer Vision and Pattern Recognition,
1998.

[6] I. Haritaoglu, D. Harwood, and L. S. Davis.w4s: A real-time
system for detecting and tracking people in 21

2d. In Europ.
Conf. on Computer Vision, pages 877–892, 1998.

[7] S. J. McKenna, S. Jabri, Z. Duric, and H. Wechsler. Tracking
interacting people. InProc. 4th Int. Conf. on Automatic Face
and Gesture Recognition, pages 348–353, 2000.

[8] J. H. Piater and J. L. Crowley. Multi-modal tracking of in-
teracting targets using Gaussian approximations. InSecond
IEEE International Workshop on Performance Evaluation
of Tracking and Surveillance. IEEE Computer Society, Dec.
2001.

[9] J. H. Piater, S. Richetto, and J. L. Crowley. A flexible archi-
tecture for object tracking in live video. submitted.

[10] R. Polana and R. C. Nelson. Detection and recognition
of periodic, non-rigid motion. Int. J. Computer Vision,
23(3):261–282, June/July 1997.

[11] K. Schwerdt and J. L. Crowley. Robust face tracking using
color. InProc. 4th Int. Conf. on Automatic Face and Gesture
Recognition, pages 90–95. IEEE Computer Society, 2000.

[12] W. Vieux, K. Schwerdt, and J. L. Crowley. Face-tracking
and coding for video compression. In H. Christensen, edi-
tor, Proceedings of the International Conference on Vision
Systems (ICVS-99), Lecture Notes in Computer Science.
Springer-Verlag, 1999.

[13] C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland.
Pfinder: Real-time tracking of the human body.IEEE Trans.
Pattern Anal. Mach. Intell., 19(7):780–785, July 1997.

[14] Q. Zhou and J. K. Aggarwal. Tracking and classifying mov-
ing objects from video. InProc. 2nd IEEE Intl. Workshop
on Performance Evaluation of Tracking and Surveillance,
2001.

360

400

460

550

600

Figure 3: Correctly counted people (Video 1, with approxi-
mate frame numbers).

1000

Figure 5: A passer-by is included in the count of watching
people (Video 2).

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

8

http://pets2001.visualsurveillance.org/pets2001-papers-cdrom.html
http://pets2001.visualsurveillance.org/
http://pets2001.visualsurveillance.org/
http://www.springer.de/
http://www.computer.org/tpami/
http://www.computer.org/tpami/
http://pets2001.visualsurveillance.org/pets2001-papers-cdrom.html
http://pets2001.visualsurveillance.org/
http://pets2001.visualsurveillance.org/

From Cluster Tracking to People Counting

Arthur E.C. Pece
Institute of Computer Science

University of Copenhagen
Universitetsparken 1

DK-2100 Copenhagen, Denmark
aecp@diku.dk

Abstract

The Cluster Tracker, introduced in previous work, is used
to detect, track, split, merge and remove clusters of pixels
significantly different from the corresponding pixels in a ref-
erence image. Clusters with common motion are grouped
together into super-clusters during off-line processing, and
the number of people in each super-cluster is determined by
the sizes of the super-clusters and their pattern of merging
and splitting. Finally, this information is used to obtain a
statistical summary of the behaviour of people in the field
of view.

1 Introduction

In some tracking applications, the exact trajectory of ev-
ery object must be identified to detect anomalous behaviour.
However, in some other applications, losing track of ob-
jects is both unavoidable, because of the poor quality of the
video; and unnecessary, because only a statistical summary
of the observed behaviors is desired.

Similarly, in some image-segmentation tasks, it might be
desirable to assign unambiguously each pixel to one and
only one object, but this is not usually necessary in tracking.
Nonetheless, many tracking systems based on image dif-
ferencing rely on thresholding of the difference image, fol-
lowed by morphological filtering and connected-component
labelling. Several examples of this approach can be found
in the proceedings of the first two PETS workshops [4, 5].

For most purposes, labelling each pixel is unnecessary:
the output that is required for each frame is information on
how many targets are present and the approximate location
and size of the targets. The tracker described in this paper
obtains this information by cluster analysis of pixels. The
principle behind the tracking algorithm is simple: a moving
target will produce a cluster of pixels in the image. The

probabilities that a pixel belongs to the background or to
one of the targets can be estimated from the location and
grey-level value of the pixel. The cluster tracker has been
applied to both the PETS’2000 [10] and PETS’2001 [11]
test sequences.

This paper extends the tracker by introducing off-line
processing to estimate the number of people following each
of several trajectories in the visual field. In the same spirit of
avoiding hard assignments, no tracked person is assigned to
a trajectory: rather, the estimation involves solving a linear
system of equations in which the unknowns are the num-
bers of people for each trajectory and the constraints are the
number of people observed at given locations.

Organization of the paper: Section 2 contains a descrip-
tion of the model underlying the tracker; section 3 describes
the methods used for estimating the cluster parameters and
for determining the number of clusters; section 4 describes
the off-line processing used to count the number of peo-
ple walking across the field of view and stopping to look at
the window display. Finally, section 5 describes results ob-
tained on the PETS’2002 test sequences and discusses the
strenghts and weaknesses of the system.

2 Underlying model

Each pixel of the image is considered an observation,
including a 2-vector of spatial coordinates u = (u; v) and
a scalar grey-level value I(u). We define r(u) as the grey-
level value in the reference image and Æ(u) = I(u)� r(u)

as the grey-level difference between the current image and
the reference image. The number of image pixels is m and
the number of distinct grey levels is q.

The model is a mixture of clusters, Gaussian in space
but not in grey-level values. We assume that the current im-
age model includes n target clusters plus the background
cluster: the method used to determine n will be detailed in

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

9

subsection 3.2. The cluster parameters have a subscript in-
dicating the index of the cluster: the background cluster has
index 0 and the target clusters have indexes j > 0. The set
of parameters for cluster j is indicated by �j ; these param-
eters will be defined in the following. The fraction of pixels
generated from cluster j is wj (one of the cluster parame-
ters).

Throughout this paper, we use probabilities, instead of
probability densities, because the images are discretised
both in space and in grey-level values.

The probability fj(u) that cluster j generated the pixel
at image location u is assumed to be a separable function
of the image coordinates and the grey-level value (or grey-
level difference) observed at that location:

fj(u) = gj(u j�j) � hj [I(u) j�j] (1)

The reasons for separability will be apparent when the ex-
pressions for g and h are made explicit.

Correlations between neighbouring pixels are neglected
because they are assumed to arise from the clusters them-
selves, i.e. grey-level values are conditionally independent,
given the number of clusters and the cluster parameters.

2.1 Background cluster

By treating the background as a cluster, it becomes un-
necessary to threshold grey-level differences. The proba-
bilistic model for the background is, of course, different
from the model for the target clusters.

Dependence on image coordinates: Given that the back-
ground is present (even if occluded) at every location in the
image, the probability f0(u) depends on u only through the
grey level I(u). In other words, g0(u j�0) is uniform over
the image:

g0(u j�0) = 1=m (2)

Dependence on grey-level values: The probability
h0[I(u)j�0] that the background cluster generates a pixel
with grey-level value I(u) is approximated as an exponen-
tial function of the absolute value of the grey-level differ-
ence Æ(u):

h0[I(u) j�0] =
1

2�0
exp

�
�

����Æ(u)�0

����� (3)

where �0 is the mean (absolute value) grey-level difference
for the pixels in the background cluster.

A homogeneous Laplacian background model has an im-
portant advantages over Gaussian-mixture models, as used
in some other trackers (see e.g. [12]): a single �0 parameter
for the entire image can be estimated from a single frame by

spatial averaging; if several different Gaussian-mixture pa-
rameters are required for each pixel, then these parameters
can only be estimated from relatively long image sequences.

2.2 Target clusters

Dependence on image coordinates: We assume that the
probability is a Gaussian function of the distance of the
pixel from the centroid of the cluster:

gj(u j�j) =
1

2�
p
j�j j

exp

�
�
1

2
�u

T
j ��

�1
j ��uj

�
(4)

where �uj = u� cj is the vector distance of pixel u from
the centroid cj of cluster j; �j is the covariance matrix of
cluster j; and j�j j is the determinant of �j .

Clusters generated from visual targets of interest are usu-
ally not Gaussian, but better approximated as top-hat distri-
butions of the form

g
�

j (u j�j) =

(�
4�
p
j�j j

�
�1

if �u
T
j ��

�1
j ��uj < 4

0 otherwise
(5)

The reason why Eq. 5 is not useful for parameter esti-
mation is that it gives zero weight to pixels belonging to the
target, but lying outside the estimated radius of the distribu-
tion: such pixels arise both because of errors in parameter
estimates before convergence, and because of the irregular
shapes of the targets. However, the top-hat ellipsoid is use-
ful for testing whether a cluster should be split into two (see
subsection 3.2).

Dependence on grey-level values: If a moving object
is well isolated from other moving objects, it can be effi-
ciently tracked by making the simplifying assumption that
hj [I(u) j�j] is a uniform density:

hj [I(u) j�j] = 1=q (j > 0) (6)

This assumption makes it impossible to preserve the identi-
ties of two clusters when they reach a significant overlap on
the image plane. The problem can be partially overcome by
learning the grey-level distribution of each individual clus-
ter [11], similarly to the mean-shift tracker [1]. However,
this extension of the tracker relies on objects having sig-
nificantly different grey-level distributions, which is not the
case in the PETS’2002 image sequences. Therefore, Eq. 6
was used for the experiments described in this paper.

2.3 Summary of cluster parameters

The following table lists the basic cluster parameters:
other parameters are derived from these, e.g. the density
in section 3.3.

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

10

Table 1. Cluster parameters
Parameter Symbol Units
Prior probability w dimensionless
of generating a pixel
Average abs. value � grey levels
grey-level difference
Reference pixels a

r(u) grey levels
Centroid b

c pixels c

Covariance b
� pixels2 d

a only for the background cluster
b only for the target clusters
c for each element of the vector
d for each element of the matrix

3 Cluster analysis

The methods described int this section make use of the
posterior probability pj(u) that pixelu is generated by clus-
ter j:

pj(u) =
wjfj(u)P
k wkfk(u)

(7)

Note that pj(u) is normalized to unity over clusters for each
pixel, while fj(u) is normalized to unity over pixels for
each cluster.

3.1 Cluster parameter estimation

The prior probabilitiesw0 and wj , as well as the location
parameters cj and �j , are iteratively estimated by the EM
clustering algorithm ([9], section 2.7.2).

The standard ML (maximum-likelihood) EM clustering
algorithm is used to fit the centroids and numbers of pixels
for each cluster. In order to constrain the change of shape of
the clusters over the image sequence, the MAP (maximum a
posteriori) version of the EM algorithm ([9], section 1.6.1)
is used to fit the covariances of the clusters1: the prior es-
timate of a cluster covariance is given by the covariance at
the previous frame; the ML estimate is weighted by a factor
1=�� according to the equation:

�
(t;i)

= �
(t�1;1)

+
1

��

�b�(t;i) ��
(t�1;1)

�
(8)

where the superscript (t; i) refers to frame t, iteration i; the
superscript (t � 1;1) refers to the value obtained at con-
vergence in frame t � 1; and b�(t;i) is the ML estimate of
the cluster covariance at frame t, iteration i. Using a con-
stant weighting parameter �� , irrespective of the error of the
covariance estimates, is, of course, a simplification.

1MAP estimation of cluster covariances is the only modification of the
basic cluster tracker [10] described in this paper.

The MAP version of the EM algorithm provides a ra-
tional method for combining predictions and observations,
leading to low-pass filtering of cluster shapes over time. A
simple Kalman filter is not applicable in this case because
the observation model is not linear with additive Gaussian
noise.

Any image with no moving objects can be taken as the
initial reference image, unless there are significant lighting
variations. Thereafter, the reference image and the width of
the Laplacian distribution are updated at each frame after
convergence of the EM algorithm for the other parameters.

The update of each pixel of the reference image is
weighted by the posterior probabilities of its belonging to
the background cluster:

r
(t+1)

(u) = r
(t)
(u) +

1

�r
p
(t;1)
0 (u) Æ

(t)
(u) (9)

where �r is the time constant of adaptation to slow changes
in the background, the superscripts refer to frame number
and p

(t;1) is the value of p(u) obtained at convergence of
the EM algorithm.

Similarly, the Laplacian width parameter �0 is estimated
as a weighted average of the absolute grey-level differences,
the weight for each pixel being the posterior probability of
the pixel belonging to the background cluster:

�
(t+1)
0 =

P
u
p
(t;1)
0 (u)

�� Æ(t)(u) ��P
u
p
(t;1)
0 (u)

(10)

The initial estimate for �0 (at the first frame) is obtained
from the median absolute value of the grey-level difference
for that frame.

3.2 Detecting new clusters

For each image frame, the cluster parameters are opti-
mized, starting with the same clusters (and cluster parame-
ters) as in the previous frame; and then the number of clus-
ters is increased or decreased on the basis of some statistical
test.

The tests for increasing the number of clusters are ad
hoc, while the tests for decreasing the number of clusters are
based on the expected decrease of free energy. Therefore,
the tests for merging clusters are the last to be applied for
each frame: the rationale is that the final number of clusters
for a given frame is determined by the last test to be applied,
and therefore the most principled test should be the last to
be applied.

Detecting isolated clusters: New isolated clusters are de-
tected by locating maxima in the difference image, after
accounting for the clusters already known to be present in
the previous frame of the image sequence. Specifically, a

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

11

”weighted” image difference is computed, in which each
grey-level difference is weighted by the probability of its
belonging to the background cluster:

Æ0(u) = Æ(u) p
(t;0)
0 (u) (11)

where p
(t;0)
0 (u) is the estimate of p0(u) obtained with the

cluster parameters carried over from the previous frame.
The weighting is necessary to avoid generating a new clus-
ter where there is already a cluster present.

The weighted image difference is smoothed and down-
sampled by a factor of L to obtain the coarse-grained differ-
ence image Æ0(u). Local maxima of Æ0(u) are assumed to
arise from new targets if the corresponding value of Æ 0(u)
is greater than a threshold:

Æ0(u) > �0

�
1 + log

q

2�0

�
(12)

Given that �0 is estimated from the image, the threshold
is not a free parameter of the tracker.

The apparently arbitrary Eq. 12 is actually derived from
the criterion for elimination of clusters (see below) and the
principle that no cluster should be generated if it is almost
certain to be merged with the background. The derivation is
given in [10].

Splitting clusters: As pointed out above, the expected
density for a target is well approximated by an ellipsoidal
top-hat distribution (Eq. 5), using the same centroid and
covariance as estimated with the Gaussian model. To test
whether the observed density is significantly different from
this expectation, the ellipsoid is divided into 9 sections or-
thogonally to its main axis and the squared deviation of the
observed density from the expected density is computed for
each section, and normalized by the expected density to ob-
tain a �2 measure:

(observed -expected)2

expected
(13)

If the largest negative deviation from the expected density
is below a threshold ��, the cluster is split at the location of
the bin with this largest negative deviation.

In counting the numbers of pixels within each section,
the pixels are weighted by the probabilities of their origi-
nating from the cluster under consideration.

3.3 Merging and eliminating clusters

It has been shown [10] that the expected decrease of log-
likelihood, when all pixels originating from cluster j are as-
signed to cluster k (while keeping the parameters of cluster

k unchanged), is equal to

M(j; k) =

X
u

pj(u) log
wjfj(u)

wkfk(u)
(14)

This expected change of negative log-likelihood will be de-
fined as the cost of merging cluster j into cluster k. The
merging cost is similar, but not identical, to the Kullback-
Leibler divergence [2] between the clusters.

Each target cluster is tested for merging as follows:

1. The costs of merging the cluster under consideration
into any other cluster, including the background clus-
ter, are evaluated.

2. The cluster is merged into the other cluster with lowest
merging cost, if this lowest cost is below a threshold
�M .

Cost of eliminating clusters: In the case of merging a
target cluster into the background cluster, the parameters of
the background cluster can be assumed to be unaffected by
the merging, because the background contains many more
pixels than any other cluster. Under this approximation, the
merging cost for a target cluster j into the background clus-
ter is given by:

M(j; 0) = mwj

�
log

%j

w0

+
�j

�0
+ log

2�0

q
� 1

�
(15)

where
%j

def
=

mwj

2�
p
j�j j

(16)

is the estimated density (within the Gaussian ellipsoid of
cluster j) of pixels originating from cluster j. The deriva-
tion of Eq. 15 is given in [10]; here we provide some insight
into the equation. First, the merging cost is linear in the
prior probability wj , so that a cluster generating few pixels
is more likely to be merged into the background. Second,
consider the first two additive terms on the right-hand side
of Eq. 15:

� the term log(%j=w0) penalizes the elimination of clus-
ters with high densities;

� the term �j=�0 penalises the elimination of a cluster
having average (absolute-value) grey-level difference
which is relatively large, compared to the same param-
eter of the background cluster.

These terms are intuitively sensible and could be used in
separate tests for merging: Eq. 14 provides a framework for
combining these terms into a single test.

The last two additive terms on the right-hand side of Eq.
15 do not depend on the parameters of the target cluster
being tested.

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

12

Cost of merging target clusters: Now consider the cost
of merging two target clusters j and l into a final cluster
k. Good estimates of the parameters of cluster k can be
obtained before merging, as shown in [10]. Given these
parameters, the merging cost for cluster j is equal to

M(j; k) = mwj

�
log

%j

%k
+

1

2
D

2
k(cj) +

1

2
tr(�j�

�1
k)� 1

�
(17)

where

D
2
k(cj) = (cj � ck)

T � ��1k � (cj � ck) (18)

is the squared Mahalanobis distance [8] between the cen-
troids of the clusters, and tr(�j�

�1
k) is the trace of the

matrix product �j�
�1
k . The total cost of merging the two

clusters j and l is, of course, M(j; k) +M(l; k).
As in the case of merging into the background, a clus-

ter including few pixels is more likely to be merged into
another target cluster, due to the multiplicative term w j on
the right-hand side. Note also that the first three additive
terms on the right-hand side of Eq. 17 are three different
measures of the overlap between clusters [10]: these terms
penalize merging clusters which have small overlap.

Cluster identities: When a target cluster is split into two,
the larger of the new clusters is assigned the identity of the
parent cluster.

When two target clusters are merged, the new cluster is
assigned the identity of the larger of the two merged clus-
ters, unless the smaller cluster is the parent of the larger
cluster, in which case the identity of the smaller cluster is
assigned to the new cluster.

3.4 Algorithmic sequence for a single frame

For an image sequence, the tracker is initialized with a
single cluster (the background) and then the following se-
quence is applied to each frame:

1. Detection of new isolated clusters;

2. Optimisation of cluster parameters by the EM algo-
rithm;

3. Testing of all clusters for splitting;

4. If any cluster has been split: repeated optimization of
cluster parameters;

5. Testing of all clusters for merging and elimination; if
any clusters are merged, the parameters of the new
clusters can be efficiently approximated by sums or av-
erages of the parameters of the merged clusters: there
is no need for a further application of the EM algo-
rithm.

6. Updating of the reference image and of the Laplacian
width parameter.

It is important to note that no explicit assignment of cor-
respondences is required for tracking: the final estimates of
cluster centroids at a given frame in an image sequence are
simply taken as the initial estimates for the next frame, and
then the EM method is applied.

3.5 Parameters of the tracker

The image sequences were downsampled 2� 2 times in
space and 5 times in time (i.e. the algorithm operated on 5
frames/second). For the detection of new clusters, the lin-
ear size of the cells, within which the grey-level differences
were averaged, was L = 4 pixels of the downsampled im-
age.

Monitoring the decrease of log-likelihood is computa-
tionally expensive; therefore, the convergence criterion for
the EM algorithm is based on the displacement of cluster
centroids from one EM iteration to the next: the criterion
is that the maximum (over clusters) centroid displacement
is less than �c = 0:5 pixels. Convergence usually requires
less than 10 iterations.

The parameters of the tracker are listed in Table 2.

Table 2. Parameters of the cluster tracker
Parameter Introduced in Value

time-sampling period this section 5 frames
space-sampling period this section 2� 2 pixelsa

L section 3.2 4 pixelsb

�� section 3.1 4 frames
�r section 3.1 40 frames
�c this section 0.5 pixelsb

�� section 3.2 6.8 pixelsb

�M section 3.2 10 pixelsb

a of the raw image
b of the downsampled image

The units for the above parameters are inferred from the
corresponding equations.

The parameters are the same as used for the PETS’2000
test sequence [10], except for the spatial downsampling (de-
creased from 3 � 3 to 2 � 2) and �M (decreased from 45
to 10 pixels: this decrease is made possible by the off-line
merging of clusters, see below).

4 Off-line processing

During tracking, the ID numbers, centers and covari-
ances of all target clusters are stored for each frame. These
parameters can be processed very efficiently off-line to (1)

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

13

identify super-clusters, i.e. groups of clusters moving to-
gether; (2) estimate the number of people in each super-
cluster; (3) estimate the number of people following pre-
defined trajectories in the field of view; (4) estimate the
number of people looking at the shop window at each frame.
These processing stages are detailed below.

4.1 Detecting super-clusters

A super-cluster is defined as a group of clusters that are
always close together, in the frames in which they are visi-
ble. Detection is carried out in two steps:

1. Eliminate all clusters persisting for less than �1 frames.

2. Merge into one super-cluster all clusters which appear
together in at least one frame and whose maximum
(over all frames) distance is less than a threshold �2;
the distance is measured as

D
2
ij =

�
D
�2
i (cj) +D

�2
j (ci)

�
�1

(19)

4.2 Counting people in super-clusters

This task is also carried out in two steps:

1. Identify all super-clusters which contain at least one
person, as the super-clusters which reach an area of at
least �3 (squared) pixels in at least one frame.

2. Estimate the number of people in each super-cluster by
alternating between forward and backward iterations
through the tracking data:

� in each forward pass, increment the number
of people in a super-cluster every time another
super-cluster merges into it, and decrement the
number of people every time another super-
cluster splits from it;

� in each backward pass, decrement the number of
people in a super-cluster before another super-
cluster merges into it, and increment it before an-
other super-cluster splits from it.

The increments and decrements, in both forward and
backward passes, are equal to the number of people in
the super-cluster that is merged into, or split from, the
super-cluster under consideration.

The iteration in step 2 needed to be repeated only 2 times
for both sequence 1 and sequence 2. However, the method
is not guaranteed to converge: a better algorithm is being
developed.

4.3 Obtaining the desired statistical information

Number of people looking at shop window: This num-
ber is estimated, for each frame, as the sum of the number
of people in all super-clusters with centers less than V0 pix-
els from the bottom of the image, and moving by less than
�4 pixels from the previous frame. Thereafter, this estimate
is smoothed by median filtering with a time window of T
frames.

umber of people exposed to the window display: This
is estimated as the number of people who pass in front of
the window. The algorithm starts by counting the numbers
of people who

� are present in the first frame;

� come into view from the left, right, or top of the image;

� exit from view at the left, right, or top of the image;

� are present in the last frame.

These counts give a vector N of 8 integer numbers that
can be inserted into a system of linear equations

N = A �M (20)

to obtain estimatesM for the numbers of people who follow
each of a number of trajectories. We assume that people
do not enter and exit from the same entry point, and that
people do not stay within the field of view for the entire
duration of the image sequence. Under these assumptions,
there are 12 possible trajectories: 6 trajectories between the
3 entry points (left, right, top), 3 trajectories beginning at
the first frame and ending at one of the entry points, and 3
trajectories beginning at an entry point and ending in the last
frame. Since the linear system is under-constrained, there is
no unique solution. The minimum-norm solution could be
chosen, but there is no guarantee that all numbers of people
will be non-negative.

For this reason, the solution of the linear system is ob-
tained by the coefficient-update rule for least-squares non-
negative matrix factorization (NMF, see Eq. 4 in [7]): the
coefficients, i.e. the number of people for each trajectory,
are initialized as half the sum of the number of people at
the two ends of the trajectory; thereafter, at each iteration,
the coefficients are updated according to the multiplicative
update rule:

M
(i+1)

k =M
(i)

k

A
T
k �N

A
T
k �A �M(i)

(21)

where the superscripts refer to iteration numbers. This algo-
rithm is guaranteed to converge to a local minimum of the
squared prediction error kN�A �Mk2. The multiplicative

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

14

form of the update guarantees that the signs of the elements
ofM do not change.

Of course, direct counts of the number of people follow-
ing each trajectory could be obtained if the tracking system
were robust and reliable. However, when the number of bro-
ken tracks is non-negligible, counting only the people that
have been tracked all the way between pairs of entry points
leads to under-estimates.

4.4 Parameter settings for off-line processing

The parameters defined in this section were set to the
following values:

Table 3. Parameters for off-line processing

Parameter Introduced in Value
subsection

�1 4.1 5 frames
�2 4.1 10 a

�3 4.2 100 pixels2

�4 4.3 10 pixels
T 4.3 5 frames
V0 4.3 H/2 b

a dimensionless
b H is the height of the image in pixels

In addition, it is necessary to specify how to determine
when a cluster appears or disappears at each of the 3 entry
points. A cluster is deemed to enter from an entry point if it
is generated from the background (i.e. not by splitting an-
other target cluster), and its initial centroid is located within
a box bounded by the image coordinates L (left), R (right),
T (top), B (bottom). The coordinates for the 3 entry points
are given in table 4, with the convention that the bottom
left pixel of the image has coordinates (0; 0), and defining
H and W as the height and width of the image in pixels,
respectively:

Table 4. Bounds for entry points
Entry point L R T B

Left 0 W/5 2H/3 0
Right 4W/5 W 2H/3 0
Top W/4 3W/4 H 5H/7

A cluster is deemed to exit to an entry point if it is
merged into the background cluster and its final centroid
is within the bounding box defined by table 4.

5 Results and Discussion

The algorithm was tested on the first two PETS’2002
people-counting test sequences. Some frames, showing the

a

b

Figure 1. a: 3 clusters tracked by the cluster
tracker at frame 90, test sequence 1. b: the
3 clusters are grouped into a single super-
cluster during post-processing.

tracks of the visible targets and the “top-hat ellipsoids” de-
fined by Eq. 5, are shown in Figs. 1 and 2.

Fig. 1a shows the problem seen most often with the ba-
sic tracker: two or more clusters corresponding to the same
object. Since these clusters move together, and since, in
most cases, all but one of the clusters only persist for a few
frames, this is not a major problem: as shown in Fig. 1b, the
three clusters are merged into one super-cluster during off-
line processing. In the test sequences 1 and 2, steps 1 and
2 of post-processing eliminate all clusters except those cor-
responding to one or more people; however, a few of these
people were seen in reflections from the shop windows.

Fig. 2 shows two examples of broken tracks due to merg-
ing of a super-cluster, either into the background or into an-
other super-cluster. The second problem is due to occlusion;
the first problem is due to the poor contrast in some parts of
the image.

In spite of these broken tracks, the method based on the
NMF coefficient update is reasonably effective in the 2 test
sequences, as can be seen from tables 5 and 6. Only entries
larger than 0.2 are listed in the tables. The entries: from
left, from right, from top denote trajectories which end at
the last frame with people still in the field of view. The
entries: to left, to right denote trajectories which begin at
the first frame with the people already within the field of
view.

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

15

a

b

c

d

Figure 2. Some frames showing broken tracks
in test sequence 2. Red clusters: one per-
son; yellow: 2 people; purple: 3 people. a:
frame 325, showing a track started well in-
side the field of view; b,c,d: frames 980, 1005,
1085, showing a broken track due to tempo-
rary merging of super-clusters.

Table 5. Test sequence 1: number of people
for each trajectory

Trajectory Estimated by eye Estimated by NMF
Left to right 1 0.40
Right to left 0 0.41
Right to top 0 0.41
Top to right 0 0.40
From left 0 0.61
From right 3 2.93
From top 2 0.61

Table 6. Test sequence 2: number of people
for each trajectory

Trajectory Estimated by eye Estimated by NMF
Left to right 2 1.96
Right to left 4 3.27
Right to top 0 0.71
Top to left 2 0.00
From right 1 1.49
To right 1 0.82

As can be seen especially in table 5, the uncertainty
about some trajectories has been spread over trajectories.
The main source of error in table 6 was the fact that the two
people entering the field of view from the top, and heading
left, were not detected until they were well inside the field
of view: in other words, there was a bias in the input data
N.

The numbers estimated by NMF are, of course, not in-
tegers, but they can be rounded off to the nearest integer if
desired. For large numbers, the round-off error is negligi-
ble.

The numbers of people looking at the window display,
as functions of frame numbers, are plotted in Fig. 3.

The CPU times for the on-line processing are shown in
Fig. 4. The times are measured on a Pentium III (500
MHz). In considering these measurements, it must be kept
ine mind that the tracker operates at 5 frames/second. The
total CPU times required for off-line processing are 4937
ms (sequence 1) and 12829 ms (sequence 2). It must be
noted that the off-line processing was not implemented ef-
ficiently; in particular, there was a large amount of file in-
put/output.

The main practical limitations of the method are that the
iterative determination of the number of people for each
super-cluster (subsection 4.2) is not guaranteed to converge;
and that there is as yet no method to count the number of
distinct people looking at the window display over a period
of time.

A more fundamental limitation is that the tracker, al-
though rigorously probabilistic at the pixel level, makes
“hard” commitments as to the number of clusters, super-
clusters, and people within each super-cluster. This is con-
venient for computational reasons, but a more rigorous ap-
proach, possibly including explicit modelling of occlusion
as in [6], would be preferable.

Nonetheless, the off-line processing methods outlined
in this paper represent some progress on the basic Clus-
ter Tracker which was applied to the PETS’2000 and
PETS’2001 sequences [10, 11]. Future work will be aimed
at overcoming the practical and theoretical limitations of the
system.

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

16

0

1

2

3

4

0 200 400 600

N
um

be
r o

f p
eo

pl
e

Frame number

0

1

2

3

4

0 500 1000 1500

N
um

be
r o

f p
eo

pl
e

Frame number

Figure 3. Estimated numbers of people look-
ing at the window display. Top: PETS’2002
test sequence 1; bottom: test sequence 2.

Acknowledgements: The new work described in this pa-
per was supported by the Danish Research Council through
the Natural Shape project.

References

[1] D. Comaniciu, V. Ramesh, P. Meer, Real-time Tracking of
Non-rigid Objects using Mean Shift. IEEE Conf. Comp. Vi-
sion Pattern Rec: CVPR 2000, vol.2, pp.142-149.

[2] T.M. Cover, J.A. Thomas, Elements of Information Theory.
New York: Wiley 1991.

[3] A.P. Dempster, N.M. Laird, D.B. Rubin, Maximum Likeli-
hood from Incomplete Data via the EM Algorithm (with dis-
cussion). J. Roy. Stat. Soc. B 39: 1-38, 1977.

[4] J.M. Ferryman (ed.), Proceedings of the First IEEE Work-
shop on Performance Evaluation of Tracking and Surveillance
(PETS’2000). Grenoble (France), March 31, 2000.

[5] J.M. Ferryman (ed.), Proceedings of the Second IEEE Work-
shop on Performance Evaluation of Tracking and Surveillance
(PETS’2001). Kauai (Hawaii), December 9, 2001.

0

200

400

600

800

1000

0 200 400 600

C
PU

 ti
m

e
(m

s)

Frame number

0

200

400

600

800

1000

0 500 1000 1500

C
PU

 ti
m

e
(m

s)

Frame number

Figure 4. CPU times for the on-line process-
ing (cluster-tracking). Top: PETS’2002 test
sequence 1; bottom: test sequence 2.

[6] M. Isard, J. MacCormick, BraMBLe: A Bayesian Multiple-
blob Tracker, Int. Conf. Comp. Vision: ICCV 2001, vol.1,
pp.34-41.

[7] D.D. Lee, H.S. Seung, Algorithms for Non-negative Matrix
Factorization, Adv. Neural Info. Proc. Syst. vol.13, pp.556-
562, 2001.

[8] P. Mahalanobis, On the Generalized Distance in Statistics.
Proc. of the Nat. Inst. of Sci. Calcutta vol.12, pp.49-55, 1936.

[9] G.J. McLachlan, T. Krishnan, The EM Algorithm and Exten-
sions. New York: Wiley, 1997.

[10] A.E.C. Pece, Generative-model-based Tracking by Cluster
Analysis of Image Differences. Robotics and Autonomous
Systems, in press.

[11] A.E.C. Pece, Tracking of Non-Gaussian Clusters in the
PETS2001 Image Sequences, in: Proceedings of the Second
IEEE Workshop on Performance Evaluation in Tracking and
Surveillance: PETS 2001.

[12] C. Stauffer, W.E.L. Grimson, Adaptive Background Mixture
Models for Real-time Tracking. IEEE Conf. Comp. Vision
Pattern Rec: CVPR 1999, vol.2, pp.246-252.

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

17

Detecting Moving Objects and their Shadows -
An Evaluation with the PETS2002 Dataset

Rita Cucchiara, Costantino Grana, Andrea Prati
Dipartimento di Ingegneria dell’Informazione

Universit̀a di Modena e Reggio Emilia
Modena, Italy, 41100

Abstract

This work presents a general-purpose method for moving
visual object segmentation in videos and discusses results
attained on sequences of PETS2002 datasets. The proposed
approach, called Sakbot, exploits color and motion infor-
mation to detect objects, shadows and ghosts, i.e. fore-
ground objects with apparent motion. The method is based
on background suppression in the color space. The main pe-
culiarity of the approach is the exploitation of motion and
shadow information to selectively update the background,
improving the statistical background model with the knowl-
edge of detected objects. The approach is able to detect
Moving Visual Objects (MVOs), and stopped objects too,
since the motion status is maintained at the level of tracking
module. HSV color space is exploited for shadow detection
in order to enhance both segmentation and background up-
date. Time measures and precision performance analysis in
tracking and counting people is provided for surveillance
and monitoring purposes.

1. Introduction

A robust tracking of objects in video streams requires a
moving object detection that should be characterized by
some important features: high precision, with the two
meanings of accuracy in shape detection and reactivity to
changes in time; flexibility to different scenarios (indoor,
outdoor) or to different light conditions; and efficiency, in
order to have an high frame rate. In particular, a precise
moving object detection makes tracking more reliable (the
same object can be identified more reliably from frame to
frame if its shape and position are accurately detected) and
faster (multiple hypotheses on the object’s identity during
time can be more rapidly pruned). In addition, if object
classification is required by the application, precise detec-
tion substantially supports correct classification.

Therefore, this work addresses the problem of an ac-
curate moving visual object detection for people tracking,
dealing with some very general scenarios as:

• Unknown objectswhose speed and trajectory is a priori
unknown;

• Unknown backgroundpossibly changing due to two
factors: a) light condition variations; b) objects that
modify their status from stopped to moving or vice
versa. If the background model is neither accurate nor
reactive, background suppression could cause the de-
tection of false objects, here referred to as “ghost” ob-
jects.

• Unknown illuminationcausing shadows whose direc-
tion, shape and strength are unknown.

In the absence of any a priori knowledge about target and
environment, the most widely adopted approach for mov-
ing object detection is based onbackground suppression
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. Approaches based on
frame difference only [13, 14] should calibrate difference in
dependence on object speed and are not suitable when the
model of object’s motion is unknown.

The object segmentation by background suppression
with unknown illumination is affected by the problem of
shadows [15, 16, 17] since objects and cast shadows share
the most important feature (i.e. motion) and are often spa-
tially connected. Often the points in motion of both ob-
jects and their shadows are merged together and the appear-
ance and geometrical properties of the object are distorted.
Moreover the probability of object’s under-segmentation
(where more objects are detected as a single one) increases
due to connectivity via shadows between different objects.
In [15] we proposed an approach using color appearance to
detect shadows and compared it with other methods.

In this paper, we report results of PETS2002 tests us-
ing our approach called Sakbot (Statistical And Knowledge-
Based Object deTector). The main feature of the approach is
the integration of the knowledge of detected and classified
objects, shadows and ghosts in the segmentation process,
both to enhance segmentation and to improve future detec-
tion and background update. The approach we propose fully
exploits both motion and color information to detect and

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

18

classify foreground objects. In [18, 19] we described the
approach and some performance measures.

Sakbot describes detected moving objects by means of
features such as geometrical measures (area, perimeter, ...)
texture (the colors and the gray-level pattern), the spatial po-
sition (centroid and extent) and the motion status (moving,
still, stopped). These features could be further exploited in
a more or less sophisticated tracking module. In [14] we
have proposed a tracking module managing visual data at
a symbolic level. It is a production rule system with for-
ward chaining, formalizing the environment knowledge and
the relationships between the extracted objects. Working
at a symbolic level allows the system with flexible object
tracking over a variety of applications by simply devising
adequate rule sets. When the application is simpler and
the environment is constrained enough, the tracking module
could be substituted by a simpler process which only keeps
the history of detected objects, their position and area. In
this work we do not present a high-performance tracking
module: therefore, although we provide complete results of
tracking over the PETS2002 sequence, we aim at focusing
on the accuracy of the low-level only. Main features are: i)
the reactivity of background that in the sequence is useful
to eliminate reflection of people on the shop window, ii) the
improvements due to the use of color and shadow detection
and iii) the good time performance. Since the processing
time is not so high (and could also be improved by optimiz-
ing the code), there is a large space for adding a tracking
system with improved performance, if it is required by the
application.

2. Related work

Most of the proposals adopt background suppression and
update by usingstatistical functions on a sequence of the
most recent sampled frames. A very simple but very ef-
fective statistic is that proposed in [1]: as a background
model, the minimum and maximum values and the me-
dian of inter-frame differences of the pixels’ intensities are
used. In [2], themodeis used, under the hypothesis that
background values should be the most frequent over time.
Pfinder [3] exploits the assumption that the distribution of
background values is Guassian and therefore each pixel is
modeled with a Guassian. Since the distribution is actu-
ally not unimodal in many real situations, models based on
a mixture of Gaussians have been proposed [4, 5]. How-
ever, the use of multiple functions may affect video-rate per-
formance, since the computational load increases with the
number of combined functions. If a single function is used,
instead, the background can be straightforwardly updated
by linearly combining the current image and the previous
background [3, 6]; it is often referred to as adaptive back-
ground update. Other proposals make use of more com-

plex models, exploiting multi-variated Gaussians with PCA
[7] or maximum likelihood estimator [8]. In our work, we
use a median function in place of the mode, the Gaussian,
or some higher-order statistics. Although the median fil-
ter might be less sensitive in detecting low contrast objects
than other more complex statistics such those proposed in
[4, 5], it is much less computationally expensive thus eas-
ing real-time execution. Moreover, with respect to other
methods that use the median operator [9, 10, 11, 12], our
method exploits adaptivity, since the median also considers
the previous background with an adequate weight.

Since moving objects are not part of the background,
their inclusion in the background update function leads
to errors. Thus some methods propose aselectiveback-
ground update to exclude those pixels detected as moving
points. However, the use of selectivity can carry further
problems, when objects originally motionless in the back-
ground scene, start their motion. When an object starts
moving, an apparent object called ghost (some times called
“negative” as in [10]) appears in the position where the ob-
ject was located, due to the difference between the current
image and the old background value. If the ghost’s area is
excluded from the background update, the background will
never be correctly estimated causing deadlock [4]. In Sak-
bot, we propose to perform this verification on the whole
object containing the pixel, since the information on the
whole object is supposed to be more reliable. Thus we
improve the statistical background model by exploiting the
knowledge of previously segmented objects.

Another major aspect of a background suppression ap-
proach is how to actually remove the background from the
current image. The simplest approach is to threshold the
difference between the current image and the background
model with a fixed threshold. In multiple valued back-
ground approaches, the most probable background is sub-
tracted from the image [5] and the difference is thresholded.
In [4] probability is used over N Gaussian distributions.
In [6], this difference is computed separately for the three
color components. Similarly to [6] and [12], here the differ-
ence is computed separately for the three color components,
and the maximum difference retained; however, two thresh-
olds (low and high) are used, and thresholding is performed
with hysteresis; this approach provides good detection re-
sults as will be shown in the following.

Lastly, a peculiar aspect of many proposals is the cop-
ing with the shadow problem. See [15] for a comparison
of some methods. In [16], the authors propose to compute
the ratio of the luminance between the current frame and
the previous frame; a point is marked as shadow if the lo-
cal variance (in a neighborhood of the point) of this ratio
is small (this criterion is then followed by further valida-
tion). In [4], too, the ratio of the luminance of the current
frame and the background model is used. An improvement

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

19

of this method is proposed in [17] based on the observa-
tion that shadows are semitransparent, retaining features of
the covered surface such as patterns, color, textures; there-
fore, the authors propose an analysis of the chromaticity in
the R,G,B color space. In Sakbot shadow detection is per-
formed on the H,S,V color space, which is more similar to
human perception of colors.

3. The Sakbot approach
Sakbot works on color frames: at each timet, it uses the
color frameIt and the current background modelBt. A
sequence of steps is computed to extract, classify and track
the set ofknown objectsKOt associated to the framet. The
peculiar features of these steps are here outlined (for details
see [18, 19]):

a) Background suppression: it is performed with a two-
level threshold on the distance in the RGB color space be-
tween current frame and background; it is defined for each
p image point as1:

DBt(p) = Distance(It(p), Bt(p)) =
= max(|It(p).c−Bt(p).c|) , c = R,G,B (1)

A coarse grain foreground point selection is made by thresh-
olding theDBt image with a low thresholdTL. Among the
selected points, some are discarded as noise applying some
morphological opening operators.

b) Shadow detection: we do not provide shadow sup-
pression but shadow detection, since shadows are not sim-
ply discarded but are labeled and then used in background
update. Shadow detection uses the HSV color space [15].
A point is classified as shadow point by the following mask:

SP t(p) =


1 if α ≤ It(p).V

Bt(p).V ≤ β

∧ |It(p).S −Bt(p).S| ≤ τS

∧Diff t
H ≤ τH

0 otherwise

(2)

where:

Diff t
H(p) = min(|It(p).H −Bt(p).H|,
360− |It(p).H −Bt(p).H|) (3)

beingH an angular value.
The rationale is that the ratio between the pixel’s Value

component in the current frame and in the background
model must be less than one. In fact, a cast shadow darkens
the background point, while an object point might darken
it or not, depending on the object’s color texture; the lower
the ratio, the larger is the darkening effect. We approximate

1Working in a vector space (either RGB or HSV), the notationX.y
means they component of theX vector.

the luminance with the value of the V component in HSV
space of pointp in framet. Then, if a shadow is cast on a
background, the H (hue) component changes within a cer-
tain limit, as assumed by the threshold on the expression
of Eq. 2. In addition, we introduce the use of the satura-
tion component, which also was proven experimentally to
change within a certain limit, as is indicated in Eq. 2. In
Fig. 1 (bottom-right window) shadows are shown in white.
The dark gray parts (e.g., the face of the man identified by
the id #37) are foreground object that only the color analysis
prevents from being misclassified as shadow.

c) Foreground blob computation: A region-based label-
ing computes connected blobs of candidate moving points
(by means of the 8-connectivity) and shadows (with a distin-
guishing shadow label). To each blobs, some image analy-
sis operators associate selected visual features (such as area,
perimeters, texture, colors, ...). Moreover also an intrinsic
object speed is computed by means of the average optical
flow, aOF. This feature is not evaluated for shadow’s blobs,
where optical flow cannot be correctly computed due to the
low contrast between shadows and background.

d) Object validation and classification: Using the blob’s
features we can validate a blob as an actual Moving Visual
Object (MVO), distinguishing it from other classes. The
taxonomy divides blobs into subset of Known Objects at
instant timet (KOt) as follows:

KOt = {MV Ot} ∪ {MV O shadowt}
∪{ghostt} ∪ {ghost shadowt} (4)

A candidate MVO must have an area large enough (w.r.t.
a threshold) and be salient enough (with at least one point
with a highDistance of Eq. 1). Moreover is validated by a
sufficiently high average optical flow that asserts its motion
(see rules in Fig. 2). The bottom-left window in Fig. 1
shows MVOs only.

If the object has not a significant aOF, it could be due
either to an error in the background model, i.e. a ghost, or
to a stopped object. TheMatch() function verifies whether
its shape matches a MVO detected at the previous frame or
not. This is the only rule that has been included for track-
ing since needs a history list of detected objects. The man
identified with id #9 in Fig. 3(a) is currently still and is
not classified as MVO but as StoppedMVO (note the blue
box around it in the top-left image and that it is not reported
in the bottom-left). Actually theMatch()function takes into
account both MVOs and StoppedMVOs of previous frames,
with a Timeoutflag; thus if an object is detected as stopped
for a time greater than a timeout, it is immediately included
in the background.

Finally, shadows are classified as belonging to an MVO
if they are connected to a MVO or a Stopped MVO, whereas
are considered ghost shadows if they can not be associated
to any real MVO.

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

20

Figure 1: Interface of the Sakbot system

<candidateV Ot > ← (ForegroundBlobt) ∧ ¬(Shadowt) ∧ (LargeAreat) ∧ (HighSaliencyt)
<MV Ot > ← <candidateV Ot > ∧(HighAverageOpticalF lowt)
<StoppedMV Ot > ← <candidateV Ot > ∧¬(HighAverageOpticalF lowt) ∧Match(<MV Ot−1 >)
<Ghostt > ← <candidateV Ot > ∧¬(HighAverageOpticalF lowt) ∧ ¬Match(<MV Ot−1 >)
<MV OShadowt > ← (ForegroundBlobt) ∧ (Shadowt) ∧ ConnectedWith(<MV Ot >, <StoppedMV Ot >)
<GhostShadowt > ← (ForegroundBlobt) ∧ (Shadowt) ∧ ¬ConnectedWith(<MV Ot >, <StoppedMV Ot >)

Figure 2: Classifying rules

e) MVO Tracking: we added a simple tracking module
that keeps track of the detected MVOs and StoppedMVOs,
correlates their extent, centroid position and expected posi-
tion in order to follow their motion during the frames. If
no error occurs, the MVO maintains the same identifier (the
process accepts to lose them for a limited number of frames)
and the centroid position can be tracked, as in the top-left
window of Fig. 1. In Fig. 3 the green and blue extents
indicate moving objects and stopped objects, respectively.

f) Background update: this part is the key strength of
Sakbot and has been defined in order to cope with back-
ground changing in a very reactive way. This feature is
not exploited in substantially static scenes as the ones of
PETS2002 datasets, but it has been used in outdoor surveil-
lance when background changes often. Our approach com-
bines three issues:

- thestatisticalcombination of a number of sampled frames,
which implies the exploitation of the information on the his-
tory of a pixel in a finite time window;

- theadaptabilityof the model to slow changes in the scene,
keeping the knowledge of previous backgrounds;

- the knowledge-based selectivityto improve the accuracy
and to relax the constraint on the minimum window width.

Background is updated as follows:

Bt+1(p) =
{

Bkt(p) if p ∈ O,O in {KOt}
Bst+1(p) otherwise

(5)

If a point p does not belong to any detected object, back-
ground inp is computed statistically:Bs is calculated as a
medianover an history set of previous frames, with a fac-
tor of adaptativity that takes the current background into
account with a certain weightwb (i.e. repeatedwb times).
Given the history setHt = {It−∆t, ..., It−n∆t} of n sam-
ples over an observation window ofW = n∆t, at the up-
date time, the history set and the background become

Ht+1 = Ht ∪ {It} − {It−n∆t}
Bst+1 = Median(Ht+1 ∪ wb[Bt]) (6)

The median is computed in the RGB color space with the
approximated distance of Eq. 1. TheMedian(x1, ..., xk)
returnsxi so that:

xi = arg min

k∑
j=1

Distance(xi, xj) (7)

In the experiments we usen=7, wb=2 and∆t ranging
between 5 and 30.

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

21

(a) (b) (c)

Figure 3: MVOs detected with the complete approach (a) (with the corresponding shadow detection results reported in (b))
and without shadow detection and the selectivity (c).

Conversely, when we know something about the object
in the scene we update the background selectively. Only
for those points belonging to an MVO (or a StoppedMVO)
or its shadow, we adopt another background model,Bk,
defined as:

Bkt+1(p) =



Bt(p) if p ∈ O,O in {MV Ot} ∪
{MV Oshadowt}∨
O in {StoppedMV Ot}∧
¬(Timeout(O))

It+1(p) if p ∈ O,
O in {StoppedMV Ot}∧
¬(Timeout(O))

Bst(p) if p ∈ O,O in {Ghostt}∪
{GhostShadowt}

(8)
If a point belongs to an object classified as a MVO or

a StoppedMVO, the estimate of background in p does not
change (Bt is not updated); instead if the StoppedMVO is
in the still status for a time greater than aTimeoutits color
value is inserted in the background. If the point belongs to
a ghost or a ghost shadow the statistical function is used.

Note that we use in different way the detected shadows:
if a shadow is associated with a moving object, its pixel’s
value does not update the background. This model allows
a very reactive and precise background, and, as a conse-
quence, a very precise object segmentation at pixel level.
For performance evaluation with pixel level ground-truths
see [18].

4. Tests on PETS 2002
PETS2002 tests have been specifically defined with diffi-
culties and artifacts that make tracking difficult. Sakbot is
not able to overcome most of these obstacles since a sophis-
ticated tracking module has not been added. We are unable,
for instance, to divide groups of people partially overlapped
as other proposals do (see e.g. Hydra [20]). These typical
errors of under-segmentation are shown in Fig. 4 and Fig.

5. Nevertheless we want reports results of Sakbot since we
believe that they could be interesting to suggest a low-level
precise object detection and classification method that is an
unavoidable and critical first step of tracking and gesture
recognition.

In the Dataset1, when few groups of people move to-
gether, the system is precise at tracking level too. In the
graph of Fig. 4 we indicate the number of moving people
detected frame by frame in front of the window. Within the
{MV Ot} set we selected only those objects whose cen-
troid is in a image zone defined as “in front of the window”,
while other little objects that Sakbot is able to detect in the
higher part of the image (e.g. that identified with id #8 in
Fig. 3(a)) are discarded. Sakbot detects for one frame an
object that does not exist (is part of a man exiting from
the scene), while has a number of under-segmentation er-
rors, due, as above mentioned, to two people partially over-
lapped. Although this error should be avoided by means of
a specific tracking module, the presence of a shadow detec-
tion method increases performance considerably in term of
precision at pixel level: in Fig. 3(a) three objects are de-
tected: two (labeled #8 and #16 in green) are classified as
MVOs, one (#9) as a StoppedMVO. Without shadow sup-
pression the two objects #9 and #16 are merged in a single
one as in Fig. 3(c) (label #30). In Fig. 3(c) knowledge-
based selectivity is not used and therefore also the error due
to a reflex is considered a set of moving points and remains
forever as a detected object.

Fig. 5 shows the number of people considered as
StoppedMVOs in front of the window. The errors in some
frames are due to the inclusion of the stopped person in the
area of the moving one. Thus, in Dataset1 the errors are due
to group of people only, while no errors due to reflections
have been made.

Datasets 2 and 3 are more complicated, since a lot of
people walk near each other, therefore our system fails (as it
is obvious) lacking a specific module oriented to this prob-
lem. In Table 1 the tracking results are reported. In Dataset

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

22

Figure 4: Moving object (MVOs) in Dataset1

Figure 5: Stopped object in Dataset1

3 the higher number of MVOs detected are due to the fact
that some objects are over-segmented but, since the system
is not able to divide groups some objects change their ids
after some frame.

Tests
People

moving (on
the window)

People
stopped (on
the window)

People
moving
(total)

Dataset 1 6 (4) 1 (2) 10 (6)
Dataset 2 10 (7) 3 (3) 17 (12)
Dataset 3 35 (12) 4 (6) 49 (15)

Table 1: Tracking results (in brackets the ground-truth)

In conclusion, we want to summary some key points re-
sulting from these tests:
- Sakbot can detected and classify at each frame MVOs,

stopped MVOs, ghost and shadows;
- since Sakbot gives a tuple of visual feature associated with
each KO, and assuming that only persons are moving in the
videos, we are able to deduce how many people pass near
the windows (evaluating the centroid position), and how
many stop to watch into the window (frame by frame);
- Sakbot currently does not cope with under-segmentation
and over-segmentation problems, that could be solved with
many methods that have been proposed in the literature.
Then, people are sometimes divided in many parts or more
peoples are grouped together;
- the single MVO detection is enhanced by the use of color
and is strongly improved by two factors, i.e. the shadow
detection and the knowledge-based background update. We
provided comparison between the method with and without
these improvements;
- lastly, the tuning of a correctTimeoutfor stopping MVO
prevents to include them in the background model even if

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

23

the background is updated frequently. Moreover, exploiting
a small∆T sub-sample rate for background update makes
background model more reactive to noise and luminance
changes (for instance the reflections due to peoples inside
the shops are removed).

5. Execution time

The tests run on a standard Pentium III 800Mhz PC with
Window2000 O.S. Programs written in ANSI C++ with Mi-
crosoft libraries are compiled without any code optimiza-
tion. Performances in terms of execution time are underes-
timated since the measured execution time comprehends the
times spent for user interface, data and partial result visual-
ization (see Fig. 1) and the write process of a large amount
of logging files. Nevertheless the system achieve good per-
formances, since many frames are evaluated in a second.

Full resolution
(640x240)

Dataset 1

S&KB Only
Average S&KB w/o shadow statistical

execution time w/o shadow
348.32 340.60 350.50

Table 2: Execution times at full resolution

Half resolution
(320x120)

Dataset 1 Dataset 2 Dataset 3

Average exec.
time (fps)

70,82
(14,12)

80,32
(12,45)

94,20
(10,62)

Ave. exec. time
w/o bkg update

58,88 68,74 83,06

Ave. exec. time
only for bkg

update
179,68 185,43 195,25

Table 3: Execution times

Sakbot works on full color images. Time measure have
been provided working on full size frames (640x240) and
on frames with half dimensions (320x120).

The average execution time with full resolution and full
color on Dataset1 is reported in Tables 2 and 3 (in msec).
We provide three measure: the first refers to the complete
Sakbot approach, the second without shadow suppression
and the third without shadow and knowledge-based back-
ground update.

Shadow suppression is a very important task, unavoid-
able to have a precise moving object shape but is not highly
time consuming. Instead the adoption of knowledge based
selectivity is more efficient, as well as more precise.

The execution time is high due to the very costly opti-
cal flow computation. If necessary it should be substituted
with other more time-consuming motion verification pro-
cess (e.g. block matching) in order to validate that fore-
ground objects are actual moving objects.

In Table 3 we report also results using half resolution.
In these applications of foreground people tracking (people
watching the window) the full resolution is useless. Pro-
cessing full and half resolution bring to the same results in
terms of tracking precision.

The time performance are slightly data dependent and in
the three datasets from 10 to 14 frame per second are pro-
cessed. Sakbot has an internal parameter (∆T) associated
to frequency of the background update: in the experiments
it is fixed to 10 so that the background is updated each 10
frames. When background is updated the time spent is ob-
viously higher: in Table 3 you can see that an average of
59 ms is used to detect, classify and track moving objects,
while 180 ms is spent if background updated is added. This
high update frequency is not necessary in this experiment
where the background is substantially fixed. We tested that
similar results in efficacy are achieved with a∆T = 100.
When∆T is higher the average execution time (in our case
70 ms) slows down and is closer to the lower bound (58.9
ms).

These are preliminary results that are achieved without
any optimization and without any specific tailoring to the
dataset.

6. Conclusion and future work

Figure 6: An example of application

Sakbot has proved to be robust in many different envi-
ronment, such as outdoor traffic scenes in highways or in-
door surveillance of our University Campus (Fig. 6). It

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

24

can be used as a general-purpose approach for object detec-
tion in conjunction with many different higher level track-
ing system that can be tuned to the application.

Future works include its extension to videos taken from
moving cameras. It will be used with some suitable mod-
ification to surveillance application based on moving PTZ
cameras with a defined path. Surveillance via Web is
now available in an experimental setup at our Lab . See
http:\\guilderstern.ing.unimo.it .

Eventually, we intend to use Sakbot also for a general
purpose operator for a semantic transcoding of videos both
from live cameras or video-on-demand applications, in or-
der to give the user only the information required, tailored
with the user’ needs or bandwidth requirements.

Acknowledgments

We would like to thanks Prof. Trivedi (UCSD-USA) and
Prof. Piccardi (Sidney University of Technology, Australia)
for their valuable help in many phases of this work.

References
[1] I. Haritaoglu, D. Harwood, and L.S. Davis, “W4: real-time

surveillance of people and their activities,”IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 22,
no. 8, pp. 809–830, Aug. 2000.

[2] A. Shio and J. Sklansky, “Segmentation of people in mo-
tion,” in Proceedings of IEEE Workshop on Visual Motion,
1991, pp. 325–332.

[3] C. Wren, A. Azarbayejani, T. Darrell, and A.P. Pentland,
“Pfinder: real-time tracking of the human body,”IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 19, no. 7, pp. 780–785, July 1997.

[4] A. Elgammal, D. Harwood, and L.S. Davis, “Non-parametric
model for background subtraction,” inProceedings of IEEE
ICCV’99 FRAME-RATE Workshop, 1999.

[5] C. Stauffer and W.E.L. Grimson, “Learning patterns of activ-
ity using real-time tracking,”IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 22, no. 8, pp. 747–
757, Aug. 2000.

[6] S.J. McKenna, S. Jabri, Z. Duric, A. Rosenfeld, and
H. Wechsler, “Tracking groups of people,”Computer Vi-
sion and Image Understanding, vol. 80, no. 1, pp. 42–56,
Oct. 2000.

[7] N.M. Oliver, B. Rosario, and A.P. Pentland, “A bayesian
computer vision system for modeling human interactions,”
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 22, no. 8, pp. 831–843, Aug. 2000.

[8] N. Ohta, “A statistical approach to background suppression
for surveillance systems,” inProceedings of IEEE Int’l Con-
ference on Computer Vision, 2001, pp. 481–486.

[9] B.P.L. Lo and S.A. Velastin, “Automatic congestion detec-
tion system for underground platforms,” inProceedings of
the Int’l Symposium on Intelligent Multimedia, Video and
Speech Processing, 2000, pp. 158–161.

[10] N.T. Siebel and S.J. Maybank, “Real-time tracking of pedes-
trians and vehicles,” inProceedings of IEEE Workshop on
Performance Evaluation of Tracking and Surveillance, 2001.

[11] B. Gloyer, H.K. Aghajan, K.Y. Siu, and T. Kailath, “Video-
based freeway monitoring system using recursive vehicle
tracking,” inProceedings of SPIE Symposium on Electronic
Imaging: Image and Video Processing, 1995.

[12] Q. Zhou and J.K. Aggarwal, “Tracking and classifying mov-
ing objects from videos,” inProceedings of IEEE Workshop
on Performance Evaluation of Tracking and Surveillance,
2001.

[13] Y. Kameda and M. Minoh, “A human motion estimation
method using 3-successive video frames,” inProceedings of
International Conference on Virtual Systems and Multime-
dia, 1996, pp. 135–140.

[14] R. Cucchiara, M. Piccardi, and P. Mello, “Image analysis and
rule-based reasoning for a traffic monitoring system,”IEEE
Transactions on Intelligent Transportation Systems, vol. 1,
no. 2, pp. 119–130, June 2000.

[15] A. Prati, R. Cucchiara, I. Mikic, and M.M. Trivedi, “Analy-
sis and detection of shadows in video streams: A compara-
tive evaluation,” inProceedings of IEEE Int’l Conference on
Computer Vision and Pattern Recognition, 2001, vol. 2, pp.
571–576.

[16] J. Stauder, R. Mech, and J. Ostermann, “Detection of moving
cast shadows for object segmentation,”IEEE Transactions
on Multimedia, vol. 1, no. 1, pp. 65–76, Mar. 1999.

[17] T. Horprasert, D. Harwood, and L.S. Davis, “A statisti-
cal approach for real-time robust background subtraction
and shadow detection,” inProceedings of IEEE ICCV’99
FRAME-RATE Workshop, 1999.

[18] R. Cucchiara, C. Grana, G. Neri, M. Piccardi, and A. Prati,
The Sakbot system for moving object detection and tracking,
chapter 12, pp. 145–158, in ’Video-based Surveillance Sys-
tems: Computer Vision and Distributed Processing’. Kluwer
Academic Publishers, Boston, Massachusetts, USA, Nov.
2001.

[19] R. Cucchiara, C. Grana, M. Piccardi, and A. Prati, “Detect-
ing objects, sahdows and ghosts in video streams by exploit-
ing color and motion information,” inProceedings of IEEE
Int’l Conference on Image Analysis and Processing, 2001,
pp. 360–365.

[20] I. Haritaoglu, D. Harwood, and L.S. Davis, “Hydra: multi-
ple people detection and tracking using silhouettes,” inPro-
ceedings of IEEE Int’l Conference on Image Analysis and
Processing, 1999, pp. 280–285.

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

25

Performance Metrics and Methods for Tracking in Surveillance

Tim Ellis
Information Engineering Centre

School of Engineering
City University, London

t.j.ellis@city.ac.uk

Abstract
Performance evaluation has become an
increasingly important feature of video
surveillance systems, as researchers attempt to
assess the reliability and robustness of their
operation. Although many algorithms and
systems have been developed to address the
problem of detecting and tracking moving
objects in the image, few systems have been
tested in anything other than fairly ideal
conditions. In order to satisfy the requirements
of a real video surveillance task, the
algorithms will need to be assessed over a
wide range of conditions. The aim of this
paper is to examine some of the main
requirements for effective performance
analysis and to examine methods for
characterising video datasets.

1. Introduction

Performance evaluation has become an
increasingly important feature of video
surveillance systems, as researchers attempt to
assess the reliability and robustness of their
operation. Although many algorithms and
systems have been developed to address the
problem of detecting and tracking moving
objects in the image, few systems have been
tested in anything than other than fairly ideal
conditions [1,24,6].

A widely used characteristic of performance is
processing time. The current availability of
high-performance, low-cost PC’s is an
enabling technology for real-time surveillance
systems, and an increasing number of papers in
the area reflect this by demonstrating on-line
operation of their algorithms.

However, in this paper we will focus on the
issues of evaluating the quality of the
algorithms to detect, locate and follow a target
(generally either a pedestrian or a vehicle) as it
moves through the environment. The emphasis
will be on outdoor environments, where the
video analysis must cope with a wide range of

disturbing conditions. Issues involve quality of
segmentation, static and dynamic occlusion,
effects of natural and artificial illumination
(e.g. shadows) and variations of illumination
intensity, spurious motions (e.g. vegetation)
and a plethora of weather-related problems.

The need for performance analysis falls into
three principal requirements:

i) to demonstrate the robustness and
correctness of the algorithm,
ii) to allow comparison between
alternative algorithms,
iii) to assess the improvements in
performance resulting from incremental
algorithm development.

In order to satisfy the requirements of a real
video surveillance task, the algorithms will
need to be quantitatively assessed over a wide
range of conditions. In the first part of this
paper we identify the principal sources of
disturbing influences, which can be considered
as a form of noise or error. In the second part
we attempt to categorise metrics that have been
used to characterise the performance of both
detection and tracking algorithms.

A characteristic of surveillance systems is that
they may impose quite different requirements
on the image analysis algorithms according to
the task they are trying to solve. Whilst one
system may require highly reliable tracking of
a target over potentially long time periods, e.g.
a surveillance logging system, with other tasks
the aim might be to identify specific events
occurring in the image data (e.g. a crime taking
place). In some situations, frame-to-frame
correspondence is crucial, whilst in other cases
the need is not so critical.

In the next section we consider the need for
comprehensive datasets to satisfy the
requirement of evaluation on a sufficiently
representative set of sequences, encompassing
the variability of conditions and scenarios in
which the surveillance system must operate.
Section 3 considers the pre-cursor to
performance assessment, namely the

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

26

generation of ground truth, and the
characterisation of the video datasets. Section
4 develops a taxonomy of errors that can be
used to characterise each stage of a typical
tracking system. Section 5 catalogues a
number of commonly used metrics for tracking
assessment. Section 6 briefly presents results
for video dataset characterisation. Section 7
provides discussion on some of the issues
raised in the paper, and makes some
recommendations.

2. Video Datasets
Whilst inevitably, researchers tend to assess
the performance of their algorithms on locally-
generated datasets, the advantage of testing on
widely available and appropriate video
sequences provide an important opportunity
for benchmarking. Of course this pre-supposes
that the goals of each task are broadly similar.
This is of course the raison d’etre of the PETS
workshops, and several different data sets are
now available as a result.

In this section we consider the need for testing
our algorithms on a diverse range of video
datasets, covering a range of realistic
conditions. We can first consider the variety of
natural conditions that will impact on the
robustness and reliability of the detection and
tracking algorithms.

1. weather conditions – wind, rain and snow
can all have a dramatic effect on the
appearance of the scene under observation, as
indicated below.
2. illumination variations occur due to solar
rotation; direct sunlight vs. overcast
conditions; night-time and artificial lighting
(e.g. street lighting, car headlights).
3. irrelevant motion can be generated from a
wide variety of different sources: wind-related
(e.g. vegetation, flags), shadows (e.g. people,
clouds), reflections (e.g. puddles on road,
windows) and transparent surfaces (windows).

Many of these conditions will impact in
several different ways – for instance, falling
snow may be detected by the motion detection
algorithm; the average scene brightness levels
will rise significantly because snow has a very
high coefficient of reflectance; motion of
targets through the snow may leave visible
tracks and the resulting thaw will generate
highly reflective puddles on the ground.

We can easily identify the ‘ideal’ imaging
conditions for detection and tracking, as it is
frequently adopted by many researchers to
demonstrate the performance of their

algorithms – a calm, dry, well-lit but overcast
day - which avoids many of the issues
associated with the conditions described
above.

The standard method of coping with some
(though not all) of these conditions is to use a
detection algorithm that adapts to both the
short-term and long-term illumination
conditions. The approach of Grimson [3] has
been widely adopted, based on estimating
several possible backgrounds using a mixture
of gaussian distributions estimated at each
pixel over time. Although Grimson reports
success with the method running continuously
over a long time period (in excess of 16
months [5]) and hence a wide range of weather
and illumination conditions, he provides no
critical evaluation of the method. In addition,
the imaging geometry uses cameras mounted
on high vantage points, observing areas in the
scene from considerable distance, and certainly
some of the deleterious effects of the weather
would be masked.

A further property of the datasets lies with the
complexity and variability of the perceptual
challenges present in the sequence. Dataset
complexity can be characterised by many types
of mechanism: the level of target interactions,
the frequency and complexity of dynamic
occlusions, the duration of targets behind static
occlusions and the distinctiveness of the
targets (e.g. if they are all different colours) to
name but a few. Only by ensuring that the
datasets contain a sufficiently rich and diverse
range of perceptual challenges can the tracking
algorithm be adequately tested. For example, a
video sequence acquired under ideal imaging
conditions containing only one highly
distinctive target object at any particular time
is unlikely to provide any convincing results as
demonstration of a real surveillance system.
Whilst such a dataset may be appropriate for
calibration and training of the system, its use
for performance assessment is limited, to say
the least!

An element missing from the assessment
process is a measure(s) to characterise the
complexity/difficulty of the video dataset.
From the elements discussed to date, we
investigate two types of measure, the first
characterising the pixel-based image
variations, and the second capturing the
complexity of the perceptual task.

For the frame-by-frame pixel variations there
are several ways to quantify the pixel
intensities. A standard measure of image

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

27

distortion uses the normalised sum of the
squared pixel differences between the two
images, equivalent to the variance. A second
approach, more tailored to our own detection
algorithms [9], uses a measure of the
percentage change of non-modelled pixels per
frame. The advantage of using an approach
after segmentation and motion detection is that
it is possible to ignore the pixels that are
changing as a result of real motion in the
scene. The third approach would directly use
the output of the blob detection algorithm,
based on the specificity measure described in
table 2 to determine the number of false (i.e.
with no supporting ground truth) blobs
detected in each image frame of the sequence.

Measures for estimating the perceptual
complexity of the sequence would be linked to
the occurrence and duration of occlusions,
since this is the most likely period when the
tracking algorithms will fail. Such information
could be estimated from the ground truth data
(see section 3) by computing the ratio of the
number of target occlusion frames divided by
the total length of each target track (i.e. the
number of frames over which it is observed),
averaged over the sequence. To estimate
occlusion from the ground truth data involves
decisions on the degree overlap or proximity
between ground truth tracks. Some brief results
on these characterisation methods will be
given in section 6.

3. Performance Assessment
The previous section has outlined some of the
needs to use diverse and comprehensive video
datasets to evaluate the performance of
algorithms. In order to satisfy a claim of robust
operation, example datasets would be needed
for many of the conditions identified above,
ideally both in isolation and in combination,
since an increasing failure rate of the detection
system will be expected to have a dramatic
impact on the reliability of the tracking
algorithm, especially as the complexity of the
perceptual task increases.

The conventional assessment process uses a
‘gold standard’ against which to measure the
performance of the developed system. The
gold standard used for video tracking is based
on comparison with ground truth, typically
generated by manual examination of the video
sequences. In this section we consider how
ground truth is generated and used. In the
second part we examine several possible
alternatives to the time-consuming process of
manual ground truthing using automatic
methods of generation.

Ground truth
Ground truth data is intended to provide an
independent and objective data (e.g.
classification, location, size) that can be related
to the observations extracted from the video
sequence. For example, in remote surveillance,
ground truth might identify the actual land
usage, crop type or geometry of man-made
structures, in order to compare with data
extracted from satellite or airborne imagery. In
this case, ground truth data would typically be
generated by manual surveying (a ground
survey), involving inspection of potentially
very large regions.

Generation of such data is in itself highly time-
consuming and subject to error and
uncertainty. Where the image characteristics
are subject to change (e.g. crop growth and
harvesting), it is important to ensure temporal
co-incidence of the image capture and ground
truth. In addition, the quality of the ground
truth is highly dependent on the competence of
the ground surveyors.

Ground truthing for video tracking presents
some different challenges. The ground truth
falls into three principal categories. Firstly, an
indication of the location of the target, using
either the circumscribed bounding box, or a
single uniquely identifiable point such as the
top of the object or the centroid. Secondly, an
accurate marking of the target boundary. This
would enable a variety of region-based
measures to determine the quality of the
segmentation, details of the target shape and
appearance details. Finally, classification
information can be generated. This is generally
the simplest to produce as only one value per
track is needed.

For the first two categories the ground truth
can be determined by stepping frame-by-frame
through the recorded sequence, using either
purely manual, or a semi-automated tool to
characterise the targets in the scene. The
manual method is straight-forward for the first
category, but is particularly tedious and time-
consuming for marking the boundary,
especially if it is required to perform the
operation on many thousands of targets. The
semi-automatic approach utilises a detection
and tracking algorithm to find and identify
likely corresponding targets from the previous
frame, allowing manual intervention to correct
for any algorithmic errors. A consequence of
using this method to generate the ground truth
is that it is biased in favour of the same
detection algorithm that is being evaluated.

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

28

In general, these methods of extracting ground
truth are subjective and prone to human error,
particularly as a result of the tedious nature of
the acquisition and the possible bias of the
assessor performing the ground truthing – if
the assessor is familiar with the deficiencies of
a particular method or algorithm, then the
process may favour a particular labelling.
Additionally, the assessor may also be required
to categorise the visibility of the each tracked
object – partial or full occlusion occur when
targets intersect with either static or other
moving objects in the image. How these events
are represented in the ground truth can be
viewed differently by different researchers – in
some cases, the ground truth is only generated
when it can be un-ambiguously identified. In
other cases, the assessor might ground truth
only the partially visible target, or infer the full
target (e.g. based on knowledge from previous
frames).

There is a clear trade-off between the time
taken to acquire the ground truth and the
accuracy and reliability of the resulting data.
This is particularly true if segmentation quality
and subsequent shape analysis is to be
assessed, as manual acquisition of target
boundary data would consume huge amounts
of time.

Alternatives to ground truthing
An alternative approach to analysing the video
dataset to extract ground truth would be to use
an entirely independent measurement. One
method would be for each target to carry a
mobile GPS receiver (global positioning
system) to record 4D trajectory information
(x,y,z,t) that could be correlated directly with
the results of the video dataset. Such an
approach requires calibration of the camera in
the coordinate system of the GPS data (or vice
versa), a method of maintaining temporal
synchronisation between the GPS and video
measurements, and the active collaboration of
the targets. A major limitation with such a
method is that although relatively cheap hand-
held portable GPS receivers are currently
available, their accuracy is typically greater
than 10 metres, with a time sampling
resolution of 5-100 seconds. The accuracy
required for video tracking would be more like
20-50 cm and 0.1-0.5 seconds. However, there
are more accurate systems based on Carrier-
Phase Differential GPS (CDGPS), that could
be used to provide usable ground truth.

Of course, GPS only provides location
information (from which differentials –
direction, speed, acceleration - can be

generated), and hence cannot be used to
furnish ground truth for segmentation and
shape analysis. It would however be quite
feasible to provide identification with the
location data and hence provide the capability
to generate some shape characteristic data
from models.

One possible enhancement to the semi-
automatic methods of ground truthing would
be to take advantage of the capability of
automatically identifying targets in
overlapping multi-camera views. Multi-camera
tracking commonly will use a method of
camera calibration or estimation of the
homography between the two cameras to
correspond information from each viewpoint.
In addition, such algorithms can also be used
to estimate the uncertainty of predicting the
target from one view into the other. Hence, this
method can provide an ‘independent’ source of
information, along with a corresponding
measure of reliability of the data for use as
ground truth.

Another method used to assess algorithmic
performance is to generate synthetic image
sequences. By using computer graphics to
produce possibly photo-realistic augmented
with simulated noise, it could be practical to
create sequences with known ground truth.
One probable disadvantage with this method is
that it would be possible to ‘tune’ the
performance of the detection algorithm
knowing the precise details of the added noise,
hence biasing the evaluation process. More
problematically, accurate modelling of all the
many factors to simulate a ‘realistic’ sequence
still presents major problems in the field of
computer graphics and animation.

An alternative to generating purely synthetic
images would be to make pseudo-synthetic
sequences by ‘stitching together’ video shots
or sub-images from different parts of a real
sequence, combining them to produce
simulated occlusions in the pseudo-synthetic
sequences. Many existing systems can track
isolated targets very reliably in the camera
field-of-view. Hence it might be possible to
accept the output of a tracking system as the
ground truth for such simple tracks, recording
the pixels of the tracked target. Then a new
sequence is constructed by overlaying several
of these simple tracks to create sequences
containing occlusions, using real video data.

4. Taxonomy of Errors
The purpose of performance metrics is to
characterise the success and failures of the

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

29

algorithms measured against the ‘true’ values
as described by the ground truth.
We can categorise the errors into one of the
following types:
Type 1: segmentation - determine the quality
of the final shape representation of the detected
target.
Type 2: detection performance - provides a
yes/no decision of the presence of the target in
the image.
Type 3: track completeness – identifies the
number and quality of the fit over the complete
track.
Type 4: target classification – determines the
identity of the target.
Type 5 – event / activity / behaviour
classification – represents a high-level
interpretation of what is happening in the
scene.

In the next section we consider some of the
most widely used performance metrics. The
metrics can be applied separately to quantify
each of the error types described above, or
cumulatively over the entire dataset. An
important function of the performance
assessment is the ability to provide a
comparison between different algorithms, on
different datasets and to monitor incremental
improvements in algorithm development.

Although highly desirable for such comparison
purposes, it seems unlikely that a single (one-
fits-all) measure of detection and tracking
performance would be able to capture that
range of errors that can corrupt the
observations extracted from the image. Hence
part of the challenge of performance
assessment is to determine how the metrics can
be compared.

5. Tracking Metrics
Error metrics fall into two broad categories:
the first are based on standard statistical
methods of comparing two populations of
values which are derived from observations
against their true or expected values. In this
case, the ground truth is used as the true values
to be compared against the measurement data
from the image analysis. Secondly, numeric
scores are used computed to quantify the
accuracy of the detection or tracking
algorithm: average positional and velocity
errors; average number of observations before
tracking is initiated; average number of frames
before tracking is terminated etc. Such
measures may be computed directly from the
algorithm (e.g. from the covariances associated
with a Kalman tracker) or from the final
observations of each target. The measures may

be computed for pixel data, or for 3D or 2d
ground-plane data derived from a camera
calibration process. In this case, it will be
necessary to convert the ground truth values
(generally acquired in pixel coordinates) into 2
or 3D scene coordinates.

The comparison of observed and true values
generates a 2x2 contingency table that
expresses the correct and false matches
between the two populations based on:
i) true positives – the number of
observations confirmed by the ground truth
ii) false positives – the number of
observations not matched in the ground truth
iii) true negatives – the number of
observations rejected as belonging to the
ground truth
iv) false negatives – the number of
observations erroneously accepted as
belonging to the ground truth

 Ground truth
Observations positive negative
positive Ntp Nfp
negative Nfn Ntn

Table 1. 2x2 contingency table.

The following values or indexes are derived
from the comparisons between true and
observed:

Name Index
detection rate (sensitivity) Ntp/(Ntp+Nfn)
specificity Ntn/(Ntn+Nfp)
accuracy (Ntn+Ntp)/N
positive predictive value Ntp/(Ntp+Nfp)
false negative rate Nfn/(Ntp+Nfn)
false positive rate Nfp/(Nfp+Ntn)
negative predictive value Ntn/(Ntn+Nfn)

This scoring process can be applied at different
stages to the performance analysis of the video
data: to the results of the segmentation process,
on a frame-by-frame basis, on a per track
basis, collectively over all the tracks in the data
sequence(s) and to the classification decision
for each track.

6. Results
The following demonstrates one of the
methods for estimating the image variation due
to illumination changes. Figures 1 and 2 show
the variation of the standard deviation
estimated from the frame-by-frame differences
of the PETS2001 dataset 1 and 3 sequences
(camera 1). The sequences are both sub-
sampled to 1 frame-per-second. As can be

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

30

seen, the increased variation of the
illumination is clearly visible in dataset 3.

0 500 1000 1500 2000 2500

5

10

15

20

25

30

35

Frame Number

S
ta

nd
ar

d
D

ev
ia

tio
n

Figure 1. Intensity variation for PETS2001
dataset 1 (camera 1).

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

5

10

15

20

25

30

35

Frame Number

S
ta

nd
ar

d
D

ev
ia

tio
n

Figure 2. Intensity variation for PETS2001
dataset 3 (camera 1).

7. Discussion and Conclusions
The video surveillance research community
would benefit from adopting standards for
format of ground truth data structure, and also
generation of tracking output (e.g. similar to
the PETS XML format). It may be more
efficient for individual groups to produce
ground-truthed datasets that start to fill the
void, covering a wider range of environmental
conditions and different levels of perceptual
task complexity. Where datasets are ground-
truthed using automatic or semi-automatic
methods, it must be recognised that the ground
truth data will favourably biased towards the
algorithm used, and hence subsequent
performance evaluation may be compromised
if applied to the same algorithm.

We can pose a number of questions for
addressing the performance evaluation task:
How do we ground truth reliably and
consistently?
How do we characterise the degree of
difficulty of the video datasets – both the
image data and the perceptual complexity?

Perhaps these questions can be addressed with
the use (and availability) of common ground-
truthing standards and accepted and
commonly-used assessment criteria.

Acknowledgements

This work was undertaken with support from
the Engineering and Physical Science Research
Council (EPSRC) under grant number
GR/M58030. Thanks to Ming Xu and
Dimitrios Makris.

References
1. A. Senior, A. Hampapur, Y-L Tian, L. Brown,

S. Pankanti and R. Bolle. Appearance Models
for occlusion handling. In Proc. IEEE
Workshop on Performance Evaluation for
Tracking and Surveillance, 2001.

2. A. Theil, R.A.W. Kemp, K. Romeo, L.J.H.M.
Kester, E. Bosse. Classification of moving
objects in surveillance algorithms. In Proc.
IEEE Workshop on Performance Evaluation
for Tracking and Surveillance, pp. 80-84,
2000.

3. W. Grimson, C. Stauffer, R. Romano and L.
Lee. Using adaptive tracking to classify and
monitor activites in a site. In Conference on
Computer Vision and Pattern Recognition, pp.
22-29, 1998.

4. G. Pingali and J. Segen. Performance
evaluation of people tracking systems. In Proc.
IEEE Workshop on Applications of Computer
Vision, pp. 33-38, 1996.

5. C. Stauffer, W.E.L. Grimson. Learning
patterns of activity using real-time tracking.
IEEE Transactions on Pattern Analysis and
Machine Intelligence, 22, no 8, pp. 747-757,
August 2000.

6. J. Orwell, P. Remagnino, G. Jones. From
connected components to object sequences. In
Proc. IEEE Workshop on Performance
Evaluation for Tracking and Surveillance, pp.
72-79, 2000.

7. B. E. Fridling, and O. E. Drummond,
Performance Evaluation For Multiple Target
Tracking Algorithms, Signal and Data
Processing of Small Targets 1991, Proc. SPIE,
Vol. 1481, pp. 371-383, April 1991.

8. R. L. Rothrock and O. E. Drummond,
Performance Metrics for Multiple-Sensor,
Multiple-Target Tracking, Signal and Data
Processing of Small Targets 2000,
Proceedings SPIE, Vol. 4048, pp. 521-531,
2000.

9. Xu M, Ellis T, “Illumination-invariant motion
detection using colour mixture models”, in
Proc. BMVC2001, Manchester, Sept. 2001.

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

31

An Open Development Environment for Evaluation of Video
Surveillance Systems*

Christopher Jaynes, Stephen Webb, R. Matt Steele, and Quanren Xiong

Metaverse Lab, Dept. of Computer Science
University of Kentucky
Lexington, KY 40513

jaynes@metaverselab.org

Abstract
We introduce the publicly available Open Development

for Video Surveillance (ODViS) system that is specifically
designed to support ongoing research in tracking and
video surveillance. The system provides researchers with
the ability to prototype tracking and event recognition
techniques, to construct and manage ground truth data
sets, and to evaluate the performance of these systems
within a graphical user interface.

Passive tracking and video surveillance systems are
receiving an increasing amount of research attention both
in academic and industrial laboratories. Meaningful
evaluation of these tracking and surveillance systems is
an important but often difficult task. Recent introduction
of standard datasets for video surveillance systems, and a
corresponding dialog related to empirical analysis have
made significant progress [1]. The ODViS system is
designed to complement these efforts by providing an
Application Programming Interface (API) that allows
researchers to link specific surveillance modules into the
ODViS framework, a graphical interface for visualizing
the behavior of tracking algorithms, and a performance
evaluation component that supports comparison of
different surveillance modules to one another or
predefined ground truth.

1. Introduction
This paper introduces the Open Development for Video

Surveillance (ODViS) system. The ODViS system was
inspired by the need for straightforward empirical
analysis of tracking and video surveillance systems
without undue burden on the algorithm designer. There
are a number of problems related to proper evaluation of
tracking, event recognition, and other components of a
video surveillance system that are unique to the video
surveillance community. These include the volume of
data that must be evaluated, the difficulty in obtaining
ground truth data, the definition of appropriate error
metrics, and the logistical problems in achieving
meaningful comparison of different systems.

Despite these problems, a number of different industrial
and academic laboratories focus on video surveillance

research and the problems associated with accurate
performance analysis. In the previous two decades,
governmental programs [2, 3] as well as international
workshops [1] and conferences [4] have reflected (and
supported) the increased interest in developing camera-
based video surveillance systems. Methods developed
specifically for video surveillance applications have found
use in other important areas and in recent years the video
surveillance community has become interested in serious
evaluation of ongoing research. An analysis of the variety
and breadth of video surveillance approaches is beyond
the scope of this paper. The reader is referred to [5-9]
examples of research activity and applications that have
influenced the development of the ODViS system. In
addition, [10] provides a thorough overview of tracking
systems designed for people tracking and video
surveillance.

Recent efforts have focused on introducing standardized
datasets and have brought together a community of
researchers that are interested in developing a
performance evaluation methodology appropriate to video
surveillance systems. The ODViS system was developed
in order to complement these efforts by providing a
framework within which these types of evaluations can
take place without significant additional effort by the
researcher. The ODViS framework is extensible, openly
available, and is continually being updated as new
evaluation methods and surveillance techniques are
developed. Indeed, ODViS development is ongoing and
the goal of this paper is to provide a general description of
the ODViS framework to begin a dialog among
researchers that will ultimately influence and improve the
ODViS system.

Accurate characterization of video surveillance system
performance is a difficult problem and is far more
complex when researchers hope to compare their system
to other techniques developed at other institutions. The
main problems can be categorized as: 1) Ground truth
acquisition – even when a common dataset is available,
defining ground truth data can be infeasible for long video
sequences and for large scale multi-view surveillance
systems that produce a number of different video streams.
2) Error measurement and complexity – a meaningful set
of error metrics must be defined and then computed

* Research supported by NSF grant number 0092874

32

against ground truth data. For example, computing a
mean pixel error for a template-based tracking system
typically requires pixel distance measurements for
potentially thousands of frames. This is often done by
hand inspection and, as a result, errors are often computed
over a small number of frames and may not be
statistically accurate. 3) Visualization and
characterization of error – even if ground truth data is
made available and intensive error analysis has been
reported, it is difficult to visualize how a tracking system
behaves without burdening the system designer who must
engineer graphical output capability to display tracking
results. For example, interpretation of tracking error may
require tracking results to be overlaid on available data,
and graphical presentation of the error to the system
designer. Oftentimes, in order to understand and
visualize a tracking system’s performance, researchers
unnecessarily re-develop visualization, error
measurement, and video processing functionality.

These problems typically lead to a large overhead in
understanding and reporting the behavior of a tracking
and surveillance system. For example, the 3rd IEEE
International Workshop on Performance Evaluation of
Tracking and Surveillance brings together a large number
of researchers who have studied their systems on a
common dataset, using a partially predefined set of error
metrics. However, each researcher must measure these
metrics independently either by hand in a time consuming
process or semi-automatically by engineering additional
system components.

Although there are several systems available that
support video capture, decoding and display of video,
online editing, and ground truth definition, these systems
do not directly support the video surveillance research
community. Oftentimes, researchers will make use of
these systems for particular tasks related to the research
and development cycle, and deal with data transfer and
communication between these systems by hand. For
example, loading and viewing a particular video may be
provided by one system, while overlay of results must be
accomplished by a different piece of software. This is true
even for recently developed open source systems such as
Kino [11] and systems designed to support specific
research efforts such as Open Video [12]. The ODViS
project is an ongoing effort in building a single coherent
framework for research and development of video
surveillance systems.

The ODViS system allows researchers to “plug-in”
video surveillance modules, allowing the tracking and
event detection algorithms to be evaluated within a
graphical, interactive framework. Using ODViS,
researchers can easily define ground truth data, visualize
the behavior of their surveillance system, and
automatically measure and report errors in a number of
different formats. By using ODViS, the overhead

commonly associated with in-depth performance
evaluation can be avoided.

This paper introduces the general design of ODViS and
the functionality it provides. Specifics about how to use
ODViS and the ODViS API are described in documents
available online (see Appendix A). An example of how
ODViS supports performance evaluation of video
surveillance systems is presented in Section 4.

2. Description of the System
The ODViS system is made up of several components

that allow researchers to define new surveillance modules,
observe the behavior of these modules as they track and
recognize events, interactively adjust tracking results and
define ground truth data, as well as analyze the
performance of tracking systems using a number of
different error metrics. The ODViS graphical user
interface is the main component of the system and
displays tracking progress by overlaying tracking
information onto the current frame of the video stream
and displaying the name of detected events as well as the
frame number in which they were detected in the Event
Queue window (See Section 2.1). The state of the
surveillance system can be saved to disk and re-played
without the need to run the tracking system again.

Mouse-based tools allow a user to interactively modify
a surveillance module’s progress by re-positioning
tracked models or adjusting search regions. These tools
facilitate the construction of ground-truth information by
allowing the user to align tracked features with their real
correspondences, and then to save these results for later
review or comparison. Although we are generalizing the
ODViS API to support other tracking approaches such as
blob and contour tracking and energy-based deformable
models, the current version of ODViS only supports
adaptive template-based tracking and tracking of
articulated structures that are defined as link-joint
systems. Articulated models can be loaded from disk,
defined by the researcher through the ODViS API, or
interactively constructed using the ODViS GUI.
Articulated structures are simple link joint systems
connected via a spring model at each joint to support links
that stretch or compress throughout a tracking sequence.
The tracking engine and event detection system are
programmed by the researcher and added to ODViS using
the API (see Section 2.2).

An error measurement tool graphs various distance
measures between tracked structures such as template
centers, link angles, etc. on a per-frame basis. This allows
the user to quickly and easily examine the progression of
a new tracker’s error with respect to ground truth or
another tracking system. Figure 1 shows the ODViS
framework in use. A main window at center displays the
current frame of the tracking sequence, overlaid by a
tracked structure. Toolbars on this window allow the user

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

33

to play the sequence forward, go to specific frames, save
the state of tracking to disk, and trigger predefined events
by hand. A toolbar at left is used to draw new templates
and link-joint models, to adjust and define ground truth,
and to define new error metrics to be displayed. An event
window displays events that have been triggered by the
surveillance module. Error metrics are measured and
displayed in graphical format to the user in the error
metric window at bottom.

ODViS is written in C++ using the QT user-interface
framework and the Linux operating system. Because QT
also supports Windows, ODViS should be easily ported to
that platform. ODViS currently supports video streams in
two formats, Digital Video-encoded AVI files, and lists of
individual still frames. We are developing support for
MPEG and other video formats.

Use of the ODViS system is described in the “ODViS
Programmers Reference” available online at
www.metaverselab.org/software/odvis/. The following
subsections describe the main components of the ODViS
system. The functionality of the ODViS system is only
described, leaving implementation details to available
reference manuals.

2.1 Graphical User Interface
When a user loads, modifies, or saves files in ODViS,

the user is operating on tracked parameter vectors that
describe how the application should display the current

state of a tracked model. For example, perhaps the
simplest surveillance module could be a single template
governed by a parameter vector describing the 2D
location of the template in each frame. ODViS interprets
this parameter vector and overlays the template on the
video stream. More sophisticated link-joint models are
currently supported and we are generalizing ODViS to
allow display support for arbitrary, user-defined model
parameters. In this way, ODViS supports subjective
analysis of tracking and surveillance behavior of different
surveillance modules.

A user has the option of running a module in
“automatic” mode, in which case the surveillance module
receives no interactive input from the user, and ODViS
simply displays events and tracked templates as the
system progresses according to information supplied by
the surveillance module at each frame. At any time,
however, the user can interrupt the system (by clicking on
a “stop” button) and interact with it, either by manually
triggering an event and initializing a template (or deleting
one), or by manually re-positioning a template.
Templates are moved (either translated or rotated) by
clicking and dragging on graphical handles displayed on
the templates. A separate mouse tool allows the user to
re-size templates, also by clicking and dragging on a
handle.

Distance measurements between two tracked model
structures can be defined interactively by the researcher in

Figure 1: Example of the ODViS system in use. (Top right) Early frame in a tracking sequence in which the tracked object
is close to ground truth. (Top left) Toolbar window used to interact with the system. (Bottom Left) Event Queue window
displays frame numbers corresponding to events detected by the tracker and hand built ground truth frame numbers.
(Bottom right) The Error Analysis window displays a built-in error metric of Euclidean distance between ground truth and
tracked model. Grey vertical line corresponds to the frame displayed in the main window.

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

34

order to compare the accuracy of one tracking result
against another. The user selects the error metric tool and
a dialog box is displayed, which asks the user to select
two model components (for example templates), either by
clicking on them or typing an identifier. The user must
also specify a distance metric to be used. Built-in metrics
include relative angle, Euclidean distance, and horizontal
and vertical distance in pixels. The ODViS API also
supports the introduction of new error metrics. New error
metric functions are simply written by the researcher to
take two parameter vectors corresponding to different
models and return a scalar number. This user-defined
error metric is then added to the library of available error
measures by linking the new code against ODViS. User
defined error metrics are then available at run-time for
selection in the error metric dialog window.

If a particular error metric has been defined between
different model structures, a graph window displays the
output of that measurement, with frame number as the x-
axis and the specified distance measure along the y-axis.
If the user chooses multiple distance measurements, for
example to compare the error of two different trackers,
these graphs are all overlaid in the same window. The
user can individually hide or display each graph, and the y
axis of each graph is individually scalable. An example
error window is shown at the bottom of Figure 1. Graphs
in this window can be printed to a file or a standard
postscript printer.

The graphical user interface also displays “events” in
the Event Queue window. New events are defined by the
programmer using the ODViS API. Events can then be
triggered by a surveillance module when the
corresponding event detector returns true for a particular
frame in the video sequence. When an event has been
triggered, the Event name appears at the left of the Event
Queue window, and the frame number is written into the
column corresponding to the surveillance module that
triggered the event. A special column “Ground Truth” is
used to compare automatically triggered events with user-
defined, ground truth events. Events can be triggered by
hand simply by clicking into the correct box on the Event
Queue window in the appropriate video frame.

2.2 Tracking and Event Detection API
A surveillance module must implement the tracking and

event-detection interface if it will be used with ODViS.
To integrate a surveillance module, one compiles the
implementation into object code and links it with ODViS.
Only one surveillance module can currently be linked in
at a time, but future versions will support multiple
modules at once, and run-time loading through the use of
shared libraries.

A surveillance module consists of starting and stopping
functions which initiate and terminate tracking sequences,
the tracking function that updates tracked parameters, and

a set of event detectors. Figure 2 displays the three major
components. The functions belonging to a surveillance
module are methods of the same SurveillanceModule
object. This object is initialized when a surveillance
system is loaded (i.e. when ODViS starts up) and it
persists until the system is unloaded (i.e. when ODViS
exits).

The trigger function is required to construct an instance
of a tracking engine (see Figure 2), and initialize it with a
parameter vector that describes the initial configuration of
a tracked subject. ODViS maintains a list of the currently-
active tracked sequences (instances of “Tracking
Engine”), and calls Track() on them for the current frame.
Each instance of “Tracking Engine” is responsible for
maintaining its own internal state; the only information
that ODViS provides in the call to Track() is the pixel
data for the image and the frame number. At each frame,
each actively tracking module is checked for a halting
condition by invoking the SurveillanceModule’s “Halting
Function,” along with the current image data and frame
number. If this function reports that the tracking engine
should halt, then ODViS deactivates that instance of the
“Tracking Engine”. Processing proceeds in this manner
until the user pauses the system, or the end of the video
sequence is reached.

In addition to automatic invocation of a surveillance
module using the trigger function, a user can manually
invoke a module by clicking on the “start” button
provided by ODViS. Rather than automatically
determining the initial parameters for tracking, a user can
place/configure the initial model using the interface tools
provided.

In order to support display of and user interaction with a
“Tracking Engine,” some of its state is visible to ODViS.
Currently, this means that a tracking engine is expected to
be template-based, with each template location and,
possibly, orientation represented in the parameter vector
in addition to structural information in the case of link-
joint system tracking. We are currently defining a more
general interface to the ODViS visualization subsystem.
Methods to draw a particular tracked state will be
supplied to ODViS to override the current drawing
methods. In this way, contour, blob, and other tracking
approaches will be supported by the ODViS framework.

2.3 Tracking Details
A trigger-function returns true when the surveillance

module should be invoked and provides the tracking
engine with an initial set of parameters needed for
tracking. It should be noted, however, that the internal
behavior of each component within the surveillance
module is completely up to the researcher. For example,
if the surveillance module is supposed to be constantly
active the trigger-function simply always returns true. On
the other hand, ODViS supports far more complex

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

35

analysis of video data such as the magnitude of optical
flow on the periphery of the video image. In this case,
initial parameters may describe the location and size of
several templates that are to be tracked as they enter the
scene. These initialized parameter vectors are then
handed to the “Tracking Engine” for that surveillance
module, and tracking is initiated.

A halting-function defines the conditions that cause the
surveillance system to halt. The halting function can take
as input the parameter vector produced by the tracking
engine for that frame. In addition, other data such as
pixels and parameter history can be used. An example
halting function may involve detecting when a tracked
structure noticeably leaves the frame.

The main component of a surveillance module is the
tracking engine. Fundamentally, the tracking engine
takes a parameter vector as input and produces a new
parameter vector based on analysis of available data.
Access to raw video is accomplished using the Data I/O
API which provides the researcher with a set of routines
for accessing pixels, regions, and other auxiliary
information such as timecode stored with the video.
Again, it should be noted that the tracking engine may be
a complex system in itself, perform its own data storage
and manipulation, and may involve dynamic control.
These complexities are hidden by wrapping a tracking
engine within a simple API so that the tracking algorithm
can be evaluated within the ODViS framework.

2.4 Event Detection Support
In addition, a surveillance system can define any

number of event triggers that analyze the vector of
tracked parameters, pixel data, and other statistical
properties of the video sequence. A new event is added to
ODViS simply by calling a function that defines the name
of the event and a pointer to the corresponding event
function. Defined events appear in the ODViS Event
Queue window and can be manually triggered by the user
to build ground truth data or automatically activated by
the event trigger function.

Each time the tracking engine produces a new parameter
vector, all event triggers are called with this new set of
parameters. Internally, event triggers are designed by the
researcher to return true when a particular event is
detected. Again, internal behavior of each event trigger
function is specified by the user via the programming
API. This includes internal bookkeeping of parameter
vector histories, and analysis of auxiliary information
produced by the system as models are being tracked. This
approach is in keeping with the ODViS development
philosophy where very little functionality is specified
internal to surveillance modules so that the ODViS
system can remain general.

Once an event is detected, the current frame number is
written into the event table denoting the surveillance
module that generated the event, and the corresponding
event label. In this way, comparison to ground truth is
straightforward and comparison of two surveillance

Figure 2: Flow of control of a surveillance module within the ODViS framework. Each, function defines how the
current set of tracker parameters evolves with respect to each frame in the video sequence. An event detection module
reports when particular events occur to the ODViS that then stores then in an event log.

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

36

systems event detection capabilities is made easier by
ODViS.

3. Performance Analysis using ODViS: A
People Tracking and Counting Scenario

In order to demonstrate how ODViS can be used, we
show how a simple surveillance module is added to the
ODViS module library using the API. The surveillance
module is then evaluated on a surveillance dataset using
the built-in error metrics, and interactive ground truth
definition. The module was tested on 750 of 1500
available frames from a sequence provided as part of the
PETS 2002 Workshop. The data was captured from a
stationary camera that observes an indoor shopping mall
area through a storefront window. We show how ODViS
can evaluate the accuracy of a core tracking engine as
well as a simple event detection mechanism intended to
count the number of people passing in front of the
camera.

Ground truth data was acquired using the graphical user
interface provided by ODViS and described in this paper.
The medial axis of each person in the system was denoted
by drawing a link from the bottom of the subject’s head to
the hip joint. The axis was then hand adjusted to align
with the subject’s torso in each frame of the dataset. In
addition, entrance and exit events were added to the
ground truth event queue by clicking the appropriate
button on the event system. It should be noted that once
a ground truth dataset has been defined, it can be saved

and delivered to other researchers using the ODViS
system on a common dataset.

A surveillance module was then defined using the
ODViS API. The core tracking engine used by the
surveillance system is driven by a Kalman filter that
optimally combines the average similarity score of a set
of weighted templates with a predictive model that
contains a momentum term to allow tracking through
occlusions. Similarity between a template and an image
region is based on the normalized cross-correlation with a
significant hysteresis term that allows slow changes in
template appearance throughout the sequence. Tracking
state is represented in a parameter vector containing the
center-point, in pixels, of the torso axis, as well as the
rotation of the axis with respect to image vertical. At
each frame, the tracking engine uses the current parameter
vector and guided search to find the optimal placement of
the tracked axis in the next frame. Readers interested in
further details regarding the particular tracking engine
used for the results shown here are referred to [13].

For the results shown here, a tracking model contains
three templates rigidly associated with a tracked axis. A
head template is positioned at the top of the axis link,
representing the subject’s torso. In addition, two
templates, each positioned 20% and 80% along the length
of the axis, sample the color of the subject’s torso to assist
in tracking. Note that the ODViS API allows models
consisting of links, joints (none were used here), and
templates to be defined by the researcher. In future work

Figure 3: Example ODViS evaluation scenario.. Top graph line corresponds to angular error with respect to ground

truth while bottom graph line reports Euclidean distance to centerpoint of groundtruth axis. Gap in error curves
correspond to frames in which no people were present and no surveillance module was active. (right) Frame 126 of
sequence in which tracking system is close to ground truth. (right) Frame 159. Sensitivity to occlusions in tracker are
revealed as tracked model is far from ground truth. Video of the system being used is available at
www.metaverselab.org/research/surveillance.

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

37

support for other model-based tracking will be added.
An initialization predicate must be defined for the

surveillance module that defines when the tracking engine
is applied to the data as well as the initial parameter
vectors and other state information. For the results shown
here, an initialization predicate was written that detects
motion on the boundary of the image in order to detect
incoming motion and begin tracking. For each frame a
similarity test compares a running average background
image with the current frame’s horizontal borders. This
comparison takes place in an area 75 pixels wide along
each horizontal border. Detected motion pixels are
combined into blobs using simple morphology and, in the
event a blob of significant size remains, the surveillance
module is initiated. For the results shown here, regions
with greater than 200 pixels triggered the initialization of
the tracking engine. Initially, a tracking model is placed
such that the axis is centered at the center of mass of the
blob and is oriented along its medial axis. Figure 3 shows
the model overlaid on two different frames of the test
sequence. At left, the ground truth model, with no
templates, is visible in a region of large error.

The surveillance module also was defined to contain
two event trigger functions; “Person Enter” is triggered
when the initial conditions are met and a target is tracked
for more than 10 frames while “Person Exit” is triggered
as an actively tracked target leaves the image. When
these events are triggered they are automatically entered
into the event queue according to the frame number when
they occur. This allows direct comparison of ground truth
events to detected events.

Figure 4 shows a close-up of the Event Queue contents
at the end of the 270-frame sequence. Note that the
sequence started with a subject present in the scene and
the first “Person Enter” event was not triggered. The
surveillance module, in this case was triggered by hand
using the “track” button and placing the first model on the
correct location in the video using the graphical user
interface. Definition of event names is dynamic and can
be accomplished using the API.

The system was then run to completion, using the built-
in error metrics to analyze the performance of each
tracking approach with respect to the ground truth data.
A screen shot of the OVDS error analysis window shows
the output of the system as it is being used. The image
shows both rotational accuracy and the distance from the
center of the tracked torso to the ground truth torso axis.
The error analysis window at two points in the tracking
sequence is shown in Figure 3. In this example, the user is
displaying both angular error and Euclidean distance error
measures as the system tracks people in the scene. A line
corresponding to the current frame (right most vertical
grey line at Figure 3 bottom) is drawn. This shows that
the tracker was unable to accurately track through one of

the letters on the storefront window for a number of
frames.

Figure 4: Event Queue after tracking 270 frames of a 750-
frame sequence. Event name shown in leftmost column,
while frame numbers corresponding to detected events are
shown in the corresponding surveillance module column.
Ground truth numbers can be hand adjusted to sub-frame
accuracy. Results shown are from PETS 2002,
DATASET2, Testing sequence.

Once computed, error graphs can be turned on and off
for display purposes and can be zoomed interactively and
out by the user. Selecting a point with the mouse on a
displayed error curve will load the corresponding frame
and model state for display into the main ODViS window
so that researchers can analyze when errors occur.

Error statistics are stored in an ODViS formatted file
along with other information that allows users to save the
state of the tracking and evaluation system. In addition,
however, error per frame as well as mean/median can be
stored to a comma delimited text file using the ODViS
menus.

4. Future Work
Although the current version of the ODViS system is

capable of supporting some of the ongoing research
efforts in video surveillance systems, it is restricted to
adaptive template-based tracking approaches and their
variants i.e.- articulated models, spring-mass systems, and
statistical, region based tracking. A significant effort is
underway to extend the functionality of the system to
other tracking and surveillance techniques by making the
API as well as the graphical display routines more
general.

New versions of ODViS will support a wider range of
video formats such as MPEG. In addition, we are adding
export capabilities to the system that will allow researcher
to produce a video of tracked results that includes error
graphs, event windows, and the tracked model overlaid on
the video sequence.

In a related effort, we are integrating ODViS with
hardware drivers for frame grabbing such as firewire DV
and other video capture cards to allow tracking systems to

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

38

be run within the ODViS framework in real-time. We are
also extending ODViS to support multiple video files that
may be related a part of a single surveillance scenario. In
addition, camera calibration information will be used to
relate the position of tracked structures across multiple
views. In a calibrated tracking scenario, movement of a
structure in one view will imply constrained motion in
other views (along epipolar lines, for example). Along
the same line, the API will support multi-view tracking
approaches and methods that compute camera calibration
during the surveillance scenario. All of these
improvements will be influenced by feedback we hope to
actively gather from the video surveillance research
community as development proceeds.

Appendix A: Obtaining ODViS
The ODViS system is publicly available for download

at www.metaverselab.org/software/odvis. The ODViS
homepage contains both the most recent stable version of
the system ODViS 1.0 as well as packages that are under
development. To obtain the ODViS system we
recommend that users download the stable version of the
system and the corresponding documentation.

Installation procedures are described in the
install.readme file. Comments and suggestions regarding
the development of ODViS should be sent via email to
odvis-support@metaverselab.org. Bugs should be
reported to odvis-develop@metaverselab.org.

5. References

[1] J. Ferryman, Chair. “Second IEEE International
Workshop on Performance Evaluation of Tracking
and Surveillance”, Kauai, Hawaii, Dec. 9, 2001

[2] R. Collins, “DARPA VSAM Project Homepage”,
http://www2.cs.cmu.edu/~vsam/OldVsamWeb/vsam
home, 1999.

[3] J. Phillips, “Human ID at a Distance, Project Pages”,
http://www.darpa.mil/ito/research/hid/, 2000.

[4] L. Davis, Chair “The 5th International Confernce on
Automatic Face and Gesture Recognition”,
http://degas.umiacs.umd.edu/pirl/fg2002/ , 2002.

[5] F. Bremond and M. Thonnat, “Object Tracking and
Scenario Recognition for Video-Surveillance”,
Proceedings, International Joint Conference on
Artificial Intelligence, 1997.

[6] Y. Ivanov and A. Bobick, “Recognition of Multi-
Agent Interaction in Video Surveillance”,
International Conference on Computer Vision, pp.
169-176, 1999.

[7] F. Oberti, E. Stringa, and G. Vernazza, “Performance
Evaluation Criterion for Characterizing Video-

Surveillance Systems”, Journal of Real Time
Imaging, vol. 7, No. 5, 2001.

[8] J. Ferryman, “Performance Evaluation of Tracking
and Surveillance”, EEMCV01,2001.

[9] Q. Delamarre, Q. and O.Faugeras, "3D Articulated
Models and Multiview Tracking with Physical
Forces”, Computer Vision and Image
Understanding, vol. 81, No. 3, pp. 328-357, 2001.

[10] J. K. Aggarwal and Q. Cai. “Human Motion
Analysis: A Review”, Journal of Computer Vision
and Image Understanding, Vol. 73, No. 3, March,
pp. 428-440, 1999.

[11] Schirmacher, “The Kino Homepage”,
http://www.schirmacher.de/arne/kino/index_e.html,
2002.

[12] L. Slaughter, G. Marchionini, and G. Geisler, “Open
Video: A framework for a test collection”, Journal
of Network and Computer Applications, vol. 23,
2000.

[13] C. Jaynes and J. Hou, “Robust Tracking using a
Kalman Filter for Augmented Reality Applications”,
International Conference on Vision Interfaces,
Montreal, CA, 2000.

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

39

Auto-Calibration in Multiple-Camera Surveillance Environments

G.A. Jones, J. Renno and P. Remagnino

Digital Imaging Research Centre
School of Computing and Information Systems,

Kingston University,
Kingston upon Thames, Surrey, KT1 2EE , UK
fg.jones,j.renno,p.remagninog@kingston.ac.uk

Abstract

The fusion of tracking and classification information
in multi-camera surveillance environments will result in
greater robustness, accuracy and temporal extent of inter-
pretation of activity within the monitored scene. Crucial to
such fusion is the recovery of the camera calibration which
allows such information to be expressed in a common coor-
dinate system. Rather than relying on the traditional time-
consuming, labour-intensive and expert-dependent calibra-
tion procedures to recover the camera calibration, extensi-
ble plug-and play surveillance components should employ
simple learning calibration procedures by merely watching
objects entering, passing through and leaving the monitored
scene. In this work we present such a two stage calibra-
tion procedure. In the first stage, a linear model of the pro-
jected height of objects in the scene is used in conjunction
with world knowledge about the average person height to
recover the image-plane to local-ground-plane transforma-
tion of each camera. In the second stage, a Hough trans-
form technique is used to recover the transformations be-
tween these local ground planes.

1 Introduction

Accurately detecting and tracking moving objects within
monitored scenes is crucial to a range of high-level be-
havioural vision tasks[5, 7, 9, 14]. Tracking accuracy can
be greater enhanced by combining information from sev-
eral cameras with overlapping views. Not only will this
provide more observations but will ensure the object re-
mains tracked for longer intervals and provide some pro-
tection from occlusion. However to successfuly fuse these
multiple sources of information, it is necessary to project
these observations into the same coordinate system. Most
data fusion methods depend on a relatively complex cal-
ibration process based on variants of the Tsai calibration
technique[13]. Real world positions of highly visible point

events are recorded and manually matched to the equivalent
image events in each camera. The method has the advan-
tage of being accurate (where a sufficient number of well
dispersed correspondences have been manually established)
as well as enabling data from the different camera sources
to be expressed within the same coordinate system.

Auto-calibration techniques seek to establish the
camera-plane to ground-plane or image-plane to image-
plane transformations without the need for these manual
time-consuming, labour-intensive and skill-dependent cali-
bration procedures. Ideally, the system should learn the cal-
ibration by watching the events unfold within the monitored
scene and, where appropriate, combine learnt knowledge
with any available world knowledge. In previous work,
Black and Ellis[2] and Stein[12] use sets of moving object
observations from two views. Since the correspondences
between views is unknown, both employ a Least Median
of Squares technique to recover the correct image-plane to
image-plane homography from a large candidate popula-
tion of all possible correspondence pairings. In Stein[12],
the resultant initial transformation is refined using an image
greylevel alignment technique. Where more than two cam-
eras are involved no single world coordinate system is avail-
able. Both this work and that proposed in this paper relies
on the recovery of the correspondence between point ob-
servations. Point features offer little discriminatory power
to prune the large number of false correspondences. The
work of Jaynes[6] attempts to match the trajectories them-
selves. During an initial manual stage, the relative orien-
tation of the ground plane to the image plane is computed
by enabling an operator to recover the vanishing points of
orthogonal bundles of parallel 3D line structures on the
ground plane. Trajectories positions are reprojected onto
an arbitrary plane parallel to the ground plane. Trajectories
of a minimum length are then matched using a non-linear
least squares technique to recover the rotation, translation
and scale transformation between the projection planes of
any pair of cameras. Based on the assumption that 3D mo-

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

40

tion has on average a constant value across the image plane,
Boghossian[3] is able to use an optic flow algorithm to re-
cover the relative depth of the ground plane i.e. define an
arbitrary reprojection plane.

In section 2, we demonstrate that the projected image
height of a person can be modelled to reasonably accuracy
linear model as a linear function of vertical image position.
The parameters of the model depend on the height and look-
down angle of each camera. This model - learnt from obser-
vations of detected moving objects - may be combined with
world knowledge (i.e. the average height of a person and
the height of the camera above the ground plane) to recover
the image to ground-plane homography. Having calibrated
each camera to its local ground plane, section 3 demon-
strates how these ground planes may be registered. Again
a learning procedure is pursued in which the projected tra-
jectory positions in corresponding frames and their instan-
taneous velocity estimates are combined to create estimates
of the rotation and translation. A clustering algorithm is
used to locate the most likely transform between each pair
of camera ground planes.

2 Ground Plane Auto-Calibration

The objective of this work is to derive a very simple yet
highly effective method of learning the planar homography
of each camera to its camera specific ground plane (see sec-
tions 2.3 and 2.4). Rather than relying on a time-consuming,
labour-intensive and skill-dependent calibration procedure
to recover the full image to ground-plane homography[13],
the system relies on a simple learning procedure to recover
the relationship between image position and the projected
width, height and motion of an object by observing exam-
ples of the typical object types within a surveillance scene.
The learning calibration procedure utilises the simple but
reasonably accurate assumption that in typical surveillance
installations, the projected 2D image height of an object
varies linearly with its vertical position in the image - from
zero at the horizon to a maximum at the bottom-most row
of the image. This height model is derived from the optical
geometry of a typical visual surveillance installation illus-
trated in figure 1. In addition, such an assumption enables
the use of simple but highly discriminatory models of the
appearance of scene objects which indirectly use the depth
of the object to model its projected width and height. Since,
the spatial extent of object are now a function of image posi-
tion, any image tracker will be more robust when presented
with the distorted observations which arise from fragmenta-
tion or occlusion processes. Our tracking model represents
an object simply as a projected 2D rectangles whose height
and width are determined by the object’s 3D position in the
scene and hence 2D position in the image[10].

2.1 Ground Plane Projection

To establish the camera to ground plane homography, it is
necessary to establish the position of origin of the ground
plane coordinate system (GPCS). In this auto-calibration
scenario, a local ground plane coordinate system must be
specified for each camera. A second correspondence stage
is then employed to fuse this set of camera-specific ground
planes together. The camera-specific GPCS is defined as
follows:

The Y -axis Ŷ of the GPCS is defined as the projection
of the optical axis along the ground plane. The Z-axis Ẑ is
defined as the ground plane normal, and the X-axis X̂ is
defined as the vector within the ground plane normal to the
camera optical axis. The position of the focal point of the
camera in the GPCS is directly ‘above’ the GPCS origin i.e.
at the point (0; 0; L).

The image plane is situated at distance f (focal length
of the optical system for the camera) perpendicular to the
optical axis ẑ. In this configuration a point P on the image
plane has coordinates x0 = (x; y;�f)T . The pixel coor-
dinate system i; j (representing the row and column posi-
tion respectively from the top left of an image) is related to
the image plane coordinate system by x = �x(j � j0) and
y = �y(i0 � i) where i0; j0 is the optical centre of the im-
age and �x and �y are the horizontal and vertical inter-pixel
widths. Thus

x0 =
�
�fx(j � j0); �

f
y (i0 � i);�1

�T
f (1)

where �fx = �x=f and �fy = �y=f are the horizontal and
vertical pixel dimensions divided by the focal length.

An optical rayL containing the focal point of the camera
passing through the point P on the image plane can be rep-
resented in vectorial form as x = �x0. LetQ be the point of
intersection of the optical ray L and the ground plane �. In
order to calculate the position of the point Q on the ground
plane � in the ground plane coordinate system, one must
convert the direction of the optical ray L given the transfor-

H

x̂

ŷ
ẑ

Camera
reference

frame

Image plane

Ground Plane

i

j

^
X

^
Y

^
Z

Optical Axis

Figure 1: Camera, World and Image Plane co-ordinate sys-
tems.

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

41

mation (R; t) between the camera (image plane) and world
(ground plane) coordinate systems

X = Rx+ t = �Rx0 + t (2)

Writing the ground plane equation as n� �X = 0, where
the ground plane normal n� � Ẑ, then the position X 0

the point of intersection Q between the optical ray and the
ground plane is obtained by

X 0
� Ẑ = (�Rx0 + t) � Ẑ (3)

yielding

� = �

tz

Ẑ �Rx0

(4)

The scale factor � is usually referred to as the structure pa-
rameter, since it identifies the distance between the camera
and the observed object. Substituting the value of � into the
expression of X 0 we obtain

X 0 = �

tz

Ẑ �Rx0

Rx0 + t (5)

The GPCS is defined with a zero pan angle. If we assume
that there is no significant roll angle, then the ground plane
coordinates are related simply to the look-down angle � as
follows

X =
�fx (j � j0)L

�
f
y (i� i0) sin � � cos �

(6)

Y =
�L(�fy (i� i0) cos � � sin �)

�
f
y (i� i0) sin � � cos �

(7)

Thus to compute the real world ground plane position of
an image point, the intrinsic and extrinsic camera parame-
ters i0; j0, �fx; �

f
y and � must be estimated. In our approach

the optical centre i0; j0 is computed by an optical flow al-
gorithm which robustly fits a global zoom motion model to
a three frame sequence undergoing a small zoom motion.
The rest of the parameters may be recovered in the follow-
ing training procedure based on watching events unfolding
within the monitored scene.

2.2 Projected Object Height

The camera is required to have a look-down angle � with
no significant roll. If one assumes that the height of a mov-
ing object is known (for instance a person walking in the
field of view of a camera, see Figure 2), then the point of
intersection X 0 can be shifted along the Ẑ direction of the
known height H . Using �, we can write the coordinateX 00

corresponding to the new point as X 00 = �Rx0 + t+H ^Z.
The new image point x00 corresponding to the projection
of the top of the person can be computed from the inverse
transformationRT (X � t). This transformation yields

�x00 = �x0 +HRT Ẑ (8)

where � is the structure parameter for the top of the person.
Substituting � and tz = L (from t = (tx; ty; tz)

T) yields

x00 = �

1

�

�
HRT Ẑ �

L

Ẑ �Rx0

x0

�
(9)

To measure the projected vertical height of an object, we
simply define a plane � containing the optical centre and
the image plane raster line containing the new point x 00.
The normaln� of this plane is defined by the cross-product
between the projection line �x00 and the rasterline direction
vector x̂ as follows

n� = �

1

�

�
HRT Ẑ � x̂�

L

Ẑ �Rx0

x0
� x̂

�
(10)

The rasterline containing the point x 00 can be thought of as
lying at a distance h above the projection of the bottom of
the person. Therefore the point vertically above (in terms of
the image coordinate system) x0 can be expressed as x =

x0 + hŷ and belongs to the plane �. Substituting x 0 + hŷ

into the equation of plane � generates

n� � x
0 + hn� � ŷ = 0 (11)

yielding

h = �

n� � x
0

n� � ŷ
(12)

After removing the � factor from numerator and denomina-
tor by cancellation, further simplification can be derived by
expanding the numerator of the equation 12 using equation
10 as follows

��n� �x
0 = H(RT Ẑ�x̂)�x0

�

L

Ẑ �Rx0

(x0
�x̂)�x0 (13)

where the latter term is zero since (x0
� x̂) � x0 = 0. The

denominator can be written as follows

��n� � ŷ = H(RT Ẑ � x̂) � ŷ �
L

Ẑ �Rx0

(x0
� x̂) � ŷ

H

x̂

ŷ
ẑ

Camera
reference

frame

Image plane

Ground Plane

H

h

n

Figure 2: Computing Projected Height: Image height is the
vertical image distance between the projection of the foot
of an object and the raster line containing the projection of
the top of an object.

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

42

= H ẑ �RT Ẑ �

L

Ẑ �Rx0

ẑ � x0

= HẐ �Rẑ �
Lf

Ẑ �Rx0

(14)

Combining the equations 13 and 14, the image plane height
h can be written as a function of the world height H as
follows

h = �

H(Ẑ �Rx0)(RT Ẑ � x̂) � x0

H(Ẑ �Rx0)(Ẑ �Rẑ)� Lf
(15)

Where there is a zero roll angle, equation 15 simplifies to
the following expression which depends only on the vertical
image plane position.

h

H
=

(f2 � y2) sin � cos � + yf(cos2 � � sin2 �)

yH sin � cos � � (H cos2 � � L)f
(16)

For typical camera installations, h can be shown to ef-
fectively vary linearly with vertical image position rela-
tive to the position of horizon. Figure 3(a) plots the pro-
jected height against image position for typical parameters
f = 10mm, H = 1:76m, L = 6m, zero roll angle and
look-down angle � = �76Æ (i.e. 14Æ down from horizon-
tal). Note for the given range of image positions corre-
sponding to an angular field of view of � 35Æ, the plot is
essentially linear. The intercept with the vertical position
axis (or h = 0 axis) defines the horizon where objects be-
come infinitely small.

-0.003 -0.002 -0.001 0 0.001 0.002 0.003

Vertical Image Position (mm)

0

0.5

1

1.5

2

P
er

so
n

P
ro

je
ct

ed
 H

ei
gh

t (
m

m
)

Figure 3: Projected Height versus Vertical Position

We are currently investigating the validity of this linear
assumption. For example, we know for steep lookdown an-
gles that the projected height of objects very close to the
camera actually peak and subsequently decrease in size.
This will result in a limit on the angle of view for a given
lookdown angle.

(a) Camera 1 (b) Histogram

(c) Camera 2 (d) Histogram

Figure 4: Learning the Projected Height Model: Figures (b)
and (d) show the (inverted) histograms for the PETS 2001
viewpoints illustrated in Figures (a) and (c).

2.3 Learning the Height Model

For the zero roll optical configuration, the projected image
height of an object may be captured as a linear model vary-
ing against vertical image position only. In pixel coordi-
nates, this linear relationship may be expressed as

� =
(i� ih) (17)

where � is the object height in pixels,
 is the height expan-
sion rate (HRE), and � = 0 at the horizon ih. This model
may be extracted from the scene automatically by accumu-
lating a histogram H [in; �n] from a large number n of ob-
ject observations of the monitored scene. A motion detec-
tion process is employed to extract connected components
of moving pixels[11]. The bounding box (imin; imax; jmin

and jmax) of each extracted blob generates a height hn =

imaxn � iminn and position in = imaxn . Since the calibration
method employs knowledge about the height of the average
person, the accumulation process uses weights to signifi-
cantly increase the influence of people-like rather than car-
like objects. This weight, based on the expected bounding-

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

43

box shape of a moving person, is defined as

wn = max

�
imaxn � iminn

jmaxn � jminn

� 1; 0

�
(18)

Currently the operator drags an appropriate line segment
along the ridge structure - see figures 4(b) and (d). We in-
tend to automate the process with a robustified line fitting
procedure supervised by the operator.

2.4 Ground Plane Calibration

Since the vertical image height of an object is independent
of the horizontal image position of the projected object, the
following derivation may assume without loss of generality
that the object is located on the vertical axis i.e. x = 0 (or
alternatively j = j0). In its trajectory down the image, two
key positions of a projected object may be defined at i = ih
at the horizon, and i = i0 at the optical centre of the image.
At the former, the look-down angle � may directly related
to the horizon parameter ih extracted from the accumulated
training data acquired in the learning stage described in sec-
tion 2.3 i.e.

cot � = �fy (ih � i0) (19)

For the latter case, consider an object of height H standing
on the ground plane point given by the projection of the
optical axis. As captured by equation 16, the vertical height
at this point h(i = i0) may be related to the look-down
angle as follows

h

f
=

H cos � sin �

L�H cos2 �
(20)

The height h may also generated from the learnt linear pro-
jected height model of equation 17 i.e. h(i0) = �x
(i0 �

ih). Combining this with equations 19 and 20, the follow-
ing expressions for the camera parameters � and �f

y may be
derived

sin2 � =

H

L�H

1�

; �fy =

cot �

(i0 � ih)
(21)

3 Registering Multiple Cameras

In Section 2.1, the positions and velocity of objects tracked
in each field of view were backprojected onto a local ref-
erence frame set on the ground plane. The transformation
between cameras is unknown but it can be easily calculated
if the correspondences between object positions are known
between views[4]. In our auto-calibration scenario, we can-
not assume that the correspondences are known. Further,
while we assume the availability of object positions with
associated velocity vectors, no temporal association is as-
sumed.

The Hough Transform approach[1] has been adopted to
recover the inter-camera transformation by taking advan-
tage of the fact that the ground plane coordinate systems
of temporally synchronised observations of the same 3D
object are related by a simple rotation and translation T
transformation.

X
0 = R()X + T

V 0 = R()V (22)

where X;V and X 0;V 0 are positional and velocity obser-
vations measured in the local GPCS of two cameras C and
C 0 respectively. Note that the velocity estimates are com-
puted from the partial derivatives of equation 7 with respect
to image coordinates, and the 2D tracker image position
(i; j) and visual velocity (u; v) estimates i.e.

VX =
@X

@i
u+

@X

@j
v ; VY =

@Y

@i
u+

@Y

@j
v (23)

In every frame interval, each camera outputs a set of
measurements about all objects located in its field of view.
As object correspondences are unknown, every pair of ob-
servations from each of the cameras must be used to gener-
ate a candidate estimate of the transformation. Given a pair
observationsX 0

t;i;V
0

t;i and Xt;j ;V t;j at time t from cam-
era C 0 and C respectively, transformation estimates may be
defined as

cos t;i;j = V̂
0

t;i � V̂ t;j

T t;i;j = X 0

t;i �R(t;i;j)Xt;j (24)

where V̂ is the unit vector in the direction of V . If �t and
�0

t are the set of observations in frame t for cameras C and
C 0 respectively, then the set of all observations

f �;i;j ;T �;i;j ;8i 2 �0

� ;8j 2 �� ;8� � tg (25)

should ideally exhibit a distinct cluster of estimates around
the true solution ;T within an noise floor of uncorrelated
false estimates generated by incorrectly corresponded ob-
servation pairs and noise observations. To detect this clus-
ter, the space could be tesselated into bins and a Hough
transform technique applied to locate the maximum that
correspond to the optimal transformation parameters. How-
ever, the range of translation values required is difficult to
predict a priori. Therefore to avoid the storage problems
such a voting strategy introduces, a robust clustering ap-
proach is adopted. The expectation-maximisation mixture
of Gaussian technique was implemented and adapted to iter-
atively perform the cluster analysis on the incoming stream
of transform estimates. The clusterer continually reports the
most likely transformations between cameras.

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

44

4 Results

In the following sections we evaluate the two stages of the
approach separately. In section 4.1, the accuracy of the re-
covery of the local ground plane is tested by comparing the
actual and estimated look-down angles. The Tsai calibra-
tion results performed on the PETS20011 were not partic-
ularly accurate at estimating the camera height and look-
down angle. Consequently the evaluation was performed
on the three local installations illustrated in figure 5(a),(b)
and (c). Section 4.2 illustrates the process of camera ground
plane registration, and evaluates the accuracy of the camera
registration results on these and the PETS datasets.

(a) Camera 1 (b) Camera 2

(c) Camera 3 (d) (e) (f)

Figure 5: The TEST Installation Figures (d), (e) and (f)
show the (inverted) histograms for the viewpoints illustrated
in Figures (a), (b) and (c).

4.1 Image to Ground Plane Calibration

The test installations illustrated in Figure 5 involve differ-
ent types of camera placed at different heights overlooking
a common carpark scene. The carpark has been surveyed to
generated real-world ground plane positions in a common
coordinate system. These points have been selected to en-
sure that each camera has ten well distributed point in the
image plane. The convex hull of these points contains most
of the carpark and over fifty percent of the visual plane.
The real lookdown angles and camera heights have been es-
tablished using surveying equipment from the ground plane
projection of the correct optical axes.

1The PETS2001 datasets (visualsurveillance.org) are problematic as
they contain so few tightly distributed calibration points.

As described in section 2.3, the projected height model
for each camera can be recovered by accumulating in a
height versus vertical image position space and fitting a
straight line to the resultant histogram. Results for Cam-
eras 1,2 and 3 are shown in figures 5(d),(e) and (f). In con-
junction with the measured height of the cameras above the
ground plane, the parameters of these models can be used
to derive the extrinsic and some of the intrinsic camera pa-
rameters - see equation 21. To compare the accuracy of
the proposed method, the ground truth data, the traditional
Tsai[13] technique results and the measurements generated
by our approach are tabulated in table 4.1. In all cases, the
accuracy of the Tsai method and our own is comparable,
with the shallow angle of view of Scene 3 being the most
problematic. We employed the Tsai results to confirm that

Test Installations Camera 1 Camera 2 Camera 3

Correct Height 9.1m 13.9m 6.7m
Tsai Height 9.9m 15.4m 5.7m

HRE
 0.195 0.109 0.255
Horizon ih -22.3 -174 17

Correct Angle 16:0Æ 24:3Æ 13:5Æ

Tsai Angle 16:7Æ 24:5Æ 7:7Æ

Our Approach 15:5Æ 23:3Æ 11:7Æ

Table 1: Look-Down Angle Results For clarity the look-
down angle has been redefined as �=2�� defining the angle
of intersection between ground plane and optical axis.

the camera had no significant roll i.e. rotation around the
optical axis - typically less than 4Æ. The method proposed
in this work accurately located the lookdown angle although
care had to be taken to correctly fit the linear model to the
projected height ridge of the histogram.

4.2 Multi-Camera Calibration

Figure 6 plots the tracked object trajectories recovered from
our motion detection and tracking software[8] and projected
onto the local ground plane of each camera. These obser-
vations are used to build the rotation and translation Hough
space described by equations 24. The populated space and
dominant cluster are shown in Figure 7 (a) and (b) for the
TEST and PETS datasets respectively. Note that these peaks
are robustly recovered from an extensive noise floor. Pro-
duced by computing registration estimates for every pair
of trajectory observations, this floor arises from the need
to avoid the prior establishment of observation correspon-
dences.

The accuracy of the technique may be judged as before
by comparing the registration results of the method with the
equivalent data supplied by the Tsai calibration method (and

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

45

(a) TEST Camera 1 and 2 (b)

(c) PETS Camera 1 and 2 (d)

Figure 6: Projected Trajectories: Note only a roughly con-
temporaneous set of trajectories are plotted.

0 10 20 30 40 50 60
Translation X Component

−20

−10

0

10

20

30

40

T
ra

ns
la

tio
n

Y
 C

om
po

ne
nt

0 10 20 30 40 50 60
Translation X Component

−20

−10

0

10

20

30

40

T
ra

ns
la

tio
n

Y
 C

om
po

ne
nt

(a) TEST (b) PETS

Figure 7: Locating the Maximal Cluster in Transform Space

the ground truth for the TEST datasets). Table 4.2 plots the
rotation angle (in degrees) and distance jT j (in metres)
between the origins of the two local GPCS for the TEST
and PETS datasets. Despite the poor accuracy associated
with off-ground-plane estimates, the accuracy of the ground
plane projections are in agreement with the correct values
surveyed in the DIRC datasets. Thus only the Tsai results
are quoted in table 4.2. The recovered values for the rota-
tion angle and distance jT jare used to rotate and translate
the data into a single coordinate system (that of the second
camera). The overlapped trajectories are displayed in Fig-
ure 8.

Datasets Measurements
Tsai[13] Proposed
 jT j jT j

TEST 75Æ 57.2 81Æ 53.5
PETS 76Æ 27.9 70Æ 29.5

Table 2: Registration Results

−15 −10 −5 0 5 10 15
10

15

20

25

(a) TEST

−15 −10 −5 0 5 10 15
10

15

20

25

(b) PETS

Figure 8: Overlaying Trajectories

While not in perfect alignment, the accuracy appears suf-
ficient to establish the correspondence of any new objects
that enter the scene. Any lack of alignment arises from a
number of sources: (i) any existing roll angle on either cam-
era; (ii) inaccuracies in estimation of the lookdown angle
and intrinsic parameters of either camera; and (iii) view-
dependent positional bias in trajectories. The presented re-
sults are based on the location of the foot of an object on
the ground plane. This position has demonstrated a strong
viewpoint dependency when applied to car objects or per-
son objects in the presence of shadows. A more consistent
vertically weight centroid position will increase the degree
of alignment.

5 Conclusions

A central objective of this work focuses on the develop-
ment of learning techniques for use in plug-and-play visual
surveillance multi-camera systems. Many camera calibra-
tion techniques exist, however most of them require the as-

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

46

sistance of an expert to tune a set of parameters. The under-
lying strategy is to develop a suite of algorithms that could
be installed by non-technical personnel, and as much as pos-
sible based on self-adjusting techniques that learn how to
adapt to the camera set-up, the environmental changes and
possibly to weather conditions. This paper proposes part
of this work. This paper presents a novel camera calibra-
tion approach, based on two separate stages. In the first
stage a linear model of the projected height of objects in the
scene is used in conjunction with world knowledge about
the average person height and the height of each camera
to recover the image-plane to local-ground-plane transfor-
mation of each camera. In the second stage, a clustering
technique (based on expectation-maximisation) is then used
to recover the transformation between these local ground
planes. A comparison between the proposed technique and
the standard approach of Tsai was carried out. Results
for both techniques, evaluated with ground truth measures,
show that the accuracy of the proposed approach is similar
to Tsai’s approach.

Although a more detailed evaluation is required, the pre-
sented preliminarily results demonstrate that approach gen-
erates sufficient accuracy to enable trajectory data to be
fused within a common ground plane coordinate system be-
tween each pair of cameras. In particular, to robustly sup-
port the plug and play the sensitivity of the approach to vi-
olations in the assumptions of (i) projected height linearity
and (ii) zero-roll angle must be investigated. Finally, the
method had to be tested on a new data set rather than the
PETS2001 images as the lack of calibration points makes
the recover of accurate camera height problematic.

6 Acknowledgements

The authors gratefully acknowledge the support received
both from the EPSRC Grant GR/N17706 and from the VIG-
ILANT project sponsored by Philip Crossland.

References

[1] Dana H. Ballard and Christopher M. Brown. ”Com-
puter Vision”. Prentice-Hall, Inc., New Jersey, 1982.

[2] J. Black and T. Ellis. “Multi-Camera Image Track-
ing”. In Second IEEE International Workshop on Per-
formance Evaluation of Tracking and Surveillance,
Hawaii, December 2001.

[3] B.A. Boghossian. “Motion-based Image Processing
Algorithms applied to Crowd Monitoring Systems”.
PhD thesis, Kings College London, University of Lon-
don, 2000.

[4] R.M. Haralick and H. Joo. ”2D-3D Pose Estimation”.
Proceedings of the International Conference on Pat-
tern Recognition, pages 385–391, November 14-17
1988.

[5] I.Haritaoglu, D.Harwood, and L.S.Davis. “W4: Real-
time Surveillance of people and their Activities”.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 19(7):809–830, July 1997.

[6] Christopher Jaynes. “Multi-View Calibration from
Planar Motion for Video Surveillance”. In Second
IEEE International Workshop on Visual Surveillance,
pages 59–66, Fort Collins, Colorado, June 26 1999.

[7] A.J. Lipton, H. Fujiyoshi, and R.S. Patil. ”Mov-
ing target classification and tracking from real-time
video”. In Proceedings IEEE Image Understanding
Workshop, pages 129–136, 1998.

[8] J. Orwell, P. Remagnino, and G.A. Jones. “From Con-
nected Components to Object Sequences”. In First
IEEE International Workshop on Performance Eval-
uation of Tracking and Surveillance, pages 72–79,
2000.

[9] C.S. Regazzoni and A. Teschioni. “Real Time Track-
ing of non rigid bodies for Surveillance applications”.
In ISATA Conference, Firenze, 1997.

[10] J. Renno, J. Orwell, and G.A. Jones. “Towards
Plug-and-Play Visual Surveillance: Learning Track-
ing Models”. In IEEE International Conference on
Image Processing, page Accepted for Publication,
Rochester, New York, September 22-25 2002.

[11] C. Stauffer and W.E.L. Grimson. “Learning Patterns
of Activity using Real-Time Tracking”. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
22(8):747–757, August 2000.

[12] G.P. Stein. “Tracking From Multiple Viewpoints:
Self-Calibration Of Space And Time”. In DARPA
Image Understanding Workshop, pages 1037–1042,
Monterey, CA, November 1998.

[13] Roger Y. Tsai. “A versatile Camera Calibration Tech-
nique for High-Accuracy 3D Machine Vision Metrol-
ogy Using Off-the-Shelf TV Cameras and Lenses”.
IEEE Journal of Robotics and Automation, RA-
3(4):323–344, August 1987.

[14] C.R. Wren, A. Azarbayejani, T. Darrell, and A. P.
Pentland. ”Pfinder: Real-time Tracking of the Human
Body”. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 19(7):780–785, July 1997.

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

47

Tracking People with Probabilistic Appearance Models

Andrew Senior
aws@us.ibm.com

IBM T. J. Watson Research Center,
PO Box 704, Yorktown Heights, NY 10598

Abstract

This paper describes a real-time computer vision system for
tracking people in monocular video sequences. The system
tracks people as they move through the camera’s field of
view, by a combination of background subtraction and the
learning of appearance models. The appearance models al-
low objects to be tracked through occlusions using a proba-
bilistic pixel reclassification algorithm. The system is eval-
uated on the three test sequences of the PETS 2002 dataset,
for which tracking results and processing time requirements
are presented.

1. Introduction
The PETS2002 people tracking database presents a chal-
lenging tracking problem in the field of automated visual
surveillance. Automated visual surveillance has a variety of
potential applications:

� security and surveillance: limiting video storage to in-
teresting events, and alerting guards to exceptions

� traffic flow design: analysing the use of spaces and de-
signing better layouts for public places, museums and
shops

� retail space instrumentation: analyzing the shopping
habits of consumers

� video indexing: automatic annotation of video for sub-
sequent retrieval

� sports video enhancement: automatically gathering
statistics on sports video

All of these tasks have, to some extent, hitherto been carried
out by people, but the labour intensity of such jobs and the
tedium, resulting in errors, makes them prime targets for
automation. In recent years the reduction in cost of cam-
eras and computer processing power have enabled practical
video processing in a much wider set of applications. Con-
sequently, research interest in these areas has grown consid-
erably. In practice though, the problems of tracking people
in video remain difficult. Automatic approaches are ham-
pered by the variability of human appearance, poor quality
images, lighting variations, occlusions and unexpected sit-
uations.

The task for the PETS2002 workshop is to track the mo-
tion of pedestrians in video sequences of a shopping mall,
and automatically determine their motion and activity. The
data can be seen as representing a typical surveillance task,
though there are a number of particular features that dis-
tinguish the data from data that might be acquired in other
surveillance situations: the people are close to the camera,
subtending a wide area; the people of interest are moving
beyond a glass window which partially reflects objects be-
hind the camera; the people being observed are walking on
a reflective surface; though colour cameras are used there
is little saturation in the colours; being indoors there is no
noticeable change in the ambient lighting.

1.1 Previous work

A number of authors have previously tackled the problem
of tracking people or objects in video, with a variety of dif-
ferent applications in mind [1, 2, 6, 8].

Tao et al. [9] develop a dynamic layer representation in
which rigid objects (vehicles) are tracked through 2D trans-
lation and rotation with constant velocity prediction. Be-
cause of the nature of the overhead view, this system only
deals with occlusions by fixed objects. Objects as small as
10x10 pixels are detected by motion segmentation. It is as-
sumed that appearance changes are small. Zhao et al. [11]
have also described an approach which uses appearance
models very similar to those used here. They store a tex-
tural template and develop a foreground probability. These
authors track with a Kalman filter, model cast shadows ex-
plicitly and model the variations in shape due to walking
motion.

2. Tracking system architecture
The system that we present here follows the design of our
previous PETS paper [7]. The major components are shown
in figure 1. Video is segmented into background and fore-
ground regions by a background subtraction algorithm de-
scribed in section 3. These regions are associated into tracks
(section 4) which are refined using the appearance models
described in section 5. Occlusions are resolved using these
models as described in section 5.2 and in section 6 we pro-
pose a method of learning and dealing with fixed objects
which occlude the scene. Finally, in sections 7 and 8 we

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

48

Video

Occlusion
Model

Appearance
Models

Background
Model

Background
Subtraction

Foreground
Regions

Bounding
Box

Tracking

Fine
Tracking

Tracks

Foreground

Figure 1: A schematic view of the components of the track-
ing system.

present experimental results on the PETS2002 datasets and
summarize our approach and experiences in the evaluation.

3. Background estimation and subtrac-
tion

The most fundamental operation of the system is to distin-
guish objects of interest which are to be tracked from the
background. Since the camera is fixed and conditions in the
sequences are fairly stable, we rely on a background sub-
traction algorithm. The algorithm used is that of Horprasert
et al. [3].

Briefly, this algorithm accumulates images for a period
that shows typical variation in the background appearance
and calculates statistics for each pixel across this period.
Mean and variance of the pixel values are calculated and
thresholds for the noise derived from these. In addition
the system models lightness variations of pixels to account
for lighting changes giving highlights and shadows when
a pixel is not occluded by a foreground object. A final
morphology and connected components step removes small
foreground regions and fills small holes in bigger compo-
nents. Ultimately the algorithm returns the set

�
of pixels

considered to be part of foreground objects. The algorithm
has been modified slightly to allow the background model to
be created on sequences where there are foreground objects.
During the training period regions which differ significantly
in appearance from the same regions in the initial frame are
assumed to be foreground objects and not added into the es-

timation of the background statistics. For the experiments
here, the background model was trained on training set 2 be-
tween frames 120 and 269 which do not contain any moving
objects.

On the test sequences, the background subtraction is
found to work reasonably well. It has a tendency to under
segment, so small objects are often missed, partly because
the system has a lower limit (300 pixels) on the smallest
connected component that will be returned as a foreground
region. On the test data used here, there is very little colour
information, and the moving objects are frequently of a sim-
ilar colour to the background, so large regions of the objects
are classified as background. This means that the objects
are often fragmented into several connected components,
and a small proportion of the foreground pixels are actually
identified as such. In sequence 3 background subtraction
sometimes fails in the lower right hand corner, so we dis-
card foreground regions below the line ���������
	��
� .

4. High-level tracking
The tracking system used in this paper is an extension of
the system described in our previous tracking work [7]. A
number of extensions have been necessary to allow the sys-
tem to cope with the PETS 2002 datasets — in particular to
cope with the poor quality of the segmentation information
coming from the background subtraction algorithm in these
conditions.

Initial tracking under simple conditions is carried out
by bounding box tracking. For this, in each frame, we
form a list of the connected components found by the back-
ground subtraction algorithm. From preceding frames we
have a list of tracks of objects which have been seen in
recent frames, together with their centroids and a bound-
ing box for the object. The velocity of each track is cal-
culated and its centroid and bounding box in the current
frame are predicted. Tracks are associated with the con-
nected components by searching for overlap in the predicted
areas of the track and the regions occupied by the connected
components. We associate a bounding box with a track if
their boundary distance (the shortest distance between the
perimeters of two rectangles) is below some threshold (typ-
ically around five pixels).

In a simple scene, with well-separated tracks, the associ-
ation gives a one-to-one mapping between tracks and con-
nected components, and the system proceeds directly to a
finer approach using an appearance model, described in sec-
tion 5.

A number of other cases can occur:

� A foreground component has no corresponding track:
here a new track is created to correspond to the fore-
ground region.

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

49

� A track is associated with more than one foreground
region: in this case the object is assumed to have been
poorly segmented and both connected components are
treated as foreground regions of the associated track.

� A track is not associated with any foreground region:
The track is assumed to have been missed by back-
ground subtraction, and is kept alive. If a track has not
been observed for a number of frames it is marked as
inactive, and if only observed in a handful of frames, it
is marked as invalid – attributed to noise, lighting vari-
ations or other artefacts of the background segmenta-
tion.

� Finally, if several tracks are associated with one or
more foreground components, all the foreground com-
ponents are treated as a single region and the appear-
ance models are used to segment that region into sub-
regions each associated with just one of the nearby
tracks. This procedure is described in section 5.2.

Additional rules are used to manage tracks as follows:

� If the centroid of a track goes out of the image, and it
is not associated with a foreground region, the track is
marked inactive and not considered further.

� If a new track appears, but within 15 few frames is
close to another track and its motion is similar, the
tracks are assumed to be different fragments of the
same object, and are merged into a single object.

� If a single track is explaining two regions which are
moving apart and if the separation between them be-
comes large, the track is assumed to be two objects
which were initially close together (such as two peo-
ple who entered the scene together), and the track is
split into two objects representing the two regions.

5. Appearance models
To resolve more complex structures in the track lattice pro-
duced by the bounding box tracking, we use appearance-
based modelling. Here, for each track we build an appear-
ance model, showing how the object appears in the image.
The appearance model is an RGB colour model with an as-
sociated probability mask. The colour model, ���������
	�� ,
shows the appearance of each pixel of an object, and the
probability mask,
����
	�� , records the likelihood of the ob-
ject being observed at that pixel. For simplicity of notation,
the coordinates 	 are assumed to be in image coordinates,
but in practice the appearance models model local regions
of the image only, normalized to the current centroid, which
translate with respect to the image coordinates. However, at
any time an alignment is known, allowing us to calculate
 �
and ������� for any point 	 in the image,
�����	�� being zero
outside the modelled region.

When a new track is created, a rectangular appearance
model is created with the same size as the bounding box
of the foreground region. The model is initialized by copy-
ing the pixels of the track’s foreground component into the
colour model. The corresponding probabilities are initial-
ized to ��� � , and pixels which did not correspond to this track
are given zero initial probability.

On subsequent frames, the appearance model is updated
by blending in the current foreground region. The colour
model is updated by blending the current image pixel with
the colour model for all foreground pixels, and all the prob-
ability mask values are also updated with the following for-
mulae (� ��� � ��� ���):

����������	���� � �!���������
	�� ��"$#%�&� �'�&#�"(���&)*��	�� if 	(+ �(1)

��%��	���� � �,
�����	�� ��"-#���� if 	/.+ � (2)

�,
�����	�� ��"-#���� �'��"��1� if 	2+ � (3)

In this way, we maintain a continuously updated model
of the appearance of the pixels in a foreground region, to-
gether with their observation probabilities. The latter can be
thresholded and treated as a mask to find the boundary of the
object, but also gives information about non-rigid variations
in the object, for instance retaining observation information
about the whole region swept out by a pedestrian’s legs.

Test 1 fr. 570 Test 2 fr. 756

Test 2 fr. 1703 Test 3 fr. 590

Figure 2: Selected appearance models during testing. Each
model is represented by two images, the left-hand being
3� ,
with grey scale from black to white indicating the prob-
ability range [0,1]. The right hand image shows �$�����
for those pixels where
 � ¿ ��� � . In particular, note the frag-
mented nature of the models. The model for sequence 2,
frame 756 is for two people which have not yet been distin-
guished. The probability mask shows striations where the
models are occluded by a reflection. The right-hand model
of frame 570 however, shows a white patch where such a
reflection, classified as foreground after being filled in by
morphology, is incorporated into the appearance model.

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

50

5.1 Appearance-based tracking

The appearance models are used to refine the tracking of ob-
jects. Given the location of an object predicted by the first-
order model, the location is refined by finding the maximum
likelihood location of the appearance model. The appear-
ance of the object is approximated by a spherical Gaussian
colour distribution for each pixel. The colour model gives
the mean for each pixel so we can calculate the likelihood of
the image data,) , given the model and a particular location.

� �
)1� 	�� � � �
�
�
� ����� ��	 ��� �&
��%��	 � ��� (4)

� ����� ��	�� � �������
	 ����
������������������� ������� ��"! � (5)

We evaluate this likelihood over a small search region (#$�
pixels), and fitting a quadratic surface, predict the loca-
tion of the maximum likelihood. The procedure is repeated
around that peak, with a finer step size, to ultimately arrive
at sub-pixel localization of the object.

5.2 Multi-object segmentation

The appearance models also provide the key to the segmen-
tation of foreground regions made up of several objects.
Here the task is to label the pixels of the foreground region
according to which object produced them.

At the heart of this segmentation is a probabilistic pixel
classification algorithm that uses the appearance models to
calculate the likelihood that a pixel in a foreground region
belongs to a particular object. This is an extension of the
classification algorithm used in our previous paper. As with
the one-to-one case, the algorithm first begins by predicting
the location of the foreground objects with a constant ve-
locity model. Then the objects are also aligned to the data
using the maximum likelihood fit and quadratic interpola-
tion. This step is complicated by the fact that the objects
may well be overlapping and so many of the foreground
pixels can only be explained by only one of several models
that overlie the pixel. In recognition of this, for objects that
overlapped in the previous frame we take advantage of the
previous depth ordering (calculated as described below) to
guide the fitting and alignment processes.

To fit and align the objects, we proceed in depth or-
der, fitting the front-most model first. After finding its
maximum-likelihood position, pixels that appear to have
come from that model (i.e. whose likelihoods exceed a
threshold) are deleted from the foreground object. Subse-
quent fitting operations only seek to fit deeper models to the
so-far-unexplained pixels which remain. Finally, any ob-
jects for which no depth ordering is available are fitted to
the data. When there was no overlap in the previous frame,
there is no depth ordering information available, but the ex-
tent of overlap is likely to be small.

554 575

590 616

694 719

742 783

Figure 3: The progress of segmentation during two parts of
test sequence 3, with frame numbers.

Given this alignment of all the appearance models, the
algorithm can make a better classification of which pixels
came from which model. This is formulated as a maximum
likelihood classification, with the likelihood �
% ��	�� of a pixel
being generated by foreground model & calculated as fol-
lows: �'% ��	�� � � �����
(�
	��&
��"(�
	��&
*) + �,&&� (6)

The non-occlusion probability
-)�+ �,&&� is either available
from a previous frame (described below), or is assumed to
be one. Choosing the track & with maximum
 % �
	�� gives us
an object label for the pixel. If the maximum likelihood is
very low or is not much higher than the likelihood of be-
longing to another object, the pixel is marked as “ambigu-
ous” and subsequent processes are used to classify it.

While assigning the pixels in this way, a count is made
of the number of “disputed pixels”, i.e. pixels for which

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

51

two appearance models have high observation probabilities.

 �"(�
	�� . These pixels are areas where occlusions are occur-
ring. For each object we record, in a row of an occlusion
matrix, how many times it occluded pixels of each other
object. From the occlusion matrix, we can calculate the
non-occlusion probabilities and the depth ordering used in
subsequent frames.

Because of the nature of the data, and the approximate
nature of our appearance models, there are necessarily mis-
classifications of foreground pixels, so a number of heuris-
tics are employed to ‘clean’ the segmentation.

First, we apply a connected components algorithm to the
segmented object’s regions. Small holes are filled and la-
belled as belonging to their largest neighbour region. Re-
gions which are entirely surrounded by another component
are also assigned to the enclosing component. Finally, if
two well-separated regions are disputed between two fore-
ground objects, small areas of pixels in one region assigned
to the object which ‘owns’ the other region are reassigned
to the owner of the neighbouring region instead. Figure 3
shows the results of tracking three people through two sep-
arate occlusions in test sequence 3. Each person is labelled
with a separate colour, and the bounding box of each per-
son’s appearance model is drawn as a rectangle. It can be
seen that despite the almost total occlusion, the tracking is
maintained.

5.3 Background vs foreground segmentation

One disadvantage of most background subtraction ap-
proaches is that they are attempting to solve a two-class
classification problem where one class is undefined. A
background subtraction algorithm must decide if a pixel is
background or not. The background’s appearance varia-
tion can be modelled more-or-less well by observing that
pixel over time and making assumptions about such things
as lighting variations. However, the alternative category,
‘not background’, cannot be well modelled a priori, (how-
ever see e.g. Isard et al. [4] who do this). Indeed, there is
nothing to prevent an object of exactly the same appearance
as the background passing in front of the observed pixel.
While we rely on background subtraction for our initial de-
termination of foreground vs background, once we have
built models for the moving objects in a scene (and for a
given pixel, if it is unlikely for a new object to appear there),
then we can formulate the problem as a two-class classifi-
cation problem distinguishing between the background and
the (one or more) foreground objects that might occlude the
pixel. This should give a more accurate classification as can
be seen from the following example: Suppose a background
pixel, modelled as colour ��� , is observed to have colour ���
in a particular frame, when we predict that it should be oc-
cluded by a foreground object pixel of colour ��� . If � �
is very similar to ��� , and dissimilar to � � even though it

is similar enough to � � to be deemed background by our
background subtraction algorithm, it would be reasonable
to assume that it was in fact a foreground pixel.

Thus, after alignment of the foreground objects, every
pixel in the area modelled by any foreground object is re-
classified according to the most likely of all the overlapping
models, including the background model. Pixels are only
reclassified when the probabilistic evidence is strong.

5.4 System failures

The main cause of failure in the system is a failure to cor-
rectly segment a group of people. Segmentation failures
can be divided into two main categories: (1) Under seg-
mentation. The tracking algorithm used is unable to dis-
tinguish two people who enter the scene walking together
until they separate into two foreground regions. Since an
individual is of variable shape, with different parts mov-
ing relative to each other and the foreground extraction is
erratic, there is no salient feature that distinguishes one per-
son from two people walking together. An explicit person
model might resolve this, but would probably require better
quality images. The segmentation when two people do sep-
arate should be carried out sooner. (2) Mis-segmentation.
When two tracks come together the algorithm fails to allo-
cate the pixels to the correct model because of similarities
in appearance, and tracking is lost, particularly when the
depth-ordering is incorrectly estimated. When the people
do separate, additional tracks are created, so the system can
end up with more than one track for a single person.

6. Foreground occlusion modelling
In section 5.2 we have dealt with the problem of occlusion
of one tracked object by another tracked object, but an-
other problem in many computer vision problems is when
a tracked object is occluded by a static object. In our situ-
ation, we have no special model of the static objects in the
scene — they are simply modelled by the background sub-
traction algorithm — and it is consequently tacitly assumed
that the background model pixels will be occluded when
they overlap with the pixels of a foreground object.

In both the PETS 2001 and 2002 datasets, this assump-
tion is violated— moving objects pass behind objects mod-
elled by the background model, whether these be buildings,
parked cars, or in the PETS2002 dataset, the window frame
or the text appearing on the window. The previously de-
scribed modelling will fail at these locations, and pixels are
quickly “forgotten” (
 � approaches zero) by the appearance
model when they are not detected as foreground. In fact
these pixels are being occluded, which should not lead to
changes in the appearance model. To improve the modelling
of such scenes we create a foreground occlusion map.

In complex scenes predicting whether a moving object
will be occluded by the static “background” objects requires

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

52

a model of the depth of the moving object and of every point
in the background model. This can be learnt over time, with
enough data [5] but for the short sequences here it is not
practicable. However the data in PETS2002 can be simply
divided into three depth categories.

� Background pixels: These are the background pixels
that are occluded by moving objects and which are
modelled by the background model.

� Moving objects: The tracked foreground objects
for which we create appearance models. They oc-
clude pixels in the background but are occluded by
foreground-occluding pixels:

� Foreground-occluding pixels: These pixels are static
and modelled by the background model, but are never
occluded, being closer to the camera than all the mov-
ing objects.

This three-layer model holds well for these data-sets, the
only exception being people passing behind the shop oppo-
site the camera. These people are, however, too small to
be detected reliably by our background subtraction, so the
exception is not important.

We model the foreground-occluding pixels with a sepa-
rate probability map,
 �*��	�� , which records the probability
of a pixel, 	 , being in this category. The map is updated
with the following equation:

 �*��	�� �
�������
 ���
	�� �	��
�
� �
 � �
	�� ����� (7)

where � is those times when pixel 	 is assigned to the
background. The sums are updated for every frame, chang-
ing only when an object overlies a given pixel. Constants
�
 � ��� � and ��� � � are used to initialize the model to
give initial estimates, and to prevent the model from satu-
rating with small amounts of data. The map is initialized
with the three training sequences, and then loaded before
operating on the test sequences, though it continues to be
updated during the test sequences.

The foreground occlusion model can now be used in the
update function for the appearance models. The probability
mask update rule now becomes:

 �%�
	�� � � �,
 ����	�����"$#%� ��"��1
 �*��	���� if 	 .+ � (8)

�,
 ����	�����"$#%� � �'��"��*� if 	(+ � (9)

(Figure 4 shows examples of the foreground-occlusion
model during training. The occluding regions of text on
the window and the window frame, as well as the strong
reflections on the glass, can be clearly seen in the model
as having high probability of occluding the foreground ap-
pearance models. In areas where moving objects have been
frequently seen, the probability is close to zero. In less-
well travelled areas, the probabilities take intermediate val-
ues, often too high because of early failures in tracking and

where the foreground model probability mask, being tem-
porally smoothed, is only a rough guide to the appearance
of the foreground region coming from background subtrac-
tion. The foreground-occlusion model also highlights areas
where background subtraction is prone to failure, such as
the band to the top-right of the image. This is desirable as
a consistent failure of background subtraction is equivalent
to an occlusion.

While the foreground-occlusion models generated do
match our intuition of what should be learned, and they do
result in appearance models which are less eroded by pass-
ing behind foreground-occluding pixels, it was found that
using them led to poorer tracking performance. Since large
areas of the field of view are “expected to be occluded”,
these areas inhibit diminution of model observation proba-
bilities. This means that objects are mistakenly tracked into
these areas, but these failures are not penalized as before
when foreground pixels are not observed. Consequently,
this feature was not used in the final experiments.

7. Experimental results
The system described above was applied to the sequences
provided in the PETS 2002 person tracking datasets. The
MPEG videos provided were used without modification. A
background model and foreground occlusion model were
trained on the training sequences and the former informa-
tion was used in the runs on the test sequences.

The PETS2002 task requires the following measures to
be evaluated, which we provide on a frame-by-frame basis:

� Number of people in the scene

� Number of people in front of the window

� Number of people looking at the window

� Processor time

Timing is discussed in section 7.1. The other measures are
shown plotted in figure 5. The number of people in the
scene is just the number of tracks active at a given time,
though there may not actually be any foreground pixels as-
signed to the track for the current frame (due to occlusions
or failure of background subtraction). We have created
ground truth data for the entry and exit times for all peo-
ple, regardless of size or occlusion by observing the videos.
The number of people visible in the scene (or occluded by
the lettering) is plotted in the graphs of figure 5.

On sequence one, results are essentially correct, except
the failure to detect people when they are distant — a per-
son who enters at frame 144 is not detected until after frame
300, and another person entering at around frame 333, is
never detected. On sequences 2&3, failures to correctly
segment are relatively frequent when there are several peo-
ple in the scene, but the graphs shows that our estimate

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

53

Figure 4: Evolution of the foreground-occlusion model
 �*��	�� during training. (a) after 119 frames from training sequence
2. (b) after all 1420 frames of sequence 2 (c) after training on all three training sequences, prior to being used for testing.

of the number of people is within 1 of the correct answer
for sequence 2, and nearly always within 2 for sequence 3,
though after about frame 800 the tracking is almost com-
pletely wrong.

Determining if a person was in front of the window, was
carried out with two simple conditions: if the � coordinate
of the centroid is between 140 and 490 and the lower edge of
the bounding box for this ordinate is below the line joining
(110,140) with (490,50). People were deemed to be look-
ing into the window if their centroid speed is below 1 pixel
per frame. For these measures in particular, some temporal
smoothing would give more useful results.

We did investigate using head pose detection to more ac-
curately determine the direction of gaze, with a method sim-
ilar to that of Wu and Toyama [10], but the person location,
and the data quality and resolution were not good enough to
return meaningful answers.

Since the results are reported on a whole sequence,
the observation counts are actually calculated after the se-
quence has been processed. This permits a small amount of
post-processing that means the results can be reported more
accurately. Specifically, tracks which were seen to split into
two people can be retrospectively labelled as representing
two people, back to the time the people entered the scene.
Similarly, with tracks which were deemed to be separate
parts of a single person, or deemed spurious can be cor-
rectly reported with this “hindsight”. The postprocessing
takes a negligible amount of CPU time.

7.1 Processing time

For experimental purposes, the background subtraction and
the tracking were carried out separately, and we have evalu-
ated the processing time for the two components separately.
Figure 6 shows graphs of the time used for each frame of the
three sequences. The upper line in each graph shows the to-
tal amount of time (in ms) used by the system, excluding
disk access and software decoding of the MPEG video, and
the lower line shows the portion of this time required for the

background subtraction. All experiments were performed
on a machine with a single 1.8GHz Pentium 4 processor.

It can be seen that during sequence 1 the system oper-
ates at at least 10fps on the 640x240 images supplied. Per-
formance is lower when there are many people are present
tracking starts to fail. Significant speed-up can be achieved
by down-sampling the images or not processing all the
frames. In figure 6(2) we show times for processing se-
quence 2 recoded as an AVI file at half � resolution, (but full
� resolution i.e. 320x240) and using only alternate frames.
The time for each frame is halved and tracking works as
well. The worst-case performance (7̃5ms/frame) on this se-
quence is faster than real-time (12.5fps). Further downsam-
pling in resolution or time should give approximately linear
speed-increases.

8. Summary and conclusions

We have described a system that tracks people in video, and
is able to track them in real time despite a number of dif-
ficult conditions found in the test sets used. Non-rigid ob-
jects, occlusions, similarly coloured objects and reflections
are all handled by the tracking system.

Further improvements to the algorithms could be made
by more detailed analysis of pixel reclassification with a
foreground model, as the system is still heavily reliant on
the results of the background model before the detailed fore-
ground models are considered. Tracking, perhaps with im-
age gradients, and incorporating object edges might also
yield improvements. Finally, it is hoped that the foreground
occlusion model can be made to yield better results, though
for most practical situations if such a model is to be of use,
it will need to allow arbitrary depths, not the simple three-
plane model that we have implemented. For a practical sys-
tem to handle the scenario presented in the PETS data, the
reflections could be avoided by better camera placement or
polarization, and the modelling could be improved by larger
amounts of training data.

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

54

0

1

2

3

4

5

6

0 100 200 300 400 500 600 700

P
eo

pl
e

C
ou

nt
s

Frame

Ground truth
People

Window
Static

0

1

2

3

4

5

6

7

0 200 400 600 800 1000 1200 1400 1600 1800

P
eo

pl
e

C
ou

nt
s

Frame

Ground truth
People

Window
Static

0

2

4

6

8

10

12

0 200 400 600 800 1000 1200 1400

P
eo

pl
e

C
ou

nt
s

Frame

Ground truth
People

Window
Static

Figure 5: Person counts for the three test sequences, in order. The graphs show our ground-truth estimate of the number of
people in the scene (solid). In addition, the graphs show (dashed) the number of people in the scene (upper line), the number
considered to be in front of the window (middle) and the number of people considered to be stopped in front of the window
(lower). The lines are displaced vertically for clarity.

0

50

100

150

200

250

0 100 200 300 400 500 600 700

T
im

e
(m

s)

Frame

Total
Background

0

50

100

150

200

250

0 200 400 600 800 1000 1200 1400 1600 1800

T
im

e
(m

s)

Frame

Total (sub)
Background(sub)

Total
Background

0

50

100

150

200

250

0 200 400 600 800 1000 1200 1400

T
im

e
(m

s)

Frame

Total
Background

Figure 6: Timing results for the three test sequences, in order. For each frame we plot the total processing time in milliseconds
for background subtraction and tracking, and (lower line) the time spent on background subtraction only. In the middle graph
we also plot the times required (‘sub’) for processing alternate frames at half resolution.

Acknowledgments

The author would like to thank Ruud Bolle and the other
members of IBM’s PeopleVision project: Sharath Pankanti,
Arun Hampapur, Lisa Brown and Ying-Li Tian for their as-
sistance throughout this work; the reviewers for many use-
ful comments; and Ismail Haritaoğlu of IBM Almaden Re-
search for the original background subtraction code.

References

[1] I. Haritaoğlu and M. Flickner. Detection and tracking of
shopping groups in stores. In CVPR, 2001.

[2] I. Haritaoğlu, D. Harwood, and L. S. Davis. W � : Real-time
surveillance of people and their activities. IEEE Trans. Pat-
tern Analysis and Machine Intelligence, 22(8):809–830, Au-
gust 2000.

[3] T. Horprasert, D. Harwood, and L. S. Davis. A statistical
approach for real-time robust background subtraction and
shadow detection. In ICCV’99 Frame-Rate Workshop, 1999.

[4] M. Isard and J. MacCormick. BraMBLe: A Bayesian
multiple-blob tracker. In International Conf. on Computer
Vision, volume 2, pages 34–41, 2001.

[5] A. Schödl and I. Essa. Depth layers from occlusions. In
Conference on Computer Vision and Pattern Recognition,
01.

[6] J. Segen and G. Pingali. A camera-based system for tracking
people in real time. In Proc. International Conference on
Pattern Recognition, pages 63–67, 1996.

[7] A. Senior, A. Hampapur, Y.-L. Tian, L. Brown, S. Pankanti,
and R. Bolle. Appearance models for occlusion handling. In
Second International workshop on Performance Evaluation
of Tracking and Surveillance systems, 2001.

[8] C. Stauffer and W. E. L. Grimson. Learning patterns of ac-
tivity using real-time tracking. IEEE Trans. Pattern Analysis
and Machine Intelligence, 22(8):747–757, August 2000.

[9] H. Tao, H. S. Sawhney, and R. Kumar. Object tracking with
Bayesian estimation of dynamic layer representations. IEEE
Trans. Pattern Analysis and Machine Intelligence, 24(1):75–
89, January 2002.

[10] Y. Wu and K. Toyama. Wide-range person- and
illumination-insensitive head orientation estimation. In Face
and Gesture, pages 183–188, 2000.

[11] T. Zhao, R. Nevatia, and F. Lv. Segmentation and tracking
of multiple humans in complex situations. In Conference on
Computer Vision and Pattern Recognition, 2001.

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

55

Tracking and Counting Multiple Interacting People in Indoor Scenes

L.Marcenaro, L.Marchesotti and C.S.Regazzoni
DIBE – University of Genoa, Via Opera Pia 11a 16145 Genoa ITALY

carlo@dibe.unige.it

Abstract

A system for multiple object tracking in indoor scenes is
proposed. In particular, described algorithms allow a
surveillance system to track moving objects in the scene
being able to solve dynamic occlusions between moving
objects.
The tracking method is based on the joint application of
linear Kalman filtering and correlation-based shape
matching techniques. The system is robust to sensor noise
and is able to recover temporary lost objects. A technique
based on contour analysis is used in order to count people
in the scene. The system has been tested on the sequences
provided in order to show the validity of the approach.

1. Introduction

During the last few years, several algorithms and systems
for automatic scene representation and understanding have
been developed [1, 2]. The main purpose of such systems
is typically to recognize and classify strange or potentially
dangerous situations and generate as a consequence some
kind of alarm to raise the attention of a human operator.
The use of automatic scene understanding systems is
becoming more and more frequent in modern society
especially in the following fields: transport monitoring [3,
4], urban and building security [5], tourism [6], bank
protection [7, 8] and military applications [9, 10].
Fast improvements in computing capabilities, cheap
sensors and advanced image processing algorithms can be
considered as the enabling technologies for the
development of real-time video-surveillance and
monitoring systems.
Image sequences acquired from a real unconstrained
scenario are characterized by a high complexity; this is
typically due to different factors such as illumination
changes, background variations (i.e., structural changes of
the scene), complex objects interactions (i.e., structural or
dynamic occlusions) and cluttered scenes. While change
detection results are mainly influenced by illumination
changes and background variations, the increase of the
complexity of the scene can cause several errors in scene
understanding. Object tracking is the process of
coherently assign identifiers to each single object in the
scene. The tracking is lost when a certain object is
mislabeled (i.e., its identifier changes during the time) or
when the object is not-detected in an image of the

sequence. The output of the tracking module is the basis
of several higher-level algorithms that can be able, for
example, to classify a dangerous behavior or situation,
count the number of people in a certain area, etc. The
robustness of the tracking module is then extremely
important for improving the performances of the overall
surveillance system.
People counting techniques can be based on tracker results
or on global features in the scene: in particular if the
tracking phase were good enough to ensure to individually
track each single object in the scene, people counter has
only to sum the number of objects handled by the tracker.
Typically a tracker module can fail to locate single objects
when, for instance, two or more objects enter the scene
close together. In this case people counter should be able
to extract the correct number of objects inside the single
blob.
The paper is organized as follows: Section 2 describes the
system architecture. Section 3 focuses on the method
adopted for objects tracking under occlusions; Section 4
describes people counting algorithm, while Section 5
presents and analyze the achieved experimental results.
Finally, conclusions are drawn in Section 6.

2. System architecture

The proposed system (fig. 1) is able to process images
acquired from a standard video camera and locate objects
that are not present in a reference empty scene. In the
early stages, the system performs several operations
directly on the signal coming from the frame grabber. If
the sensor is very noisy, a linear noise or a median filter
can be applied in order to reduce the noise in the acquired
images.
The next step in the logical modules chain is the change
detection module. This module can be considered as the
basis of a typical automatic video-surveillance systems
[11]; its purpose is to localized the objects in the scene
thus reducing the amount of data to be processed by the
following tasks. In a fixed-camera surveillance system a
reference image (background) is often available: this can
be considered as the image of the guarded area with no
additional object in it. By subtracting and thresholding the
current processed frame from the background frame, it is
possible to produce a binary change detection image that
has white pixels in correspondence of the changed areas
with respect to the reference frame.

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

56

Figure 1 System architecture

Change detection image is then computed by using the
following equation:

 () () ()


 <−

=
otherwise0

,, if1
,

thyxByxI
yxC k

k (1)

In case of indoor scenes, the background can be
considered as a fixed image. The background updating
stage is not necessary in video-surveillance systems
operating in indoor environment, but it is extremely
important in outdoor scenes where the lighting condition
are potentially widely variable.
The obtained binary change detection images Ck(x,y) can
present isolated spots due to the noise in the image; in
order to avoid this kind of problem, a morphological filter
can be used: in particular, statistical erosion followed by a
dilatation operation with a squared structural element is
performed on the image. The binary image obtained from
the change detection algorithm is processed for finding 4-
connected changes regions: the focus of attention module
basically uses a recursive region growing algorithm. After
this task, the system provides a list of regions of interest
(ROI) bounded by a set of related minimum bounding
rectangles:
 { }NiRS k

ik ,,1, K== (2)

where is the i-th region of interest at the frame k and
N is the total number of ROIs detected in the image. Each
ROI corresponds to one or more moving objects present in
the scene and is defined with a four dimensional vector:

k
iR

 (3) [iiiii hwyxR ,,,=]
where x, y, w and h are the coordinates of the upper left
vertex of the i-th ROI and its width and height
respectively. The algorithm merges regions that are
partially overlapped or near: a set of close bounding boxes
can be due to the splitting of a previously connected
region caused by some noise in the scene.

A simple object tracking procedure is based on the spatial
relations between blobs in subsequent frames obtained by
comparing each extracted region of interest Ri. Two
detected regions Ri and Rj are overlapped if ,

while they are disjointed if : this simple test
can be done on the basis of the coordinates of each
extracted ROI. Each region extracted in the frame k is
compared with each region extracted in the frame k+1
searching for overlapping correspondences.

0≠∩ ji RR

0=∩ ji RR

() (

()11,
1 ,,,1,,,1

++
+

∩=

∈∀∈∀
k
j

k
i

kk
ij

kk

RRAreaI

NjNi KK)
 (4)

The function Area(T) simply computes the area of the
region T: the area of a binary region can be extracted by
counting the number of white pixels in the image. I is a

1+× kk NN matrix capturing the information about the
overlapping of the regions in consecutive frames. For
assigning the correct labels to the ROIs detected in the
frame k+1, the matrix I is scanned along its columns. The
following three cases can be found by looking at the
column h:
1) each entry of the column h is 0: the blob h in the

frame k+1 is marked as NEW and a new identifier is
given;

2) just the element in the s-th row is non-zero: the blob h
in the frame k+1 is marked as OLD and it inherits the
identifier of the region s-th in the frame k;

3) more than one element of the column h is different
from zero: this means that the detected ROI in the
frame k+1 is obtained because of a merging of blobs
in the frame k. The blob h in the frame k+1 is marked
as MERGED and it inherits each identifier of the
overlapped regions.

3. Object tracking under occlusions

Third case represents a warning that a dynamic occlusion
has occurred between two or more moving objects in the
scene: by labeling the ROI as MERGED the information
about the position of each single object in the ROI is lost
while histogram matching techniques can be used in order
to re-assign correct identifiers after the occlusion. In
particular, the measure of the distance between
tohistograms is given by the Bhattacharyya coefficient,
whose general form is defined by [14]:

∑=)()(21 xfxfβ
where and are histograms to be compared.
An high Bhattacharyya coefficient

)(1 xf)(2 xf

states that the two histograms are very similar and that
they are correlated.
In the following sections a technique for tracking single
objects during occlusion situations based on shape
matching is proposed.

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

57

The illustrated tracking algorithm does not take into
account the objects movements: in particular if the
acquisition frame rate is not fast enough to ensure that a
certain object is overlapped in consecutive frames, the
objects identifiers can be lost and the blob can be labeled
as NEW in each frame of the sequence. Correct object
tracking is ensured only if the acquisition frame rate is
higher than the dimension of each ROI divided by its
speed in the image plane:

 Ni
v
ht

v
wt

ii y

i
c

x

i
c ,,1 with and K=∀<< (5)

In general this condition is not satisfied in outdoor video-
surveillance systems tracking high-speed moving vehicles
far from camera. The problem can be solved by using an
estimation technique for predicting the position and the
dimension of the ROI in the next frame: this can be done
by using a Kalman filter.
In the case of object tracking, the following state and
observation vectors can be respectively chose

 and

.

[T
hwxx vvvvhwyx=x

[]Thwyxy =

]

The covariances of the state and measurement noises are
estimated directly from data. In particular the noise in the
state equation should simulate the second order derivates
of the observed variables.
During blob tracking a new Kalman filter is instantiated
for each blob labeled as NEW: the filter is used in order to
predict the position of the blob in the next frame. At the
time step k+1, the extracted list of ROIs is compared
with the predicted list of blobs from the previous frame

, where

1+k
jR

1ˆ +k
iR []hw vyx

k
i

k vvvR 11 ˆˆ ++ =x . Kalman
estimation is then used in order to release the condition
(5). If a MERGED blob is detected, the system is not able
to retrieve a new observation vector and the Kalman filter
is updated only by using the previous state vector. This
approach is correct if the motion of the objects in the
scene is uniform, i.e. the speed is constant. If the
acceleration of the considered object is not zero, the
prediction error of the Kalman filter increases and it can
cause a substantial tracking failure. In order to handle this
kind of situations, a strategy for retrieving objects features
even during a dynamic occlusion should be considered.
The shape of a isolated object i in the frame k can be
defined as the subpart of the change detection image
within the associated bounding box, i. .: e
 () () (){ }k

ik
k
i RyxyxCyxS ∈= ,,,, (6)

The shape image is then a binary image and it is stored for
each moving object labeled as OLD. For explaining the
shape matching procedure the following notation will be
adopted:
- []∆+= ++

∆
11 ˆ k

i
k RW

1ˆ +k
iR

 is a window centered on the prediction

 and depending on the vector []Tdcba=∆

- corresponds to the shape translated and
rescaled accordingly with W ;

1ˆ +
∆
kW

iS k
iS

1+
∆
k

- () () ()∑∑ −=Φ=Φ
s t

BA tsBtsABA ,,, , is the used

correlation function with A and B binary images.
Whenever an occlusion is detected in the scene (i.e., a
ROI is labeled as MERGED), the following procedure is
performed:
� R is computed by using the Kalman estimator for

each blob involved with the merging event;

1ˆ +k
i

� the following correlation function is minimized with
respect to the vector parameter ∆:

 ()() ()()1,ˆminmin
1

+Σ∈∆Σ∈∆

+
∆Φ=∆ k

W
i CSf

k

 (7)

being Σ the search range for the shape matching.
For each blob i in the merged ROI, the output of the
procedure is a vector []hwyxi =∆ that maximizes
the correlation between the stored shape and the merged
change detection image. Vector i∆ is passed to the
Kalman filter as the new measurement vector for i-th blob
in the frame k+1.
Each blob that is no more found in processed images, is
stored in a list: a blob is kept into the lost-blobs list for a
certain number of frames (20 frames are usually
considered). When a new blob is detected in the scene, the
list of possibly lost blobs is considered. If a blob is found
spatially and chromatically near to the new detected blob,
it is recovered from the list and it is associated with the
blob that found in the current frame. This module can be
considered as a “Lost Blobs Recovery module” and can be
useful in order to increase object persistence in the scene
and avoid object lost due to noise in the image or brief
environmental occlusions.

4. People counting

Considered people counting algorithm is mainly based on
contour analysis. In the previous section is was shown
how the tracker is able to extract the binary shape of each
detected blob. The shape is also used in order to
extract the number of people in the considered blob. The
number of people is extracted as a feature from each
detected blob labeled as NEW. When a new object enters
the scene its binary shape is considered and processed in
order to find the top profile of the blob. A standard
contour extraction technique like the one presented in [12]
is used in order to get the boundaries of the considered
blob. The local maxima of the contour are extracted from
the boundary and associated to the heads of the
pedestrians. The number of maxima are extracted from a
certain number of consecutive frames (typically 10 frames
are considered) as the new blob enter the scene. The

(yxS k
i ,)

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

58

median value of the number of detected maxima is taken
as the number of people inside the blob.
In order to minimize the noise in the change detection
image, a statistical erosion followed by a dilatation is
performed before the peaks searching step.
By using this technique, the system is not able to associate
a certain number of people to a new blob as soon as it is
detected: the number of people for a new blob is
computed and actually added to the total number of people
in the scene just after a certain number of observation
frames.
The tracker output is fundamental at this point for a
correct people counting. The number of pedestrian
estimated in a tracked blob is inherited by the
correspondent blob in the next frame.
As it as been described in the previous section, by using
Kalman filter and shape matching techniques, each single
blob is actually tracked during an occlusion (MERGE
event). In this case the number of people can be correctly
evaluated by summing the numbers that are extracted
from each single blob involved in the occlusion.
If a tracked blob where more than a single person is
counted splits, the described contour analysis technique is
applied to each single split blob. However in this case the
extracted number of peaks has to satisfy one further
condition, i.e. the sum of persons detected within split
blobs should be equal to the number of people estimated
from their father blob.
The global number of people in the scene is evaluated by
summing the number of people detected in each single
blob in the scene. A linear Kalman filter is then applied on
the global number of people in the scene in order to
regularize its estimation.

5. Results

In this section the results of tracking modules on
PETS2002 sequences are shown.
Test took place with tracker parameters configuration
presented in table 2. Parameters shown, regulate the
change detection module (parameter n.1) and the
minimum size of detected moving objects (n.2) to be
considered as blobs. Then other values with respect to X
and Y axis (n.3-4), are needed to connect and fuse isolated
blobs belonging to the same moving object. Parameters
n.5-6 regulates the background updating modules by fine
tuning the integration of objects in the background in
relation to their movements.
In figure 2 the output of a system without any occlusion
tracking module is shown. It can be seen that during the
occlusion the objects are considered as a single region of
interest, while the identities can be correctly retrieved
after the occlusion by using a color matching algorithm
[13].
Figure 3 shows the result of the system using only linear
kalman filtering without any shape matching procedure. In

this case the Kalman estimator is updated only on the
basis of the state vector during occlusions.

Figure 2 The output of the tracking algorithm without

shape marching and Kalman filtering modules

Figure 3 Tracking module with Kalman filter and shape

extraction and association is able to maintain objects
identities during occlusions

Figure 4 shows how the module recovers lost blobs. A
certain object is detected in the scene but is lost in a
certain frame because of noise and blob dimension. As
soon as the object is again detected by the system, a list of
“dead” blobs is considered and the more similar object, in

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

59

term of colors and size, is retrieved and associated to the
new detected blob.

Figure 4 Results of the lost blobs recovery algorithm

In the following, results are provided for what concerns
the people counting module. Figure 5 shows the results of
contour extraction and analysis. Figures 6 and 7 show
results of the estimation of the people density compared
with the ideal one estimated by a human operator for the
first two datasets. It can be noticed that sometimes the
proposed system underestimate the number of people in
the scene: this happens because persons in the scene have
often a low contrast with respect to the background;
beside this it can happen that when a group of persons
enter the scene, the contour processing technique can fail
whenever one or more of the pedestrians in group are
completely overlapped by other people in the group. This
happens for example when the head of a person is not
visible from the camera point of view or it lies within the
change detection image of another pedestrian in the group:
in this case the head of the person does not corresponds to
a peak in the top profile extracted from the change
detection image. This situation can be solved by using
some a-priori knowledge on the typical shape of the body
of a walking person and this can be don for example by
considering a off-line generated model for considered
moving objects in the scene.
Depending on the dimension of the search range S in
functional (7), the computational complexity of the
proposed system can increase. The system was tested on a
PC based on a 1.7 GHz processor with a Linux operating
system. The image resolution used for the test was
640x240 pixels, 24 bits per pixel.
The following table summarize the average frame rate for
the different systems.

Considered
system

N° of frames Time to process Frame rate

Standard tracking
module

3721 372 sec 12 fps

Kalman filtering 3712 531 sec 7 fps
Shape matching/
Kalman filter

3721 676 sec 5.5 fps

Table 1 Average frame rates for considered tracking
algorithms

Parameter Val
1. Diff_TH Difference 25
2. Blob_Min_Size 15
3. Blob_Min_x 10
4. Blob_Min_y 10
5. Fast_Update 0.8
6. Slow_Update 1.0

Table 2 Tracker fundamental parameters

Figure 5 Contour extraction: one single peak if found in

this case

Figure 6 Real and estimated number of people in Dataset

1

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

60

Figure 7 Real and estimated number of people in Dataset

2

6. Conclusions

The paper describes a system able to track pedestrians
moving in indoor environments. Tracking algorithm is
able to solve occlusion situations among moving objects
in the scene. The technique is based on a shape matching
algorithm that is initialized by using a linear Kalman
filter.
The shape matching algorithm is based on the
maximization of a correlation function varying the shape
pose parameters.
A contour analysis technique is used in order to evaluate
the number of people in a scene.
The system has been tested on PETS2002 sequences
characterized by dynamic occlusions with different
complexities; tracking and counting results showed the
validity of the approach.

7. References

[1] “Multimedia Video-Based Surveillance Systems:
Requirements, Issues and Solutions”, G.L. Foresti, P. Mahonen
and C.S. Regazzoni (Eds.) – Kluwer Academic Publishers, 2000.

[2] VSAM project, http://www.cs.cmu.edu/~vsam/.

[3] M. Haag and H.H. Nagel, “Incremental recognition of traffic
sequences”, in Proc. of Int. Workshop on Conceptual
Description of images, 1998, pp. 1-20.

[4] C.S.Regazzoni “Recognition and Tracking of Multiple
Vehicles from Complex Image Sequences”, Road Vehicle
Automation II, O.Nwagboso ed., Wiley, London, 1997, pp. 297-
306.

[5] H. Buxton and S. Gong, “Visual surveillance in a dynamic
and uncertain world”, Artificial Intelligence, Vol. 78, No. 1-2,
1995, pp. 431-459.

[6] C. Sacchi, G. Gera, L.Marcenaro, C.S. Regazzoni,
"Advanced image processing tools for counting people in tourist
site monitoring applications", Signal Processing, Vol.81, N.5,
May, 2001, pp.1017-1040

[7] C.Sacchi, C.S.Regazzoni, C.Dambra, “Use of video
advanced surveillance and communication technologies for

remote monitoring of protected sites”, Advanced Video-Based
Surveillance Systems, C.S. Regazzoni, G. Fabri, G. Vernazza
eds., Kluwer Academic Publishers, Norwell, MA, USA, 1999,
pp. 154-164.

[8] R. Mattone, A. Glaeser, and B. Bumann, “A New Solution
Philosophy for Complex Pattern Recognition Problems:
Application to Advanced Video-Surveillance”, Multimedia
Video-Based Surveillance Systems: Requirements, Issues and
Solutions, Editors: G.L. Foresti, P. Mahonen and C.S.
Regazzoni, Kluwer Academic Publishers, 2000, pp. 94-103.

[9] M.T. Fennell, and R.P. Wishner, “Battlefield awareness via
synergistic SAR and MTI exploitation”, IEEE Aerospace and
Electronics Systems Magazine, Vol. 13, No. 2, Feb. 1998, pp.
39-43.

[10] G.A.Van Sickle, “Aircraft self reports for military air
surveillance”, in Proc. of IEEE Digital Avionics Systems
Conference, Vol. 2, 1999, pp. 2-8.

[11] C.Sacchi and C.S.Regazzoni, "A Distributed Surveillance
System for Detection of Abandoned Objects in Unmanned
Railway Environments", Trans on Vehicular Technologies, Vol.
49, N.5, September 2000, pp.1017-1040.

[12] S. Suzuki, K. Abe. Topological Structural Analysis of
Digital Binary Images by Border Following. CVGIP, v.30, n.1.
1985, pp. 32-46.

[13] L.Marcenaro, F.Oberti and C.S.Ragazzoni,“Multiple objects
color-based tracking using multiple cameras in complex time-
varying outdoor scenes”, PETS 2001

[14]T. Kailath, ``The Divergence and Bhattacharyya Distance
Measures Measures in Signal Selection,'' IEEE Trans. Commun.
Tech., 15(1):52-60, February 1967.

Proceedings 3rd IEEE Int. Workshop on PETS, Copenhagen, June 1 2002

61

Index of Authors

Crowley, J. L. ______________________1

Cucchiara, R. _____________________18

Ellis, T. __________________________26

Grana, C. ________________________18

Jaynes, C._________________________32

Jones, G. A. _______________________40

Marcenaro, L. _____________________56

Marchesotti, L. ____________________56

Pece, A. E. C. ______________________9

Piater, J. H. ________________________1

Prati, A. __________________________18

Regazzoni, C. S.____________________56

Remagnino, P. _____________________40

Renno, J. _________________________40

Richetto, S._________________________1

Senior, A. _________________________48

Steele, R. M. ______________________32

Webb, S.__________________________32

Xiong, Q. _________________________32

	preamble2.pdf
	FINAL9.pdf
	FINAL7.pdf
	preamble.pdf
	PiaterPETS02FINAL.pdf
	pece2.pdf
	cucchiara_grana_prati_camera.pdf
	Ellis2.pdf
	Performance Metrics and Methods for Tracking in Surveillance
	Tim Ellis
	Abstract
	1. Introduction
	2. Video Datasets
	3. Performance Assessment
	Ground truth
	Alternatives to ground truthing

	4. Taxonomy of Errors
	5. Tracking Metrics
	
	Ground truth
	Observations

	Name
	Index

	6. Results
	7. Discussion and Conclusions
	Acknowledgements
	This work was undertaken with support from the Engineering and Physical Science Research Council (EPSRC) under grant number GR/M58030. Thanks to Ming Xu and Dimitrios Makris.
	References

	pets2002-index.pdf

