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Introduction to PETS 2004

James L. Crowley, Robert B. Fisher and José Santos Victor

Recent international events have created a strong economic demand for computer vision technologies

for observing human activity. The transition from laboratory demonstrations to commercial products

requires methods and metrics to specify and evaluate the performance of competing systems. The goal

of the PETS workshop is to foster the emergence of such methods and metrics.

The 6th International Workshop on Performance Evaluation for Tracking and Surveillance, PETS '04

continues the recent series of PETS workshops held at FG 00, CVPR '01, ECCV '02, ICVS '03 and

ICCV '03. The theme for PETS '04 is observing human activity in public places. PETS '04 has been

organised by the IST CAVIAR project.  Six scenarios were recorded with a wide-angle camera lens in

the entrance lobby of the INRIA Rhône-Alpes research laboratory in Montbonnot France, using

members of the CAVIAR project as actors. Activities included a person walking in a straight line (3

sequences), a person browsing at information displays (5 sequences), behaviours while seated in a

chair (3 sequences), persons abandoning packages (5 sequences), groups of people encountering  (6

sequences), and people fighting (4 sequences). For each scenario, a ground-truth file has been

constructed to indicate a bounding box for each individual, activity labels for each individual (appear,

disappear, occluded, inactive, active, walking, running), a scenario label for each individual (fighter

role, browser role, left victim role, leaving group role, walker role, left object role) and a situation

label for each frame:  (moving, inactive, browsing) and a scenario label for each frame (browsing,

immobile, walking, drop down). These ground truth files have been made public for half of the

sequences for use as training data.   The PETS challenge is to demonstrate automatic labeling for the

remaining   sequences.

Authors were asked to describe the tracking and recognition methods, estimate or measure

computational costs, and present error rates obtained with the published ground truth.  Authors are

also invited to propose new performance evaluation metrics that might be of interest.  
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The PETS04 Surveillance Ground-Truth Data Sets

Robert B. Fisher
School of Informatics, University of Edinburgh

rbf@inf.ed.ac.uk

Abstract

This paper summarizes the 28 video sequences available
for result comparison in the PETS04 workshop. The se-
quences are from about 500 to 1400 frames in length, for
a total of about 26500 frames. The sequences are anno-
tated with both target position and activities by the CAVIAR
research team members.

1. Introduction

This paper describes the video sequences used in the
PETS04 workshop competition. The sequences are oriented
about a public space surveillance task, and are ground truth
labeled frame-by-frame with bounding boxes and also a se-
mantic description of the activity in each frame. Altogether,
there are 28 video sequences containing about 26500 la-
beled frames, grouped into 6 different activity scenaria.

The £rst group of videos was acquired at INRIA in July
2003. The sequences contained scripted activities by the
research team members. The intended test scenaria are:

Number of Number of
Scenario Sequences Frames
Walking 3 3045
Browsing 6 6665
Collapse 4 4227
Leaving object 5 5848
Meeting 6 4135
Fighting 4 2499
Total 28 26419

However, almost all sequences also contained both an
introductory activity by one of the researchers, as well as
unscripted activity (usually walking or meetings by other
employees at INRIA).

These sequences are publicly accessible at URL:
homepages.inf.ed.ac.uk/rbf/CAVIARDATA1

1.1 Ground Truth Labeling

Based on the CAVIAR activity representation model,
each video frame has been labeled with a set of ground truth
descriptions.

Each individual person was described by a bounding box
(id, centre coordinates, width, height, orientation of main
axis of individual), plus a description of his/her movement
(inactive, active, walking, running). Individuals are only la-
beled once they start moving; otherwise they are effectively
background. Based on the proposed semantics of the ac-
tivity interpretation, each box is usually labeled with a role
(fighter, browser, left victim, leaving group, walker, left ob-
ject), is a participant in a situation (browsing, moving, in-
active), which is a component of a scenario (Walking, Idle-
ness, Browse, Collapse, Leaving object, Meeting, Fighting).
Each box is labeled with some of the above labels in each
frame.

The semantics of activity labeling were constrained by
a finite-state model of the allowable behaviors. These are
summarized in Section 2, which shows the allowable se-
quences of situations in a given scenario. In each scenario,
the individual or group is observed in a sequence of situa-
tions determined by the finite state model for that scenario.
When in a situation, the actor must fulfill a specific role
linked to that situation. As well as the role, the ground truth
labeling for the box has a qualitative assessment of the mo-
tion of the individual or group, i.e. whether they are run-
ning, walking, stationary but active (e.g. moving arms), or
inactive.

Each video frame contains zero or more labeled individ-
ual or group boxes. The boxes are labeled with an identifier,
which persists as long as the individual is visible. If a per-
son disappears and then later reappears, then the individual
obtains a new identity. If the person is obscured/occluded
for only a few frames, then the same identity is maintained.

Similarly, groups of interacting individuals also are de-
scribed by bounding boxes (id, centre coordinates, width,
height, orientation of main axis of individual, list of com-
ponent individual boxes), plus a description of the group’s
movement (inactive, active, moving). Based on the pro-
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posed semantics of the activity interpretation, each group
box is usually labeled with a role (meeters, fighters, walk-
ers), is a participant in a situation (fighting, moving, meet-
ing, split up, inactive, leaving victim, leaving object), which
is a component of a scenario.

The grammar of the ground truth file can be seen in ap-
pendix A. The web site will also provide the ground truth
labels in XML shortly. An example of the current ground-
truth entry for frame 517 of sequence LeftBag is:

frame LeftBag 517 ibl
ib 2

210 247 55 39 10 wk
wr 1.0 m 1.0 im 1.0

eib
eibl gbl egbl eframe

The description says: there is only individual box 2, with
center at column 210 and row 247. The bounding box width
is 55 pixels wide and 39 pixels tall, and the dominant ori-
entation is 10 degrees. The target is walking (wk), fulfills
the walker role (wr) with certainty 1.0, is in a moving situ-
ation (m) with certainty 1.0, which is part of the immobile
scenario (im) with certainty 1.0.

1.2 Open issues

The labeling has highlighted some issues:

1. Variability of the ground truth

Since the labeling was done by humans, there is a nat-
ural variation in both the parameters and occurrence of
the labels, e.g. the positions and sizes of the bounding
boxes, or when the box or activity starts. Knowing the
range of human variation will help with comparison to
automatic calculations of the statistics.

To help assess this question, one of the datasets has
three labelings by different individuals. As the statis-
tics package is still being developed, we do not yet
have data on the variation.

2. Nature of the behaviour labeling

We have taken the position of an omniscient labeler, so
all scenaria are labeled as they actually are, although
the system may not be able to correctly label the sce-
nario until many frames in the future.

The main labeling difficulty is one of timing - when
does one situation or scenario change into another. We
have assumed that differences in this will be the sort of
natural variation assessed as described above.

The labeling of the roles/situations/scenaria was prob-
lematic. It was often unclear how each of the labels

was to be used. We attempted to maintain at least con-
sistent labeling by coordinating and reviewing of la-
bels by one person. Therefore, the symbolic labeling
is based on a best-guess representation of the final ac-
tivity model.

3. What is a group?

We have attempted to define a group as a set of in-
dividuals that are reacting to each other. This means
that individuals may pass each other, e.g. one behind
the other, without interacting and thus not forming a
group. The human labelers can usually make this judg-
ment, but it is less likely that an automatic labeler will
be able to distinguish all instances of interaction. Thus,
there is probably going to be a lot of false alarms on
group box detection (i.e. individuals who are really
not interacting, but just passing closely).

Similarly, we grouped individuals that were interacting
independently of the distance between the individuals,
starting from the frame in which they first seemed to
react to each other. For example, if two people wave
while still quite distant and then turn to approach each
other, the group box and labeling starts in the frame
where the two noticed each other and initiated the wav-
ing.

4. Multiple versus unique labels

Should an individual (or a group) have more than one
role label, and participate in more than one situation
and scenario at the same time? In labeling, we have
decided only single classifications apply in each frame.

2. Semantic labeling

The modeled scenaria, their constituent situations, the
participant roles allowed in each situation and the move-
ment description for each role are summarized here.

The models are currently expressed as finite state au-
tomata, with the states as individual situations.

2.1 Plaza Observation Setting

The different contexts that can give rise to scenaria are:
Browse, Idleness, Drop-Dead, Walk, Fight, Meet, Leave-
Object.

Solid ovals are individual situations, dashed ovals are
group situations. Vertical bars are when two situations need
to end at the same time.

For each scenario, there is a set of situations. Each situ-
ation (e.g. “Browse”) has listed the allowable Roles (e.g.
“Browser”) and allowable Movements (e.g. “Inactive”):
BROWSE:Browser/{Inactive}.
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2.1.1 Browse Context

Actually looking at some information display:

MOVE

MOVE BROWSE

MOVE: {Walker,Browser}/{Walking}
BROWSE: Browser/{Active,Inactive}

2.1.2 Idleness Context

Just standing around:

MOVE

MOVE INACTIVE

MOVE: Walker/{Walking}
INACTIVE: Walker/{Active,Inactive}

2.1.3 Drop Dead Context

BROWSEMOVE

INACTIVE

MOVE: {Walker,Browser}/{Walking}
INACTIVE: Walker/{Inactive}
BROWSE: Browser/{Active,Inactive}

2.1.4 Walk Context

MOVE

MOVE: Walker/{Walking}

2.1.5 Meet

MOVE

MOVE MOVE

MOVE
JOIN

MOVE

SPLITINTERACT

MOVE (individual): Walker/{Walking}
MOVE (group): Walkers/{Movement}
JOIN: Meeters/{Movement}
INTERACT: Meeters/{Active,Inactive}
SPLIT: Meeters/{Movement}

2.1.6 Fight

MOVE

MOVE MOVE

MOVE

MOVE

JOIN SPLITFIGHT

MOVE

LEAVE VICTIM
INACTIVE

MOVE (individual): Walker/{Walking,Running}
MOVE (group): Walkers/{Movement}
JOIN: Fighters/{Movement}
FIGHT: Fighters/{Active,Movement}
SPLIT: Fighters/{Movement}
LEAVE VICTIM: Fighters/{Active,Movement}
INACTIVE: Left Victim/{Active,Inactive}

2.1.7 Leave-Object

MOVE

MOVE

INACTIVE
LEAVE OBJ

MOVE (individual): Walker/{Walking}
INACTIVE: Left Object/{Inactive}
LEAVE OBJ: Walkers/{Inactive}
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3. Shop observation scenario datasets

The web site given above will also eventually contain
about 50 additional ground-truth labeled video sequences
observing scenaria that occur in a shopping center, contain-
ing about 60000 labeled frames. This is expected to be com-
plete in the summer of 2004.

Acknowledgements

Funding for this project was given under the EC’s Infor-
mation Society Technology’s programme project IST 2001
37540. We’d like to thank many people for help with the
ground-truth labeling: Toby Breckon, Helmut Cantzler, Ig-
nasi Cos Aguilera, Jose Manuel Vazquez Diosdado, Dina
Kronhaus, Gregor Miller and Donald Nairn.

A. Ground truth label grammar

The grammar and meaning of the ground truth files is as
follows:

% the whole file
FILE -> FRAMELIST

% a list of frame descriptions
FRAMELIST -> FRAME
FRAMELIST -> FRAMELIST FRAME

% a frame description
FRAME -> frame NAME FID ibl IBLIST eibl gbl

GBLIST egbl eframe

% a video sequence name
NAME -> character string with no blanks

% the frame number
FID -> an integer

% a list of individual boxes
IBLIST ->
IBLIST -> IBLIST IB

% a list of group boxes
GBLIST ->
GBLIST -> GBLIST GB

% an individual box description
IB -> ib IID IC IR IW IH IO IASL IFLAGL eib

% individual box ID
IID -> an integer

% IR, IC - row and column of center of
% individual box
IC -> an integer
IR -> an integer

% IH, IW - height and width of individual
% box
IW -> an integer
IH -> an integer

% IO - main axis orientation [0..179]
% degrees
IO -> an integer

% IASL - state flag list
IASL ->
IASL -> IASL IAS
IAS ->

ap % appear
| di % disappear
| o % occluded
| in % inactive
| ac % active
| wk % walking
| r % running

% IFLAGL - scenario flag list
PROB -> a floating point probability

in [0.0...1.0]
IFLAGL ->
IFLAGL -> IFLAGL IFLAG
IFLAG ->

f PROB % fighter role
| br PROB % browser role
| lv PROB % left victim role
| lg PROB % leaving group role
| wr PROB % walker role
| lo PROB % left object role
| m PROB % moving situation
| is PROB % insactive situation
| bsi PROB % browsing situation
| bsc PROB % browsing scenario
| im PROB % immobile scenario
| wg PROB % walking scenario
| dd PROB % drop down scenario
| pi PROB % immobile event

% a group box description
GB -> gb GID GC GR GW GH GO gibl GMEML egibl

GASL GFLAGL egb

% group box ID
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GID -> an integer

% GR, GC - row and column of center of
% group box
GC -> an integer
GR -> an integer

% GH, GW - height and width of group box
GW -> an integer
GH -> an integer

% GO - main axis orientation [0..179]
% degrees
GO -> an integer

% GMEML - List of group members
GMEML ->
GMEML -> GMEML IID

% GASL - group state flag list
GASL ->
GASL -> GASL GAS
GAS ->

ap % appear
| d % disappear
| i % inactive
| ac % active
| mo % movement

% GFLAGL - scenario flag list
PROB -> a floating point probability

in [0.0...1.0]
GFLAGL ->
GFLAGL -> GFLAGL GFLAG
GFLAG ->

f PROB % fighters role
| me PROB % meeters role
| w PROB % walkers role
| gf PROB % fighting situation
| gmo PROB % moving situation
| gme PROB % meeting situation
| s PROB % split up situation
| gi PROB % inactive situation
| glv PROB % leaving victim situation
| glo PROB % leaving object situation
| fsc PROB % fighting scenario
| mes PROB % meeting scenario
| ls PROB % leaving object scenario
| fst PROB % fight start event
| fe PROB % fight end event
| fv PROB % left victim event
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New Performance Evaluation Metrics for Object Detection Algorithms∗

Jacinto Nascimento Jorge S. Marques
ISR/IST

{jan,jsm}@isr.ist.utl.pt
Av. Rovisco Pais, Torre Norte, 10049-001, Lisboa Portugal

Abstract

This paper proposes novel metrics to evaluate the per-
formance of object detection algorithms in video sequences.
The proposed metrics allow to characterize the methods be-
ing used and classify the types of errors into region split-
ting, merging or merge-split, detection failures and false
alarms. This methodology is applied to characterize the
performance of five segmentation algorithms. These tests
are performed in the context of object detection in outdoor
scenes with a fixed camera.

1. Introduction

Video surveillance systems rely on the ability to detect
moving objects in the video stream. Each image is seg-
mented by image analysis techniques. This should be done
in a robust way in order to cope with unconstrained environ-
ments, non stationary background and different object mo-
tion patterns. Furthermore, different types of objects have
to be considered e.g., persons, vehicles or groups of people.

Many algorithms have been proposed for object detec-
tion in video surveillance. They rely on different assump-
tions e.g., statistical models of the background [12, 10]
frame differences [5] or a combination of both [3]. How-
ever, few information is available on the performance of
these algorithms in different operating conditions.

Object detection assessment has been recently consid-
ered in [8] assuming it is a binary detection problem. Stan-
dard measures used in Communication theory such as mis-
detection rate, false alarm rate and receiver operating char-
acteristics (ROC) were used [11]. However, this approach
has several limitations. Object detection is not a binary de-
tection problem. Several types of errors should be consid-
ered (not just misdetections and false alarms). Second, the
proposed test in [8] is based on the selection of rectangu-
lar regions with and without persons. This is an unrealistic

∗This work was partially supported by FEDER and FCT under the
project LTT and by EU project CAVIAR (IST-2001-37540).

assumption since practical algorithms have to segment the
image into background and foreground and do not have to
classify rectangular regions selected by the user.

In this paper, we propose objective metrics to evaluate
the performance of object detection methods by comparing
the output of the video detector with the ground truth ob-
tained by manual edition of the video frames. The main
features of the proposed method are the following. Given
the correct segmentation of the video sequence we detect
several types of errors i) splits of foreground regions, ii)
merges of foreground regions, iii) simultaneous split and
merge of foreground regions, iv) false alarms (detection of
false objects), v) the detection failures (missing active re-
gions). They all influence the performance of the video
surveillance system in different ways. Furthermore, am-
biguous segmentations have also been explicitly considered.
For example, it is not always possible to know if two close
objects correspond to a single group or a pair of disjoint
regions. Both interpretations are adopted in such cases.

Five segmentation algorithms are evaluated in this pa-
per. The first is denoted as basic background subtraction
(BBS) algorithm. It computes the absolute difference be-
tween the current image and a static background and com-
pares each pixel to a threshold. All the connected compo-
nents are computed and they are considered as active re-
gions if their area exceeds a given threshold. The second
method is the object detection algorithm proposed in the
W4 system [6]. Three features are used to characterize each
pixel of the background image: minimum intensity, maxi-
mum intensity and maximum absolute difference in consec-
utive frames. The third method assumes that each pixel of
the background is a realization of a random variable with
Gaussian distribution (SGM - Single Gaussian Model) [12].
The mean and covariance of the Gaussian distribution are
independently estimated for each pixel. The fourth algo-
rithm models each pixel as a mixture of Gaussians [10], de-
termining which mode corresponds to the background and
which describe active regions (MGM - Multiple Gaussian
Model). The fifth method is the one used in the Lehigh Om-
nidirectional Tracking System (LOTS [2]).
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The tests presented in this work were performed with
PETS2001 using the metrics proposed in this paper and
PETS2004 sequences and evaluated using the metrics
adopted in the CAVIAR project.

The structure of the paper is as follows. Section 2 briefly
reviews previous work. Section 3 describes the segmenta-
tion algorithms. Section 4 describes the performance met-
rics proposed in the paper. Experimental tests are discussed
in section 5 and section 6 presents the conclusions.

2. Related Work

Surveillance and monitoring systems often require the
segmentation of all the moving objects in the video se-
quence. Segmentation is a key step since it influences the
performance of the other modules, e.g., object tracking,
classification or recognition. For instance if object classi-
fication is required, an accurate detection is often needed to
obtain a correct classification of the object.

Background subtraction is a simple approach to detect
moving regions. This can be done in several ways. In
[6] each pixel of the background image is represented by
three features: minimum intensity, maximum intensity, and
the maximum rate of change at consecutive frames [6], or
the median of largest inter-frames absolute difference [5].
Background subtraction can be performed by combining
different types of features. Other methods rely on the use
of statistical models of the background image. The Pfinder
(“Person Finder”) [12] assumes that the background is mod-
eled by a Gaussian distribution: each pixel is described by
its mean and covariance matrix. The object detection is
based on blob detection. A blob is a connected region, ob-
tained by clustering the pixels with similar color and image
coordinates. A multiclass statistical model of color is used
to monitor the activity of person in indoor environments.
In [10] segmentation is based on an adaptive background
subtraction method which models each pixel as a mixture
of Gaussians. In [7] it is proposed a background subtrac-
tion method which combines color and gradient informa-
tion. Another approach is described in [2]. This system
includes multiple background modelling, combining vari-
ous techniques: adaptive thresholding with hysteresis and
spatio-temporal grouping of active pixels, denoted quasi-
connected components.

A problem related to the background subtraction ap-
proach are the false active regions, the so-called “negative”
or ghosts [9]. These regions are caused by static objects be-
longing to the background image (e.g., cars) which start to
move. This gives rise to a false active region located where
the object was placed, due to the difference between the cur-
rent frame and the background model computed using past
information. This problem can be overcome by high level
techniques [4] or by modeling the background with a mix-

ture of Gaussians [10].

3 Segmentation Algorithms

This section describes object detection algorithms used
in this work: BBS, W4, SGM, MGM, LOTS. The BBS, SGM,
MGM algorithms use color while W4 and LOTS use gray
scale images. The BBS algorithm, detects moving objects
by computing the difference between the current frame and
the background image. A thresholding operation is per-
formed to classify each pixel as foreground or background.
Ideally, pixels associated with the same object should have
the same label. This is accomplished by morphological fil-
tering (dilation and erosion) to eliminate isolated pixels and
small regions followed by a connected component analysis
(e.g., using 8 - connectivity criterion).

The second algorithm is denoted here as W4 since it
is used in the W4 system to compute moving objects [6].
This algorithm is designed for grayscale images. The back-
ground model is built using a training sequence without per-
sons or vehicles. During this period three values are esti-
mated for each pixel: minimum intensity (Min), maximum
intensity (Max), and the maximum intensity difference be-
tween consecutive frames (D). Foreground objects are com-
puted in four steps: i) thresholding, ii) noise cleaning by
erosion, iii) fast binary component analysis, iv) elimina-
tion of small regions.

The thresholding step proposed herein is given by

(|It(x, y) < Min(x, y)| ∨ |It(x, y) > Max(x, y)|)

∧ |It(x, y)− It−1(x, y)| > D(x, y)
(1)

which leads to a less level of misdetections comparing with
the one described in [6]. The third algorithm considered in
this study is the SGM (Single Gaussian Model) algorithm.
Color information is used in this method. Each pixel is
represented by a Gaussian distribution N (µ,Σ) where the
mean µ and covarianceΣ are recursively updated as follows

µ
t = αIt(x, y) + (1− α)µt−1, (2)

Σt = (1−α)Σt−1+α(It(x, y)−µt)(It(x, y)−µt)T (3)

The SGM performs a binary classification of the pix-
els into foreground or background and tries to cluster fore-
ground pixels into blobs.

The fourth algorithm (MGM) models each pixel x =
(x, y) as a mixture of three Gaussians distributions, i.e.

p(I(x)) =
N
∑

k=1

ωkN (I(x),µk,Σk), (4)

8



where N (I(x),µk,Σk) is a multivariate normal distribu-
tion, N = 3 and ωk is the weight of kth normal,

N (I(x),µk,Σk) = c exp
{

−
1

2

(

I(x)−µk

)T

Σ−1k

(

I(x)−µk

)}

.

(5)
with c = 1

(2π)n/2|Σk|
1

2

. Note that each pixel I(x) is a 3× 1

vector with three component colors (red, green and blue),
i.e., I(x) = [I(x)RI(x)GI(x)B ]T . To avoid an excessive
computational cost, the covariance matrix is assumed to be
diagonal [10].

The mixture model is updated dynamically. i) The algo-
rithm checks if the pixel value x can be ascribed to a given
mode of the mixture (match)1. ii) If a distribution matches
the new observation the parameters are updated according
to (2), (3) where α is replaced by

λk = αN (I(x),µk,Σk) (6)

The weights in (4) are updated by

ωtk = (1− α)ωt−1k + α(M t
k), with

M t
k =

{

1 matched model
0 remaining models

(7)

α is the learning rate. The non matched components of the
mixture remain the same. If none of the existing compo-
nents match the incoming observation, the least probable
distribution is replaced with the current value (as its mean),
a large covariance matrix and a low weight. This distribu-
tion should contain a high variance and mean equal to the
current value of the frame, a low prior weight should be as-
signed in this situation. iii) The distributions are sorted in
the descending order of ωk/|Σk|. iv) The algorithm selects
the first B Gaussians distributions as belonging to the back-
ground. B is chosen as follows: B is the smallest integer
such that

B
∑

k=1

ωk > T (8)

where T is athreshold that accounts for a certain quantity of
data that should belong to the background.

The fifth algorithm [2] is tailored to the detection of non
cooperative targets (e.g., snipers) under non stationary en-
vironments. This algorithm uses two gray level background
images B1, B2. This allows the algorithm to cope with in-
tensity variation due to noise or fluttering objects which
move in the scene. Each pixel of the input frame is com-
pared to the closest background value and classified as ac-
tive if the difference exceeds a given threshold TL(x, y). A
quasi connected component analysis is then performed us-
ing a second threshold TH(x, y) in order to select groups of

1A match occurs if the pixel is inside the confidence interval with
+/−2.5 standard deviation.

active pixels and to classify them as targets. It is assumed
that TH(x, y) = TL(x, y) + cS , cS being defined by the
user.

These images are updated as follows

B1(x, y) = min{I
n(x, y), n = 1, . . . , T} (9)

B2(x, y) = max{I
n(x, y), n = 1, . . . , T} (10)

where n ∈ 1, 2, . . . , T denotes the different time instants
during the adaptation period.

The background images are updated as follows. We
compute the background image closest to the image inten-
sity It(x, y) and update it

Bt+1
i (x, y) =

{

(1− α′)Bt
i (x, y) + α′It(x, y) if(x, y) ∈ T

(1− α)Bt
i (x, y) + αIt(x, y) if(x, y) ∈ N

(11)
where α, α′ are update gains (α′ < α), T is a target set, N
is non-target set. α is usually small to enforce a slow adap-
tation. This is important to avoid the integration of active
regions in the background image.

When updating the background image, the thresholds for
pixels are also updated. Each pixel is first classified as false
alarm, detection failure or target. Then the thresholds are
updated

T t+1L =







T tL(x, y) + cFA if false alarm
T tL(x, y)− cDF if detection failure
T tL(x, y) if target

(12)

In this paper we choose cFA = 10, cDF = 1. If the pixel is
correctly classified as target the threshold remains the same.
If the pixel is a false alarm the threshold is increased. If
there is a detection failure the threshold is decreased.

4 Proposed Framework

In order to evaluate the performance of object detection
algorithms we propose a procedure based on the following
principles:

• A set of test sequences is selected. All moving objects
are then detected and manually corrected if necessary
to obtain the ground truth, one frame per second.

• The output of the automatic detector is compared with
the ground truth.

• The output is then classified in one of the following
classes: correct detection; false alarm; detection fail-
ure; merge; split; split-merge.

To perform the first step we made a user friendly inter-
face which allows the user to define the foreground regions
in the test sequence in a semi-automatic way. Fig. 1 shows
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the interface used to generate the ground truth. A set of
frames is extracted from the test sequence (one per second).
An automatic object detection algorithm is then used to pro-
vide a tentative segmentation of the test images. Finally, the
automatic segmentation is corrected by the user, by merg-
ing, splitting, removing or creating active regions.

In the case depicted in the Fig. 1, there are four ac-
tive regions: a car, a lorry and two groups of persons. The
segmentation algorithm also detects regions due to lighting
changes, leading to a number of false alarms (four). The
user can easily edit the image by adding and removing re-
gions until a correct segmentation is obtained.

Figure 1. User interface used to create the
ground truth from automatic segmentation re-
sults.

The test images are used to evaluate the performance of
object detection algorithms. In order to compare the out-
put of the algorithm with the ground truth segmentation, a
region matching procedure is adopted which allows to es-
tablish a correspondence between the detected objects and
the ground truth. Several cases are considered:

1. Correct Detection (CD) or 1-1 match: the detected
region matches one and only one region.

2. False Alarm (FA): the detected region has no corre-
spondence.

3. Detection Failure (DF): the test region has no corre-
spondence.

4. Merge Region (M): the detected region is associated
to several test regions.

5. Split Region (S): the test region is associated to several
detected regions.

6. Split-Merge Region (SM): when the conditions 4, 5
are simultaneously satisfied.

4.1 Region Matching

Object matching is performed by computing a binary
correspondence matrix C which defines the correspondence
between the active regions of a pair of images. Let us as-
sume that we have N ground truth regions R̃i and M de-
tected regions Rj at time t. Under these conditions C will
be a N ×M matrix, defined as follows

C(i, j) =







1 if R̃i ∩Rj 6= 0
∀i∈{1,...,N},j∈{1,...,M}

0 if R̃i ∪Rj = 0
(13)

It is also useful to add the number of ones in each line or
column, defining two auxiliary vectors

L(i) =

M
∑

j=1

C(i, j) i ∈ {1, . . . , N} (14)

C(j) =

N
∑

i=1

C(i, j) j ∈ {1, . . . ,M} (15)

A match C(i, j) = 1 can be classified as:

correct detection: ifL(i) = C(j) = 1

merge: ifC(j) > 1

split: ifL(i) > 1 (16)
split-merge: ifL(i) > 1 ∧ C(j) > 1

The false alarms and detection failures can be formed de-
tecting empty columns or lines in matrix C. It is therefore
easy to compute the statistics of each type of errors from
matrix C. Fig. 2 illustrates six situations considered in this
analysis, by showing synthetic examples. Two images are
shown in each case, corresponding to the ground truth (left)
and detected regions (right). It is also depicted the corre-
spondence matrix C. For each case, the left image (Ĩt) con-
tains the regions defined by the user (ground truth), the right
image (It) contains the regions detected by the segmenta-
tion algorithm. Each region is represented by an white re-
gion containing a visual label. Fig. 2 (a) shows an ideal
situation, in which each test region matches only one de-
tected region (correct detection). In Fig. 2 (b) the “square-
region” has no correspondence with the detected regions,
thus it corresponds to a detection failure. In Fig. 2 (c) the
algorithm detects regions which do not match any region of
It generating a false alarm. In Fig. 2 (d) shows a merge of
two regions since two different regions (“square” and “dot”
regions in It) correspond to the “square region” in in I t.
The remaining examples in this figure are self explaining,
illustrating the split (e) and split-merge (f) situations.

Sometimes the segmentation procedure is subjective,
since each active region may contain several objects and it
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Ground Truth Detector output Ground Truth Detector output

M =

[

1 0 0
0 1 0
0 0 1

]

M =

[

0 0
1 0
0 1

]

(a) (b)
Ground Truth Detector output Ground Truth Detector output

M =

[

1 0 0 0
0 1 0 0
0 0 1 0

]

M =

[

1 0
1 0
0 1

]

(c) (d)
Ground Truth Detector output Ground Truth Detector output

M =
[

1 1 0
0 0 1

]

M =

[

1 1 0
0 0 1
0 1 0

]

(e) (f)

Figure 2. Different matching cases: (a) Cor-
rect detection; (b) Detection Failure; (c) False
alarm; (d) Merge; (e) Split; (f) Split Merge.

is not always easy to determine if it is a single connected
region or several disjoint regions. For instance, Fig. 3(left)
shows an input image with a manual segmentation. Three
active regions were considered: person, lorry and group
of people. Fig. 3 (right) shows the segmentation results
provided by the SGM algorithm. This algorithm splits the
group into three individuals which can also be considered
as a valid solution since there is very little overlap. This
segmentation should be considered as an alternative ground
truth. On the contrary, the situations depicted in Fig. 4
should be considered as errors. Fig. 4 shows the ground
truth (left) and the segmentation provided by the W4 algo-
rithm (right). The W4 algorithm makes a wrong split of the
vehicle.

Another ambiguous example is shown in Fig. 5. This
suggests the use of multiple interpretations for the segmen-
tation. To accomplish this the evaluation setup takes into
account all possible merges of single regions belonging to
the same group whenever multiple segmentation hypothesis
may occur in the frame, i.e., when there is a small overlap
among the group members.

Figure 3. Correct split example, supervised
segmentation and SGM segmentation.

Figure 4. Wrong split example, supervised
segmentation and W4 segmentation.

The number of merges depends on the relative position
of single regions. Fig. 6 shows different merged regions
corresponding to a group of three objects (each one repre-
senting a person in the group) when the relative position
is different. In Fig. 6 (a) it is not necessary to consider
the merge of the first and the third regions since the second
region is in the middle. However, if the positions of the re-
gions change (see Fig. 6 (b)) the number of links may be
different. It is reasonable to assume that each region can
be merged with the all others. In the automatic evaluation
process, it is enough for the user, to give single regions and
the interpretations are generated automatically. Figs. 7,8
illustrate this situation. Fig. 7(a) shows the input frame,
Fig. 7(b) shows the hand segmented image, and Fig. 7(c)
illustrates the output of the SGM. Fig. 8 shows all possible
merges of individual regions. All of them are considered as
correct. Remain to know which segmentation should be se-
lected to appraise the performance. In this paper we choose
the best segmentation, which is the one that provides the
highest number of correct detections. In the present exam-
ple the segmentation illustrated in Fig. 8 (g) is selected.
In this way we overcome the segmentation ambiguities that
may appear without penalizing the algorithm.
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Figure 5. Output of the SGM method at two
time instants.

(a) (b)

Figure 6. Regions linking procedure. The
same number of foreground regions may
have different interpretations: three possible
configurations (a), or four configurations (b).
Each color represent a different region.

5 Tests on PETS2001 dataset

The segmentation algorithms described in this paper
were evaluated using PETS2001 and PETS2004 dataset
with resolution 384×288 pixels. The ground truth was gen-
erated by segmenting one image per second and correcting
the automatic segmentation results using the graphical edi-
tor described before. The output of the algorithms was then
compared with the ground truth. The active regions with
less than 25 pixels were eliminated.

The segmentation algorithms described herein depend on
a set of parameters: thresholds and learning rate α. To find
appropriate values for these parameters, we produced ROC
curves which display the performance of each method as a
function of the parameters. Each ROC is built by keeping
all the parameters constant but one. This requires a con-
siderable amount of tests, which were done using a training
sequence of the PETS2001 data set. Once the parameters
are set, we use these values to evaluate the algorithms in a
test sequence of PETS2001.

ROC curves describe the evolution of the false alarms
(FA) and detection failures (DF) as T varies. An ideal ROC
should be close to the origin, i.e., with small area.

Fig. 9 shows the receiver operating curves (ROC) for the

(a) (b) (c)

Figure 7. Input frame (a), segmented image
by the user (b), output of SGM (c).

best value of α for different values of the threshold. These
tests were performed on the training sequence. The BBS
algorithm is sensitive to the threshold (see 9(a)). Small
changes of T leads to large variations of false alarms and
detection failures. The best value is T = 0.2. Fig. 9(b)
shows the ROC of the SGM method, for α = 0.005. This
method is more robust than the BBS algorithm with respect
to the threshold. A smooth variation of FA and DF is ob-
tained for −400 < T < −150. We choose T = −400. Fig.
9(c) depicts the results of the MGM method. We notice that
the algorithm strongly depends on the value of T , since for
small variations of T there are significant changes of FA and
DF. The best performance is obtained for T > 0.9.

Fig. 9(d) displays the results of the LOTS algorithm for
a variation of the sensitivity from 10% to 110%. We use
a small blending parameter. LOTS does not update the
background image in every single frame to avoid a high
computational cost. This algorithm only updates the back-
ground every N frames instead. We used an integration fac-
tor α = 6.1× 10−5 which corresponds to add 0.0625 of the
current frame to the background in every 1024th frame.

All methods have a large number of false alarms. In this
sequence there is a static car which suddenly starts to move.
Since the background is slowly updated, this event produces
a ghost active object which is detected in a large number of
frames.

Table 1 shows the results obtained on the test sequence
using the parameters obtained from the ROC curves. In
terms of false alarms the BBS method is the worst and the
W4 is the best one. The main characteristics of the BBS
method is that it tends to detect everything that moves in
the scene. As a consequence it has a high percentage of
correct detections but high false alarms rate.

The highest percentage of correct detections is achieved
by LOTS followed by SGM. In the detection failures the
W4 outperforms the others. W4 exhibits perhaps the best
tradeoff between CD and FA. However, this method tends to
split regions. This happens in situations in which the objects
have a slow motion or when they stop, since the method is
not able to remove the corresponding regions from the back-
ground model. This is the main drawback of the method. In
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8. Multiple interpretations given by the
application. The segmentation illustrated in
(f) is selected for the current frame.

term of merges, none of the algorithms studied here has a
tendency to merge regions.

Comparing the results of false alarms between the Fig.
9 and the table 1, we notice that all the algorithms exhibit
a larger percentage of false alarms in the training sequence
(see Fig. 9) than in the test sequence (see table 1). For com-
parison purposes we also computed the ROC curves using
the test sequence. These results are shown in Fig. 10.

The choice of the method depends on the application.
For instance the LOTS, SGM and W4 are well suited for
tracking applications. Although the W4 method is sensible
to splits, this is not a serious drawback in tracking since
the system can always track one of the detected regions.
However, if the application involves object recognition with
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Figure 9. Receiver Operation Characteristic
for different values of α (training sequence).
First row: (a) BBS, α = 0.15, (b) SGM, α = 0.15,
second row (c) MGM, α = 0.008, (d) LOTS,
α = 6.1× 10−5.

global features (e.g., histograms) W4 is not suitable.
A second set of tests were performed using different

sequences and metrics. The five algorithms were evalu-
ated using the sequence Walk1 from PETS2004 data set
and evaluated using CAVIAR metrics [1]. These metrics
compare the bounding boxes of the detected regions with
the bounding boxes of the ground truth and compute the
statistics for true detections, misdetections and false alarms.
These results are shown in Table 2 for an overlap require-
ment of 20%. These results are compatible with the prob-
ability of correct detections previously obtained with the
metrics proposed in this paper (the LOTS and SGM pro-
vide the best set of results as before). However, they are not
enough to understand what types of errors are made by the
algorithms and if they are relevant or not for the other pro-
cessing blocks. This kind of information can be obtained
from the metrics proposed in this paper.

6 Conclusions and future work

This paper proposes new metrics for the evaluation of
object detection algorithms in surveillance applications.
The proposed methodology is based on the comparison of
the detector output with the ground truth segmentation of
test sequences followed by a classification of the errors.
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BBS W4 SGM MGM LOTS

Correct Detections 83.5 76.7 87.9 74.8 92.4
Detection Failures 8.6 4.8 9.2 15.9 5.9

Splits 2.1 10.1 0.2 5.5 0.2
Merges 0 0.6 0 0 0.9

Split/Merges 6.2 6.9 3.0 3.4 0.2

False Alarms 21.7 1.1 11.1 10.7 7.9

Table 1. Performance of five object detection
algorithms.

BBS W4 SGM MGM LOTS

True Detections 94.4 51.3 94.9 89.7 94.9

Missed Detections 5.5 48.6 5.0 10.2 5.0

False Detections 38.2 0.1 5.9 150.1 5.2

Table 2. Results using the statistics of the
Caviar Project with an overlap requirement of
20%.

The performance evaluation is made in terms of achieving
the best tradeoff between correct detection and false alarms.
Although we find LOTS and SGM the most suitable algo-
rithms to perform region segmentation, the choice depends
on the context of the application.

These tests should be further extended to consider other
sequences. It would also interesting to enlarge the set of
methods and to characterize the effect of each type of er-
ror on the performance of the overall system. The mea-
surements proposed herein are important to characterize the
performance of object detection algorithms.

Another important issue is that the proposed framework
can also be used to evaluate tracking algorithms. To accom-
plish this, it is enough to record the trajectory of the detected
regions using the ground truth.

Acknowledgement: We thank Dr. Thor List of Edin-
burgh University for performing the the statistics of Table
2. We also thank Prof. José Santos Victor for providing
valuable information about the CAVIAR activities.
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Abstract

In this paper, we introduce a set of novel distance metrics
that use model based representations for trajectories. We
determine the similarity of trajectories using the conformity
of the corresponding HMM models. These metrics enable
the comparison of trajectories without any limitations of the
conventional measures. They accurately identify the coor-
dinate, orientation, and speed affinity. The proposed HMM
based distance metrics can be used not only for ground truth
comparisons but for clustering as well. Our experiments
prove that they have superior discriminative properties.

1. Introduction

Recent advances in object tracking made it possible to
obtain spatiotemporal motion trajectories for further anal-
ysis of concealed information. Although the extraction of
trajectories is well understood and studied, relatively little
investigation on the precise comparison of the trajectories
and the secondary outputs of the tracking process is pre-
sented in the literature.

A key issue in performance evaluation of tracking re-
sults is the distance metric that determines the similarity
of the trajectories. Any additional analysis, such as ac-
tion recognition, event detection, etc., highly depends on
the accuracy of the similarity assessment. Most existing
measures [2], [6] compute a mean distance of the corre-
sponding positions of two equal duration trajectories. Sup-
plementary statistics such as variance, median, minimum,
and maximum distances are also suggested to extend the
description of similarity. In a recent work, Needham [4]
proposed an alignment based distance metric that reveals
the spatial translation and temporal shift between the given
trajectories, and introduced an area based metric that calcu-
lates the total enclosed area between the trajectories using
trajectory intersections. Similarly, Ellis [1] characterized
several statistical properties of the tracking performance us-
ing the compensated means and standard deviations.

One main disadvantage of the existing approaches is that
they are all limited to the equal duration (lifetime) trajecto-
ries. By duration we refer the number of coordinate points
that constitute the trajectory. These coordinates are sampled
at different time instances. Since the existing measures de-
pend on the mutual coordinate correspondences, they can-
not be applied to trajectories that have different durations
unless the trajectory duration is normalized or parameter-
ized first. However, such a normalization destroy the tem-
poral properties of the trajectory.

Conventional distance measures assume that the tempo-
ral sampling rates of the trajectories are equal. For instance,
a ground truth trajectory labeled at a certain frame rate can
be compared only with the trajectory generated by a tracker
working at the same frame rate. These approaches does
not cope with the uneven sampling instances, i.e. varying
temporal distance between the coordinates, either. This is
a common case especially for the real-time object trackers
that process streaming video data. A real time tracker works
on the next available frame, which may not be the immedi-
ate temporal successor of the current, whenever the current
frame is processed. Thus, the obtained trajectory coordi-
nates have varying temporal distance.

Therefore, there is a need to develop other alternatives
that can effectively measure the difference between unre-
stricted trajectories. In this paper, we introduce a set of
novel distance metrics that use model based representations.
We determine the similarity of trajectories using the confor-
mity of the corresponding models. We construct a mixture
of continuous Hidden Markov Models (HMM) that capture
the dynamic properties of trajectory within a state transi-
tion matrix. The HMM based metrics enable the compar-
ison of trajectories without any limitations of the previous
measures. We can use the proposed metrics not only for
ground truth comparisons but for clustering as well. We
measure the similarity of trajectories that have different du-
rations, sampling rates, and temporal properties. We ac-
curately identify coordinate, orientation, and speed affinity.
We also propose additional features that are extracted from
the trajectories such as object-wise histograms of aspect-
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(a) (b) (c)

Figure 1. Ambiguous cases for conventional metrics; (a) unequal durations, (b) equal durations but
different frame rates. (c) Effect of uneven frame rates.

ratio, location, orientation, speed, size, etc. to improve the
available features.

In section 2, we discuss the existing trajectory distance
metrics. In section 3 we introduce the additional features.
In section 4 we present the HMM based distance metrics,
and in the last section we discuss the experimental results.

2. Trajectory Distance Measures

A trajectory is a time sequence of coordinates represent-
ing the motion path of an object over the duration (life-
time), i.e. number of frames that object exists. These co-
ordinates correspond to marked positions of object shape in
consecutive frames. A marked position often indicates the
center-of-mass (for pixel model), the intersection of main
diagonals (for ellipsoid model), and the average of mini-
mum and maximum on perpendicular axes (for bounding
box model) of object region. It is, therefore, possible to
view the trajectory as a collection of frame-wise abstrac-
tions of object shape. We will adopt the following nota-
tion T : {pn} : {(x1, y1, t1), (x2, y2, t2), ..., (xN , yN , tN )}
whereN is the duration.

The simplest metric used for computing the distance be-
tween a pair of trajectories is the mean of coordinate dis-
tances, which is given as

m1(T a, T b) =
1
N

n=1∑
N

d2
n (1)

where the displacement between the positions is calculated
using the Cartesian distance

d2
n = [(xa

n − xb
n)2 − (ya

n − yb
n)2]

1
2 , (2)

or using other L-norm formulations

dL
n = [(xa

n − xb
n)L − (ya

n − yb
n)L]

1
L . (3)

Note that, the mean distance metric makes three critical as-
sumptions; 1) the durations of the both trajectories are same

Na = N b = N (fig. 1-a), 2) the coordinates are synchro-
nizedtan = tbn (fig. 1-b), and 3) the time sampling rate is
constanttan − tan+1 = tam − tam+1 since the contribution of
each distance componentdn in equation 1 is same as illus-
trated in fig. 1-c. It is evident that the mean of distances
is very sensitive to the partial mismatches and cannot deal
with the distortions in time.

To provide more descriptive information, the second or-
der statistics such as median, variance, minimum and maxi-
mum distance may be incorporated. The variance is defined
as

m2(T a, T b) =
1
N

N∑
n=1

(dn −m1(Ta, Tb))2. (4)

To find the median, the displacementsdn are ordered with
respect to their magnitudes asdn → dm, then the value of
the halfway component of the list is assigned

m3(T a, T b) =

{
dN+1

2
N odd

1
2 (dN

2
+ dN+1

2
) N even

The minimum and maximum distances are simply defined
as

m4(T a, T b) = min dn (5)

m5(T a, T b) = max dn (6)

Although these statistics supply extra information, they in-
herit (even amplify) the shortcomings of the ordinary mean
of distances metricm1. Besides, none of the above metrics
is sufficient enough by itself to make an accurate assessment
of the similarity.

An area based distance metric is proposed in [4]. The
crossing pointsq : T a(pi) = T b(pj) of two paths are used
to define regionsQj j = 1, ..J between the trajectories. For
each region, a polygon model is generated and the enclosed
area is found by tracing the parameterized shape

m6(T a, T b) =
J∑

j=1

area(Qj) (7)
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This metric can handle more complex trajectories, however
it is sensitive to entanglements of the trajectory, it discards
the time continuity, and fails to the distinguish two trajec-
tories in opposite directions. Although the area between a
pair of trajectories is easily apprehended, its computation
may demand case-specific analytic solutions that are not al-
ways straightforward to formulate.

It is possible to compute an optimal spatiotemporal
alignment(δx, δy, δt) for which the mean distance is mini-
mized

(δx, δy, δt) = argminm1(T a, T b + (δx, δy, δt)) (8)

and use this alignment to compute a compensated distance

m7(T a, T b) = m1(T a, T b + (δx, δy, δt)). (9)

Ellis [1] proposed several statistical measures such as true
detection rate, false alarm rate, etc. using the aligned trajec-
tories for comparison of a trajectory with the ground truth.
However, not all trajectory distance tasks involve ground
truth comparison, i.e. clustering.

In the following sections, we introduce an extended set
of trajectory based features, and then we present the details
of the HMM based metrics.

3. Trajectory Based Features

A set of coordinates is not the only available trajec-
tory feature. In spite of its simplicity, duration (lifetime)
is a distinctive feature. For instance, at a hallway cam-
era in a surveillance setting the suspicious event may be a
left behind unattended bag, which can be easily detected
since human objects do not stay still for extended periods
of time. The total length of the trajectory is defined as∑N

n=2 |T (pn) − T (pn−1)|. This is different from the to-
tal displacement of the object, which is equal to|T (pN) −
T (p1)|. By assuming a ground plane of the camera imaging
system is available, the trajectory may be projected to ob-
tain the respective 3D length. A total orientation descriptor
keeps the global direction of the object. Depending on the
camera setup, the length related descriptors may be used to
differentiate unusual paths. The length/duration ratio gives
the average speed.

Dynamic properties of an object such as orientation, as-
pect ratio, size, instantaneous speed, and location are repre-
sented by histograms. The location histogram keeps track
of the image coordinates where object stays most. Using
the size histogram, dynamic properties of the object size are
captured, e.g. we can separate an object moving towards the
camera (assuming the size will get larger) from another ob-
ject moving parallel. An object moves at different speeds
during tracking, therefore the instantaneous speed of an ob-
ject is accumulated into a histogram. Speed is the key as-

Figure 2. Additional trajectory features.

pect of some events, e.g. a running person where every-
body walks. The speed histogram may be used to interpret
the regularity of the movement such as erratically moving
objects. An accident can be detected using the speed his-
togram; the speed components will accumulate around zero
and high velocities rather than being distributed uniformly.

The orientation histogram is one of the important de-
scriptors. For instance, it becomes possible to distinguish
objects moving on a certain path, making circular move-
ments, etc. It is possible to find a vehicle backing up on
a wrong lane then driving correctly again, which may not
be detected using a global orientation. The aspect ratio is a
good descriptor to distinguish between human objects and
vehicles. The aspect ratio histogram can capture whether a
person crouches and stands up during its lifetime. Figure 2
illustrates some of the object features.

4. Hidden Markov Model Based Metric

Due to the shortcomings of the existing metrics, we pro-
pose a model based representation that captures the dy-
namic properties of trajectories. We project each trajectory
T into a parameter spaceλ that is characterized by a set of
HMM parameters.

An HMM is a probabilistic model composed of a num-
ber of interconnected states a directed graph, each of which
emits an observable output. Each state is characterized by
two probability distributions: the transition distribution over
states and the emission distribution over the output sym-
bols. A random source described by such a model gener-
ates a sequence of output symbols as follows: at each time
step the source is in one state, and after emitting an output
symbol according to the emission distribution of the current
state, the source jumps to a next state according to the tran-
sition distribution of its current state. Since the activity of
the source is observed indirectly, through the sequence of
output symbols, and the sequence of states is not directly
observable, the states are said to be hidden.
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Figure 3. Left-to-right topology.

In our case, we replace the trajectory information as
the emitted observable output for the above directed graph.
The hidden states then capture the transitive properties of
the consecutive coordinates of the spatiotemporal trajectory.
The state sequence that maximizes the probability becomes
the corresponding model for the given trajectory.

A simple specification of anK-state{S1, S2, ..., SK}
continuous HMM with a Gaussian observation is given by:

1. A set of prior probabilitiesπ = {πi} whereπi =
P (q1 = Si) and1 ≤ i ≤ K.

2. A set of state transition probabilitiesB = {bij}, where
bij = P (qt+1 = Sj|qt = Si) and1 ≤ i, j ≤ K.

3. Mean, variance and weights of mixture models
N (Ot; µj , Σj) whereµj andΣj are the mean and co-
variance of the statej.

Above, qt andOt are the state and observation at timet,
respectively.

For each trajectoryT a, we fit an M -mixture HMM
λa = (π, B, µ,Σ)a that has left-to-right topology using the
Baum-Welch algorithm. We chose the left-to-right topology
since it can efficiently describe continuous processes.

We train a HMM model using the trajectory as the train-
ing data after we initialize the state transition and prior
probability matrices with random variables, thus we make
no assumptions on the trajectory. Initialization can be
adapted for specific applications as well. Finally, each tra-
jectory is assigned to a separate model.

The optimum number of states and mixtures depend on
the complexity and duration of the trajectories. To provide
sufficient evidence to every Gaussian of every state in the
training stage, the lifetime of the trajectory should be much
larger than the number of mixtures times number of states
N � M × K. A state can be viewed as a basic pattern
of the trajectory, thus depending the trajectory, the number
of states should be large enough to conveniently character-
ize such distinct patterns but small enough to prevent from
overfitting.

A priori knowledge about tracking scenario may be used
to impose a structure on an HMM and a meaning for the

Figure 4. Cross-fitness distance.

values of the state variable. It is known that each state may
be associated with a certain label. Furthermore, the topol-
ogy of the HMM can be strongly constrained: most transi-
tion probabilities are forced to be zero. Since the number of
free parameters and the amount of computation are directly
dependent on the number of non-zero transition probabili-
ties, imposing such structure is very useful when it is ap-
propriate. The most basic structure that is often imposed on
HMM’s is the left-to-right structure: states are ordered se-
quentially and transitions go from the “left” to the “right”,
or from a state to consecutive state or itself, as in fig. 3.

We search an optimal number of states of the HMM net-
work for the given trajectory while repeating the genera-
tion and evaluation of the topology. At the beginning of the
search, possible HMM’s up to a maximum number of states
are generated randomly. In general, the likelihood of HMM
increases with the complexity of the topology. However, it
is known that over representation is frequently observed as
the complexity increases. Therefore, in order to balance the
likelihood and the complexity, we have adopted a score [3]
as

vi = [− log L(T ; λi) + iα]−1 (10)

wherei = 2, ..., Mmax is the number of states,L(T ; λi) =
P (T |λi) is the likelihood obtained for HMM withi-states,
andα is a constant balancing factor. The number of states
is then chosen as the one that given the highest score.

We define the distance between two trajectories in terms
of their HMM parameterizations:

m8(T a, T b) = |L(T a; λa) + L(T b; λb) (11)

−L(T a; λb)− L(T b; λa)|
which corresponds the cross-fitness of the trajectories to
each other’s models as illustrated in fig. 4. TheL(T a; λa)
andL(T b; λb) terms indicate the likelihood of the trajec-
tories to their own fitted model, i.e. we obtain the maxi-
mum likelihood response for the models. The cross terms
L(T a; λb), L(T b; λa) reveal the likelihood of a trajectory
generated by the other trajectories model. In other words,
if two trajectories are identical, the cross terms will have a
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Figure 5. Different trajectory pattern pairs.

maximum value, thus eq. 12 will be equal to zero. On the
other hand, if trajectories are different, their likelihood of
being generated from each others model will be small, thus
the distance will be high.

Up to now, we employed trajectory coordinates as our
feature sequence. Using coordinates reveals spatial corre-
lation between trajectories, however in some situations it is
more important to distinguish shape similarity of the trajec-
tories independent of the spatial coordinates. The instan-
taneous speed and orientation sequences are potential fea-
tures that establish shape similarity even if there is a spatial
translation. Thus, we define two other sequential features
and corresponding distances; the orientation sequence as

φT (pn) = tan−1 yn − yn−1

xn − xn−1

m9(T a, T b) = m8(φT a, φT b) (12)

and the speed sequence

4T (pn) = [(xn − xn−1)2 + (yn − yn−1)2]
1
2

m10(T a, T b) = m8(4T a,4T b). (13)

The mentioned HMM distance is also applicable to his-
togram features such as orientation histogram, speed his-
togram, etc. However, since these features discard the tem-
poral ordering of the points, they are more suitable to evalu-
ate the statistical properties of trajectories rather than mea-
suring the similarity of their shape and coordinates.

5. Comparisons

To compare the proposed metricsm8, m9, m10 and the
referenced conventional metricsm1, .., m7, we computed
the distances of several distinct trajectory pattern pairs as

presented in fig. 5. Equal (a-f) and unequal (g-j) duration
trajectories are among these patterns. Each equal duration
trajectory consists of 100 points. To make the comparison
more realistic, we added a random white noise to all pat-
terns. The first set of equal duration patterns include the tra-
jectory pairs that are in opposite direction, spatially shifted
trajectories, trajectories that are crossing each other, trajec-
tories that have the same circling path but in opposite di-
rection, trajectories that their global orientation is same but
their paths have small perturbations, and trajectories that the
form is same except a time shift. The second set of trajec-
tory pairs have different durations. For instance, fig. 5-g
shows a pair that have same spatial path but one of the tra-
jectory has a several frames long waiting period as shown
with the green arrow. Fig. 5-h shows a pair that are same
spatial form except one trajectory has a loop. In fig. 5-i the
second trajectory has the same form but its duration is half
of the first one. In fig. 5-j a partially matching pair is given.

After we computed the distances of all pairs for a given
metric, we normalized the distances using the maximum
distance obtained for that metric since there is no a com-
mon normalization factor that can applied to all the metrics.
For instance, the numerical values of the variance (m3) and
the area (m6) metrics are clearly incommensurate. Thus, we
evaluate the sensitivity based on the given pattern set. We
listed the normalized responses of all metrics in table 1. The
highest score at each column indicates the pattern that the
metric is most sensitive. Note that, an ideal metric should be
applicable to all diverse patterns regardless of the trajectory
duration, frame-rate, and other limitations.

From the table, it is evident that the sum of coordinate
distancesm1, the variance of coordinate distancesm2, and
the median coordinate distancem3 have all similar proper-
ties. Their fusion would not improve the overall discrimi-
native capability. The maximum distancem4 and minimum

19



Table 1. Comparison of Distance Metrics
m8 m9 m10 m1 m2 m3 m4 m5 m6 m7

Opposite (ED) 0.123 1.000 0.001 1.000 1.000 1.000 0.055 1.000 1.000 0.001
Translation (ED) 0.356 0.001 0.006 0.283 0.001 0.287 1.000 0.148 0.002 0.573
Crossing (ED) 1.000 0.370 0.002 0.707 0.502 0.721 0.016 0.707 0.677 1.000
Circling (ED) 0.008 0.105 0.000 0.449 0.143 0.491 0.000 0.355 0.403 0.000
Perturbation (ED) 0.001 0.027 0.012 0.017 0.000 0.018 0.001 0.014 0.417 0.139
Phase shift (ED) 0.073 0.001 0.002 0.107 0.008 0.123 0.029 0.085 0.020 0.226
Wait (VD) 0.069 0.071 0.316 - - - - - - 0.001
Loop (VD) 0.389 0.529 0.775 - - - - - - 0.001
Speed up(VD) 0.001 0.214 1.000 - - - - - - 0.003
Partial (VD) 0.198 0.001 0.002 - - - - - - 0.000

(Each column is normalized within itself, ED: equal duration, VD: variable duration)

distancem5 are very sensitive to singularities, for instance
the maximum distance can be very high even a the trajec-
tories have matching well except a single coordinate. The
minimum distance fails if a single crossing exits. The spa-
tiotemporal alignment metricm7 is insensitive to shifting,
otherwise it is similar tom1. These metrics cannot handle
different duration trajectories. The area metricm6 fails for
patterns that have same path but opposite direction. It can-
not distinguish the temporal deformations either.

On the other hand, the HMM based metrics are applica-
ble to trajectories that have different durations. It is shown
that these metrics can successfully identify various tempo-
ral deformations including the time waiting, partial match,
different speed, time loop, etc. Each topology has 3 states
and 3 Gaussian models. The coordinate based HMM metric
m8 is sensitive towards the spatial positioning of the tra-
jectories, and it can identify the crossing, translation, phase
shift, time loop, partial, and opposite directions. The ori-
entation based HMM metricm9 is responsive towards the
orientation variances, i.e. it gave the highest score to op-
posite direction pattern, and it can recognize crossing, time
loop, and circling patterns. The speed based HMMm10 de-
tects the speed changes and time loops most effectively, and
it can identify the uneven frame-rates as well.

We observed that the three possible HMM metrics are
responsive towards the different patterns, thus their mixture
is a perfect candidate for measuring the trajectory distance.

We conducted another experiment using the PETS-2004
benchmark sequences. For the sequences that the ground
truth is not given, we obtained the trajectories by our mean-
shift based tracker [5]. The trajectories, which have dura-
tion ranging from 30 to 800 points, are presented in fig. 6.
We determined the most similar and most different trajec-
tories to a given trajectory using them8 metric as shown
in fig. 7. In the graphs, the red is the given trajectory. The
blue is the most similar and green is the most different tra-
jectory among the all trajectories. As visible, the proposed

HMM based metric accurately identified the most similar
and dissimilar trajectories at each case.

6. Conclusion

We proposed a set of HMM based trajectory distance
metrics that can accurately measure the coordinate, orient,
and speed similarity of a pair of trajectories. These met-
rics measure different duration trajectories without destroy-
ing the temporal properties. They can be used not only for
ground truth comparisons but also for further analysis of
the tracking results, e.g. clustering and event analysis. Our
experiments prove that the HMM distance metrics have su-
perior discriminative properties than conventional metrics.
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Figure 6. Detected trajectories for the PETS-2004 sequences.
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Figure 7. (Top graph) All trajectories mapped together. (Other graphs) Red: given trajectory, blue:
most similar trajectory, green: most different trajectory obtained by the coordinate HMM metric ( m8)
for the given trajectory.
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Abstract

This paper presents a robust tracking system that em-
ploys a supervisory controller to dynamically control the
selection of processing modules and the parameters used
for processing. This system employs multiple pixel level de-
tection operations to detect and track blobs at video rate.
Groups of blobs can be interpreted as related components
of objects during an interpretation phase. A central supervi-
sor is used to adapt processing parameters so as to maintain
reliable real time tracking. System performance is demon-
strated on the PETS 04 data set.

1. Introduction

This paper presents an architecture for robust on-line
tracking and interpretation of video streams. The system
is based on a real time process managed by a supervisory
controller. During each cycle, target blobs are observed and
updated using simple pixel level detection processes. De-
tection procedures are then specified in a number of detec-
tion regions to detect new blobs. An evaluation phase is
used to assess system performance and to adapt processing
so as to maintain both reliability and real time (video rate)
processing. An interpretation phase is then run to interpret
groups of blobs as more abstract objects. Performance for
this system is illustrated using the PETS 04 data set.

The paper starts with an overview of the system archi-
tecture. Section 3 describes the underlying principle of
the core modules followed by technical details of the im-
plementation. Section 4 describes a method for automatic
adaption of the parameters necessary for the tracking sys-
tem. The flexibility of the architecture is demonstrated in
section 5. Section 6 evaluates the performance of this sys-
tem on the PETS 04 data sets.

2. Architecture

Figure 1 shows the system architecture. The core of the
tracking system is composed of a supervisor, a target initial-

∗This research is supported by IST-CAVIAR 2001 37540
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Figure 1. Vis ual tracking us ing a central s u-
pervis or architecture with core modules en-
ables the flexible plug - in of higher level mod-
ules .

isation module (Detection Region) and a tracking module
(Target Observation). These modules are detailed in sec-
tion 3.

The supervisor acts as a process scheduler, sequentially
executing modules in a cyclic process. Each cycle begins
by acquiring the current image from an image buffering sys-
tem (video demon). For each image, targets are tracked and
new targets are detected. The supervisor enables a flexi-
ble integration of a several modules. During each cycle, for
each target, the supervisor can call additional modules for
analysis and interpretation as needed. During each cycle,
the currently listed image processing operation for each tar-
get is applied to the target’s region of interest. In this way,
the appropriate image processing procedure can be changed
and new image processing procedures can be added without
changing the existing system architecture. Section 5 shows
examples on this flexible architecture by adding modules
for head and hand tracking, for eye detection and tracking
and for general target identification.
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Figure 2. Target tracking by background dif-
ferencing. The central pers on is tracked us -
ing all pixe ls whereas the two other pers ons
are tracked us ing every s econd pixel.

3. The tracking system

In this section, we describe the theoretical aspects and
the details on the actual implementation of the core tracking
system.

3.1 Energy detection

Currently, targets can be detected by energy measure-
ments based on background subtraction or intensity normal-
ized color histograms. The background subtraction mod-
ule computes a difference image Id from the current frame
I = (Ired, Igreen, Iblue) and the background image B =
(Bred, Bgreen, Bblue):

Id = 1
3

(
| Ired −Bred | + | Igreen −Bgreen | +

| Iblue −Bblue |
)

The background image B is updated with each frame us-
ing a weighted averaging technique, with a strong weight
applied to the previous background, and a small weight ap-
plied to the current image. This procedure constitutes a sim-
ple first order recursive filter along the time axis for each
pixel. The background image is only updated for those pix-
els that do not belong to one of the target ROIs.

Bt(i, j) =

{
αIt(i, j) + (1− α)Bt−1(i, j), (i, j) ∈ bg
Bt−1(i, j), else

(1)

Figure 2 shows an example of target tracking by back-
ground subtraction. The right image represents the back-
ground difference image Id after processing of three ROI’s.

Three targets can be clearly identified. Notice that the cen-
ter target appears as solid white, while the adjacent targets
appear to be ”hashed”. This is the result of optimization that
allows the processing to be applied to every N th pixel. In
this example, the two adjacent regions were processed with
N = 2, while the center target was processed with N = 1.
N is determined dynamically during each cycle by the pro-
cess supervisor.

The position and extent of a target are determined by the
moments of the detected pixels in the difference image Id

within the ROI. The center of gravity (or first moment) gives
the position of a target. The covariance (or second moment)
determines the spatial extent, and can be used to determine
width, height, and slant of a target. These parameters also
provide the target’s search region in the next image.

Chrominance information can be used to provide prob-
abilistic detection of targets. The intensity for each RGB
color pixel within a ROI is normalized to separate chromi-
nance from luminance.

r =
R

R + G + B
, g =

G

R + G + B
(2)

These color components have the property to be robust to
intensity variations [6].

The probability that a pixel takes on a particular color
can be represented as a histogram of (r, g) values. The his-
togram hT of chrominance values for a target, T , provides
an estimate of the probability of a chrominance vector (r, g)
given the target p(r, g|T ). The histogram of chrominance
for all pixels htotal gives the global probability p(r, g) of
encountering a chrominance among the pixels. The prob-
ability of a target is the number of pixels of the target di-
vided by the total number of pixels. Putting these values
into Bayes rule shows that an estimate of the probability
of the target for each pixel can be obtained by evaluating
the ratio of the target histogram divided by the global his-
togram.

p(T |r, g) =
p(r, g|T )p(T )

p(r, g)
≈

hT (r, g)

htotal(r, g)
(3)

For each image, a probability map, Ip, can be created by
evaluating the ratio of histograms for each pixel in the im-
age. Figure 3 shows an example of face detection using a
ratio of chrominance histograms. The bottom image dis-
plays the probability map Ip. The probability map is only
evaluated within the search region provided by the Kalman
filter in order to increase processing speed.

A common problem in both background subtraction and
histogram detection are spatial outliers. In order to increase
the stability of target localization, we suppress the contribu-
tion of outliers using a method proposed by Schwerdt in [5].
With this method, the probability image Ip is multiplied by
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Figure 3. Targetdetection by normalized color
his togram.

a Gaussian weighting function centered at the predicted tar-
get position. This corresponds to a filtering by a strong po-
sitional prior. The effect is that spatial outliers lose their
influence on position and extent as a function of distance
from the predicted Gaussian. In order to save computation
time, this operation is performed only within the region of
interest R of each target. Even for small regions of interest
this operation stabilizes the estimated position and extent of
targets.

I ′p =

{
Ip ∗G(µ, Σ), (i, j) ∈ R
0, else

(4)

where

G(~x; µ, Σ) = e−
1

2
(~x−µ)T Σ−1(~x−µ) (5)

The center of gravity µ = [x̂−t , ŷ−t ]T is the Kalman pre-
diction of the target location. The spatial covariance Σ re-
flects the size of the target as well as the growing uncer-
tainty about the current target size and location. The same
principle can be applied to the background difference Id.

3.2 Tracking process

The tracking system is a form of Kalman filter [7]. The
state vector for each target is composed of position and ve-
locity. The current target state vector x̂t−1 is used to make

a new prediction according to :

x̂−t = Φtx̂t−1, with Φt =

(
1 ∆t
0 1

)
(6)

and ∆t the time difference between two iterations.
From the new position measurement zt, estimation up-

date is carried out.

x̂t = x̂−t + Kt(zt −Htx̂
−

t ) (7)

This relation is important for balancing the estimation be-
tween measurement and prediction with the Kalman gain
Kt. The estimated precision is a diagonal covariance ma-
trix

P−

t =




σ̂2
xx 0 0 0

0 σ̂2
yy 0 0

0 0 σ̂2
vxx

0
0 0 0 σ̂2

vyy


 (8)

and is predicted by:

P−

t = Φt−1Pt−1Φ
T
t−1 + Qt−1 (9)

where Qt−1 is the covariance matrix of the prediction error
which represents the growth of the uncertainty in the current
target parameters.

3.3 The core modules

The tracking process has been implemented in the
ImaLab environment [4]. This environment allows real-
time processing of frames extracted from the video stream.
The basic tracking system is composed of two modules:

• TargetObservation predicts for each target the position
in the current frame by a Kalman filter and then com-
putes its real position by background subtraction or
color histogram detection.

• DetectionRegion detects new targets by analysing the
energy (background differencing or color histogram)
within several manually defined detection regions.

Figure 1 shows the system architecture. Both core mod-
ules can be instantiated to use either background differenc-
ing or color histogram. For the PETS 04 experiments, we
use tracking based on background subtraction.

3.4 Target initialization module

Detection regions are image regions where new targets
can appear. Restricting detection of new targets to such
regions allows the system to reduce the overall computing
time. As a side effect, the use of detection regions also pro-
vides a reduction in the number of spurious false detections
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by avoiding detection in unlikely regions, but targets might
be missed when the detection regions are not chosen appro-
priately.

For each scenario a different set of detection regions
is determined. Currently, these regions are selected by
hand. An automatic algorithm appears to be relatively easy
to imagine. New targets are initialized automatically by
analysing the detection regions in each tracking cycle. This
analysis is done in two steps. In the first step, the subregion
which is occupied by the new target is determined by cre-
ating a 1 dimensional histogram along the long axis of the
detection region. The limits of the target subregion are char-
acterized by an interval, Rmin, Rmax, whose values of the
one dimensional histogram are above a noise threshold (see
Figure 4). In the second phase, the energy density within
the so specified subregion R is computed as

eR =
1

|R|

∑

(i,j)∈R

Id(i, j) (10)

with |R| number of pixels of R. A new target with mean
µR and covariance ΣR is initialised when the measured en-
ergy density eR exceeds a threshold. This approach has the
advantage, that targets can be detected independently of the
size of the detection region.

3.5 Tracking module

The module TargetObservation implements the target
tracking. The supervisor maintains a list of current targets.
Targets of this list are sequentially updated by the supervi-
sor depending on the feedback of the modules. For each tar-
get, a new position is predicted by a first order Kalman filter.
This prediction determines a search region within which the
target is expected to be found. A target is found by apply-
ing the specified detection operation to the search region. If
the average target detection energy is above a threshold, the
target observation vector is updated. This module depends
on following parameters:

• Detection energy threshold: this represents the average
energy threshold validating the target existence.

• Sensitivity threshold : this parameter thresholds the
energy image (Id in case of background differencing
or Ip in case of chrominance detection). If the value is
0, the raw data of the energy image is used.

• Target area threshold: A step size parameter N enables
faster processing for large targets by processing only 1
out of N pixels. When the target surface is larger than
a threshold, N is increased. This temporary measure
will be replaced by a more sophisticated control logic
based on computing time. Figure 2 illustrates the use
of this parameter.

3.6 Split and merge of targets

In real world video sequences, especially in the domain
of video surveillance, it often happens that targets come to-
gether, move in the same direction for a while and then sep-
arate. It can also occur that close targets occlude each other.
In that case only one target is visible at the time, but both
targets are still present in the scene. To solve such prob-
lems, we use a method that allows merging and splitting of
targets. This method enables to keep track of occluded tar-
gets and also to model common behavior of a target group.
The PETS 04 sequences contain many examples of such
group behavior.

A straight forward approach is applied for the detection
of target split and merge. Merging of two targets that are
within a certain distance from each other is detected by eval-
uating following equation:

c/(a + b) < threshold (11)

where c is the distance between the gravity centers of both
targets, a and b are the distances between the center of grav-
ity and the boundary of the ellipse defined by the covariance
of the respective target(see Figure 5 (left)). In our imple-
mentation we use a threshold = 0.8.
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Figure 5. (le ft)Merging of targets as a function
of the target re lative pos ition and s ize . (right)
Splitting detectors are defined proportionally
to the target s ize .

Splitting of targets is implemented by placing detection
regions around the target as shown in Figure 5 (right). The
size and location of the split detection regions are propor-
tional to the target size. Within each split detection re-
gion, the average enery is evaluated in the same way as
in the target initialisation module. A new target is cre-
ated if this average energy is greater than the threshold
u = energy density ∗ split coefficient. The parameter split
coefficient controls the constraints for target splitting.

4. Automatic parameter adaption

Target initialization and tracking by background differ-
encing or histogram detection requires a certain number of
parameters, as mentioned in the previous sections (detec-
tion energy threshold, sensitivity, density energy threshold,
α, split coefficient, area threshold).

In order to preserve the re-usability of the tracking mod-
ule and guarantee good performance in a wide range of dif-
ferent tracking scenarios, it is crucial to have a good pa-
rameter setting at hand. Up to now, parameter adaption is
done manually. This is a very tedious job which might need
frequent repetition when the scene setup has changed.

In this section we propose a first attempt of a module
that automatically finds a good parameter setting. As a first
step, we consider the tracker as a classical system with con-
trol parameters and noise perturbations (see Figure 6). The
system produces an output y(t) that depends on the input
r(t), some noise d(t), and a set of parameters that affect the
control module K [1].

4.1 Algorithm

First we need to explore the effect of particular parame-
ters on the system. The goal of this step is to identify the
important parameters, their relation and eventually discard

K

Noise
d(t)

y(t)

Control

r(t)

f(y(t))

−
System

Input Output

Parameters P

Figure 6. A controlled s ys tem

parameters with little effect. For a sequence for which the
ground truth r(t) is available we vary the parameters sys-
tematically and measure the output of the system, yPk

(t)
for a particular parameter setting Pk in the parameter space
P . yPk

(t) and r(t) are split in m sections according to m
intervals si = [ti−1, ti], i = 1, . . . , m.

For each parameter setting Pk and each interval r(si)
and yPk

(si) are known. From these input/output correspon-
dences we can compute the transfer function f(yPk

(si)) =
r(si) by a least squares approximation. The overall error
of the transfer function on the sequence is computed as fol-
lows:

ε = ||r(t) − f(yPk
(t))|| =

∑

si

||r(si)− f(yPk
(si))|| (12)

For each Pk, we determine the transfer function that mini-
mizes this error. The average error (ε̄ = ε/n, n number of
frames) is used to characterize the performance of the sys-
tem with the current parameter setting. This is a very coarse
approximation, but as we will see, the average error evolves
smoothly over the parameter space.

We consider polynomial transfer functions of first and
second order (linear and quadratic) of the following form

~r(tk) = A0~y(tk) +~b (13)

~r(tk) = A2(~y(tk))2 + A1~y(tk) +~b (14)

with transfer matrices Ai and offset~b.
The measurements have either two or four dimensions.

In the two dimensional case, the measurements contain the
coordinates of the center of gravity of the target. The four
dimensional case also contains the height and width of the
target bounding box. We could have considered an addi-
tional dimension for the target slant, but we discarded this
possibility due to the discontinuity of the slant measurement
at 180◦.

The linear transfer function estimated from the data of
the sequences Walk1.mpeg and Walk3.mpeg produce good
results. We observe a transfer matrix A0 that is close to
identity. The quadratic transfer function has a smaller ε̄, but
the transfer matrix A2 has very low values and is therefore
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not significant. This means that the linear transfer function
is a good model for our system.

4.2 Exploration of the parameter space

The average error of the best transfer function evaluated
on the entire test sequence is used to characterize the per-
formance of the controlled system. The parameter space
can be very high dimensional. Therefore, exploring the en-
tire space can be time consuming. To cope with this prob-
lem we assume that some parameters evolve independently
from each other. This allows to restrict the search of an op-
timal parameter value to a low dimensional hyperspace. In
the experiment we use following default values for the con-
stant parameters of the hyperspace: detection energy = 10,
density = 15, sensitivity = 20, split coefficient = 2.0, α =
0.001, area threshold = 1500. We experiment on sequence
Walk1.mpeg except for figure 7.

Figure 7 shows the surface produced by varying the de-
tection energy threshold and the sensitivity threshold simul-
taneously. Figure 8 shows the error evolution by varying the
split coefficient and the sensitivity. The optimal parameter
value is different for each sequence. This means that the
parameters are sequence dependent. In all cases the error
evolves smoothly. This means that we are dealing with a
controlled system and not with a system following chaotic
or arbitrary rules.

Figure 9 (left) provides evidence to set α = 0.1. Fig-
ure 9 (right) shows that the density threshold has no effect
on the average error. This parameter is therefore a candidate
that needs not be considered for further exploration of the
parameter space.

Figure 10 shows the effect of the parameter area thresh-
old. This parameter treats one pixel out of two for targets
that are larger than area threshold pixels. This explains the
increase of the error for small thresholds and the speed up
in processing time. It is interesting to see, that the error in-
crease is very small, less than 4% error increase for a 25%
gain in processing time. Our method allows to identify this
kind of relations between parameters.

4.3 Summary

We have shown a method to evaluate the performance
of a system controlled by a set of parameters. The average
error is used to understand the effect of single parameters
and parameter pairs. This method allows to verify that our
tracking system has a controlled behavior. We identified
that the density parameter has no effect on the error per-
formance and it can be removed from the parameter space.
The area threshold parameter influences the overall process-
ing time and the average error. With our method, we found
that the increase in error is small with respect to the gain in

Figure 11. Modules for face and hand obs er-
vation are plugged into tracking s ys tem.

processing time. This is an interesting result which a dy-
namic control system should take into account. The exper-
iments show that the optimal parameter setting estimated
from one sequence scenario must not be optimal for an-
other sequence. This needs to be explored by evaluating
more data sequences. Another important point is that the
approach requires ground truth labelling. This means that
our method can not find the optimal parameters when the
ground truth is unknown. Likelihood may be appropriate in
some cases to replace the ground truth, but the results will
be inferior since the likelihood increases the noise perturba-
tions.

5. Tracking : optional higher level modules

In this section we demonstrate the flexibility of our track-
ing system. The proposed architecture enables easy plug in
of higher level modules which enables the system to solve
quite different tasks.

5.1. Face and hand tracking for human computer
interaction

Modules for face and hand tracking use color histogram
detection. Face and hands are initialised automatically with
respect to a body detected by background differencing. This
means that the same tracking principle is applied to faces
and hands at a higher level. An example is shown in Fig-
ure 11.

5.2. Eye detection for head pose estimation

This module detects facial features by evaluating the re-
sponse to receptive field clusters [2]. The method detects
facial features robust to scale, lighting variation, person and
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Figure 7. Evolution of the average error over detection energy thres hold and s ens itivity thres hold
(s equence Walk1.mpeg (le ft) and Walk3.mpg (right) and default values for free parameters ).
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Figure 8. Evolution of the average error over s plit coefficient and s ens itivity thres hold.
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Figure 9. Evolution with varying alpha (le ft) and varying dens ity (right). We can identify an optimal
value for alpha (α = 0.1), but the error is cons tant for all dens ity values .
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Figure 10. Evolution with varying area thres hold (le ft). The error increas es s lightly with decreas ing
area thres hold. The area thres hold has a s ignificant impact on the proces s ing time (right).

Figure 12. Real- time head pos e es timation.

head pose. The tracking system provides the precise face
location which allows the combined system to run in real
time. Figure 12 shows an example of the eye tracking mod-
ule.

5.3. Agent identification

The agent identification module provides an association
between individual features and tracked targets by back-
ground subtraction. Identification of each tracked blob is
carried out by elastic matching of labelled graphs where the
labels are receptive field responses [2]. The degree of cor-
respondence between the model and the observations ex-
tracted from the ROI provided by the tracking system is
computed by evaluating a cost function. The cost function
is a weighted sum of the spatial similarity and the appear-
ance similarity [3, 8]. Figure 13 shows a successful identity
recovery after a target occlusion. The system currently pro-
cesses 10 frames/s.

cost pers1 165, pers2 186 Merge: cost pers1 337, pers2 492

Occlusion: cost pers1 488, pers2 1470 Split: cost pers1 2073, pers2 735

Figure 13. Example of a s plit and merge event
with s ucces s ful identity recovery.
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Figure 14. True vers us Fals e detections for
individuals

6. Tracking performance of the core modules

In order to evaluate the performance of our tracking sys-
tem, we have tested the core modules on 16 of the PETS 04
sequences (17182 frames containing 50404 targets marked
by bounding boxes)1. In this section we give a brief sum-
mary of the tracking results.

Figure 14 shows the receiver operator curve for all 16 se-
quences. Our system has a low false detection probability of
9.8% and a true detection probability of 53.6%. This trans-
lates to a recall of 53.6% (27030 correct positives out of
50404 total positives) and a precision of 90.2% (27030 cor-
rect positives out of 29974 detections). The reason for the
relatively low recall is the fact that the ground truth label-
ing takes into account targets that are already present in the
scene and targets that pass on the gallery at the first floor.
Our tracking system relies on the method of detection re-
gion for target initialization. Both type of targets are not
detected by our tracking system, because they are not ini-
tialized.

The tracking results are evaluated with respect to other
parameters such as errors in detected position, size, and ori-
entation, the time lag of entry and exit. The performance of
our system with respect to these parameters is summarized
in Table 1. Our system performs very well in position detec-
tion, orientation estimation and exit time lag. The bounding
box produced by the tracking system is significantly smaller
than the bounding box of the ground truth. This is due to
the fact that the tracking system estimates the bounding box
from the covariance of the pixels with high energy whereas

1The sequences as well as the statistics are available at the CAVIAR
home page http://homepages.inf.ed.ac.uk/rbf/CAVIAR/caviar.htm

Average error in average value maximum value
Position 6 - 7 pixels 13 - 15 pixels
Size -160% to -240% -240%
Orientation ±0.5% ±30%
Entry time lag 50 to 80 frames 100 to 160 frames
Exit time lag 1 frame 1 frame

Table 1. Evaluation of the tracking res ults with
res pect to meas urement precis ion.

a human draw a bounding box that includes all pixels that
belong to the target. The tracking system can produce a
similar output by computing the connected components of
the energy image. This is a costly operation. In the case
where the connected components bounding box is used for
position computation, the position become more unstable.
For this reason we decided to use the first and second mo-
ments of energy pixels for target specification. The entry
time lag is a problem related to the detection region. A hu-
man observer marks a new target as soon as it occurs. The
detection region requires that the observed energy is above
the energy density threshold.

7. Conclusion

We have presented an architecture for a tracking sys-
tem that consists of a central supervisor, a tracking mod-
ule based on background subtraction or color histogram de-
tection combined with Kalman filtering and an automatic
target initialization module restricted to detection regions.
These three modules form the core system. The central su-
pervisor architecture has the advantage that additional mod-
ules can be plugged in very easily. New tracking systems
can be created in this way that can solve different tasks.

The tracking system depends on a number of parameters
that influence the performance of the system. Therefore,
finding a good parameter setting for a particular scenario is
essential. We have proposed to consider the tracking system
as a classical controlled system and identified a method to
evaluate the quality of a particular parameter setting. The
preliminary experiments show that small variations of the
parameters produce smooth changes of the average error
function. Using this behavior, we can improve the perfor-
mance of our tracking system by finding a good parame-
ter setting using gradient descend in the parameter space.
Unfortunately, the experiments on the automatic parameter
adaption are preliminary and could not yet be integrated in
the performance evaluation of the system.
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Mahlsburg. Face Recognition by Elastic Bunch Graph
Matching, chapter 11, pages 355–396. Intelligent Bio-
metric Techniques in Fingerprint and Face Recognition.
CRC Press, 1999.

32



Automatic Tracking and Labeling of Human Activities in a Video Sequence

Fengjun Lv Jinman Kang Ram Nevatia Isaac Cohen Gérard Medioni
University of Southern California

Institute for Robotics and Intelligent Systems
Los Angeles, CA 90089-0273

�flv�jinmanka�nevatia�icohen�medioni�@iris.usc.edu

Abstract

This paper presents a novel approach for tracking multi-
ple objects and a statistical learning approach for de-
tection of human activities in a video sequence. For
the tracking, a �� rigid transformation invariant ap-
pearance model combining color and edge information
of the detected blob is proposed. For the activity de-
tection, each activity label is regarded as a hypothesis.
Given some labeled sequences, a group of features are
first extracted from motion trajectories of each detected
object and the likelihood of each feature under that hy-
pothesis is calculated. A dynamic programming-based
training algorithm is applied to get an optimal classi-
fier for each feature. Then it selects the classifiers with
the most discriminative power and combines them to
form a stronger classifier. This algorithm complies with
������-����	
� criterion so that it is guaranteed to
achieve a specified detection rate as well as a minimized
false alarm rate. Results on ������ dataset 1show the
effectiveness of the proposed algorithm.

1 Introduction and Related Work

Developing an automatic activity recognition system
is becoming of increasing interest to many researchers
in recent years. Most proposed systems try to inter-
pret human activities based on a well-structured interac-
tion model (��� [11] and its extension such as ���-
��� [8], or recently, Propagation Network[13]). Due
to the uncertain nature of the activity instances, such sys-
tems can only deal with either very simple activities or
complex ones but in a tightly constrained environment.

In many cases, however, instead of telling people what
has happened and how did that happen, it is sufficient
for a computer system to alert people when an activity

1Data come from the EC Funded CAVIAR project/IST 2001
37540 at http://www.dai.ed.ac.uk/homes/rbf/CAVIAR/.

is (probably) happening. This can have many applica-
tions such as helping people with the tedious monitoring
work in video surveillance and content based video re-
trieval. The monitored activities have one characteristic
in common that they have a relatively short duration and
thus the presence of that activity can be inferred with
no or only little contextual information. We term these
��������� activities and they are the focus of this paper.

Detecting (or labeling) a primitive event in nature is
a classification (YES or NO) problem and this fits very
well in a statistical Hypothesis-Testing approach. Unlike
model-based methods, in which many assumptions need
to be made about the underlying activity models, all that
we need are some training data which have been labeled
manually or by other means. In the training phase, af-
ter a set of features are extracted, the ���
� probability
of each hypothesis(activity label) and the likelihood of
each feature under that hypothesis are calculated. Then
in the testing phase, given the values of the same set of
features, the activity is labeled as YES or NO based on
its �
	����
� probability.

Bayesian Network is a suitable tool for this purpose
[1] [9]. The use of Bayesian networks in these ap-
proaches differs in features that they used as evidences
and structures of the networks, which are usually derived
by heuristic knowledge. Our approach is different in that
instead of using a pre-defined fixed feature set and net-
work structure, we learn the optimal feature set dynam-
ically from the training data and compute the classifiers
based on the joint distribution of the feature set.

We present an algorithm for optimal classifier training
for each feature. The algorithm can minimize false alarm
rate while maintaining certain detection rate by map-
ping the problem to the classical �-�����	��� problem
which has a well-known dynamic programming-based
optimal solution. The algorithm works in an iterative
manner such that at each time it selects features with the
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most discriminative power and combines them to form a
stronger classifier until the false alarm rate falls below a
specified value or the upper limit of number of iterations
has been reached.

Since our system is trained and tested primarily on
the ������ dataset, before describing the details of
the algorithm, some insights into the data may be worth
pointing out. In this dataset, 28 sequences were filmed
with a wide angle camera lens in the entrance lobby of
a building, of which 14 are provided with ground-truth
data. The dataset contains 6 staged scenarios including
people walking, browsing, resting, leaving a bag, group
meeting and fighting. There are in total 42 labels of ac-
tivities including individual activities such as walking
and browsing and group activities such as fighting and
meeting. Fig.1 lists the name and meaning of each la-
bel (Labels of group box are marked with a “� ” in order
to distinguish them from labels of individual box). The
dataset provides an ideal test-bed for activity labeling al-
gorithms in terms of the variety as well as the complexity
of the contents of the video sequences.

Figure 1: Name and meaning of each label in PETS’04
dataset

2 Detection and Description of Moving Objects

Object detection and tracking are fundamental ele-
ments for an activity recognition system. A persis-
tent appearance model is usually needed in order to
track objects robustly in a scene containing large dynam-
ics(occlusions, disappearing-reappearing of moving ob-
jects, ����). An object appearance model is represented

by a set of distinctive features such as color, shape or
texture. In [2], active contour is used as the shape-based
appearance model. The active contour based method,
however, usually requires initializing the contour man-
ually and only handles small non-rigid motion. Various
color-based methods have been proposed, of which many
use only one color histogram for each object. In [12], an
appearance model based on temporal color is used but
this approach is not invariant to arbitrary rigid motion.
Multiple color models and their relative localization have
been considered for an efficient use of the color in object
tracking. In [6], a multiple color model was proposed
for human detection, but it required a segmentation of
detected blob into the head, torso, and legs.

Appearance changes are expected when objects are
moving. For example, the limb motion of a walking
human will create localized shape variations and self-
occlusions. Therefore, object appearance models have to
be continuous in the sense that a small localized change
of the object color and shape should create a small lo-
calized variation in its signature. The object description
should also be invariant to �� rigid transformation and
scale change in order to accommodate change of per-
spective. The appearance descriptor we proposed here
complies with these requirements, as described in Sec.3.

The color distribution model is obtained by mapping
the blob into multiple polar representations. Several
shape or color distribution models using a polar represen-
tation have been proposed [15] [10] [3]. The approach in
[15] focuses on the object’s shape description(edge) and
is limited to represent local shape properties. In [10] the
proposed model measures color distribution using a sim-
ilar polar representation, but focuses on characterizing
a global appearance signature of the object. Since this
model is not �-� rotation-invariant, we combine it with
the shape description model proposed in [3] to guaran-
tee the invariance to �-� rigid transformation and scale
change.

Given a detected moving blob, the smallest circle
(��) containing the blob, is the region of our interest.
A set of control points �� are uniformly sampled along
��. For each ��, a set of concentric circles of various
radii are used to define the radial bins of the appearance
model. Inside each bin, a Gaussian distribution (for each
channel of R,G,B) is computed for modeling the color
properties of pixels falling into that bin. Therefore, for a
given control point �� we have a 1-D distribution ������.
The normalized combination of ������ defines the color
model of the detected blob: � �

�
������.
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The shape description (����) of each bin is obtained
similarly by counting the number of edge pixels falling
into that bin. Then ���� is normalized as follows:

���� �
�
�

������
�
���
�
�
�
�

������� (1)

Figure 2: Computation of the color and shape based ap-
pearance model of detected moving blobs

An illustration of the definition of the appearance
model is shown in Fig.2 where we sampled the reference
circle with 8 control points. This model is inherently
translation invariant. Rotation invariance is obtained by
taking a larger number of control points along the refer-
ence circle. Finally, normalizing �� to unit circle guar-
antees scale invariance.

3 Tracking Using Invariant Appearance Prob-
ability Model

The appearance probability model is defined as a sim-
ilarity measurement among detected blobs in successive
frames. In this paper, we employ Kullback-Leibler dis-
tance for measuring the similarity of the computed ap-
pearance models.

The similarity measurement of the color model is de-
rived in terms of mean and variance of the Gaussians in
each bin and given by Eq.2.
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The similarity measurement of the shape model is
given by Eq.3.
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These two are combined by Eq.4.
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�������� 	
��
�

(4)

Fig.3 illustrates the capability of the proposed track-
ing approach. As we can see, the method allows to track
moving objects continuously with occlusion and large
non-rigid deformation.

Figure 3: Some tracking as well as labeling results of
sequence Fight RunAway2

4 Activity Labeling Algorithm

For a statistical learning-based training algorithm, two
questions need to be addressed: (1)What kind of error
criterion do we use? (2)What kind of features(evidences)
are suitable for training classifiers? These two questions
are answered in the following two sub sections, followed
by a detailed description of the training and labeling al-
gorithm.
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4.1 The ������-����	
� Criterion

Bayesian classifier is a powerful, yet simple tool to in-
fer �
	����
� probability of �(hypothesis), based on the
���
� probability of � and the likelihood of�(evidence)
under � . The general form of Bayesian rule is shown in
Eq.5.

� ����� �
� ������ ���

� ������ ����� ������ ���
	 � ����� � �� � �����

(5)

Based on Eq.5, a decision for one-class classification
problem can be made as: If � ����� 
 � �����, then accept;
otherwise, reject.

Two types of error can occur: One is false negative(or
missing detection) and the other is false positive(or false
alarm). If the decision is probabilistic rather than deter-
ministic, the difference between the real and computed
�
	����
� probability should also be considered as a part
of false negative error. As in our training dataset, the
probability of each label is either 0 or 1 (thus easier
to label ground-truth data by human), we only consider
the deterministic case here. If the number of positive
samples, negative samples, false negative and false posi-
tive are ����, ����, �����, ����, respectively, the error
rates of the two types are given by:

������� �
�����

����
� �� ��������� ����	 ������ �

�����

����
(6)

Eq.5 treats these two types of error equally so that
the probability of overall error in terms of ����������

���������

is minimized [7]. In some cases, different utility (cost,
risk, ���.) functions are assigned to each type of er-
ror to accommodate the difference in impact of the er-
rors. Here we train the optimal classifier according to
the ������-����	
� criterion [14], which imposes
constraint on one of the errors and optimize the other.
Since we care more about the detection rate, we specify
���
��� and try to minimize ���
��.

4.2 Features

Feature design is of key importance for a classifica-
tion problem. A good feature for classification purpose
should have the following characteristics: (1)Capable
of discriminating different classes; (2)Easy to acquire;
(3)Intuitive so that human knowledge can be beneficial
in feature design. Despite the size of the initial feature
pool being large, the final classifier usually contains only
a small number of critical features with the most discrim-
inative power. In our system, a pool of as many as 50
features is used. Each feature is a scalar.

Based on our observation of ������ dataset, the 42
activity labels can be classified into the following three
types: (�)Activities of a single person; (��)Activities of
a group of persons and (���)Roles that an individual
played in a group. We design different features for dif-
ferent category of activities according to the interactions
among humans in the activities.

For activities of type � , the following 13 features are
used. Most of them are (or can be derived directly from)
motion trajectory of that person.

Note that (1)Subscript �� stands for Individual Box
and superscript � and ��� stand for current frame and pre-
vious frame; (2)�,�,
,� and � denote, respectively, col-
umn and row of center, main axis orientation, width and
height of the individual box, as described in the data for-
mat of ������; (3)� ����
� is the number of frames
since the object appeared. If the object disappears for a
while and appears again, the value is reset to one; (4)���
is a boolean value. It is �� � if the object disappeared at
the previous frame.

For activities of type �� , the following 26 features are
used. They contain information of the group box as well
as some statistics of its members.

Note that (1)Subscript �� stands for Group Box;
(2)��� is the number of individual boxes in the group;
(3)Subscript � and � , denoted mean and standard devi-
ation of the values of each member; (4)��	���� is the
maximal distance from center of group to center of each
member; (5)��	����� is the maximal distance between
any two members in the group.

Group detection itself can be regarded as a labeling
problem. The feature set contains feature (��,��,...,��)
listed above. The problem is that we don’t have negative
samples. Here, if a frame contains at least two individual
boxes and no group box, we consider it as a negative
sample and the features are computed based on the two
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closest individual boxes.
Lastly, for activities of type ��� , features include the

13 features used for type � activities as well as the fol-
lowing 11 new features, which represent deviation of that
person from the rest of the group:

Note that (1)��	���� is the distance from the individ-
ual to the center of group; (2)��	����� is the maximal
distance between the individual and any other member
in the group.

4.3 The Training and Labeling Algorithm

For each activity, given the training data, the task
of the training algorithm is to select the best features
and train the optimal classifier on that basis. If a one-
dimensional classifier based on a single feature can not
separate all the positive and negative samples sufficiently
well, features need to be combined to form a stronger
multi-dimensional classifier.

Let us begin with the training of �-� classifiers.
Assume ! is the activity we are interested and ("�,
"�,���,"�) is the feature set for !. The training data con-
tain ���� positive samples (frames with !) and ����

negative samples(frames without !). If �, the detection
rate is specified, the upper bound of missing detection is
���� � ����������.

For each feature "�# � � �����, we first compute fea-
ture values of both positive and negative samples �$��	�,
$��	�, ���, $�

�	����
�, �$�

�	�, $�
�	�, ���, $�

�	����
�. We use his-

togram of �$��	�, $��	�, ���, $
�
�	����

� to approximate the like-
lihood of � �"��!�. Usually, the more samples in the
training data, the closer the approximation to the real dis-
tribution. Fig.4 shows the histograms of feature ���� and
���� computed from positive samples of the activity %	�.
As we can see, bins with large number of polls corre-
spond to the real browsing areas (���� bulletin and map)
marked with a number.

Unfortunately, if we draw the histogram of �$��	�, $
�
�	�,

���, $�
�	����

�, we will probably find that the number of
negative samples falling into the same bins is also large.
Ideally, if one bin contains only positive samples, we can
confidently mark it as ������. Or ���� ���	�, we reject
without hesitation those bins with only negative samples.

Figure 4: Histograms of feature ���� and ���� of activity
%	�

For a bin with more than ���� positive samples, we
have no choice but to accept it. The bins left are of our
interest.

The goal is obvious. We have to find out and accept
the bins with most positive samples and least negative
samples. In other words, we want to reject the bins with
most negative samples and least positive samples, under
the constraint that the total number of rejected positive
samples can not exceed ����. This can be perfectly
mapped to the classical �-� ����	��� problem [4].

The �-� ����	��� problem is stated as: “A
thief robbing a store finds � items; the ��� item is
worth �� dollars and weighs �� pounds, where ��
and �� are integers. He wants to take as valu-
able a load as possible, but he can carry at most &
pounds in his knapsack for some integer & . Which
items should he take?” The problem has an opti-
mal solution based on the following dynamic program-
ming approach: ����	�����# ��=��������	�����	
�# ��# ��	����	�����	�# ������. The computational
complexity of this algorithm in worst case is '�& � ��.

Here, the ��� bin is mapped to the ��� item. The count
of positive and negative samples in the bin are mapped
to �� and �� and ���� is mapped to & . To reject the
bin is equivalent to take the item.

The partition of histogram plays a critical role here. It
is natural to choose bins with equal width. The problem
is, how many bins should we use? A coarse histogram
can not eliminate negative samples sufficiently: In the
extreme case where there is only one bin, all samples are
accepted. On the other hand, if the histogram is too fine,
the over-fitting problem (���� prediction is too sample-
dependent) becomes severe. Alternatively, a clustering-
based histogram partition can do a better job in that the
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result naturally reflects the distribution of the samples.

We choose �'�!�! algorithm over �-����	
because �'�!�! allows for different number of
clusters while the �-����	 assumes that the number
of clusters is known � ���
��. Initially, a fine histogram
is built. The list of tuples (%����# �
 �������� �� ��� ����

(if the bin is not empty) is the input of �'�!�!.
Then �'�!�! can automatically determine the op-
timal number of bins by splitting and merging them. An-
other advantage of �'�!�! is that if the decision is
made based on a threshold, for example, “A group is
formed when people are close enough to each other”,
we simply adjust � , the number of bins desired, which
is a parameter used in �'�!�!, to two. For details
of �'�!�!, please refer to [5].

The final histogram is partitioned according to the out-
put of the clustering algorithm. Please be aware that so
far we are talking about histogram partition for the pos-
itive samples. To make this partition applicable to the
negative samples as well, two special bins need to be in-
cluded for values out of range. Furthermore, another spe-
cial bin should be added for the samples (positive or neg-
ative) with an undefined value, ����, �������
���� when
	������� is zero.

After we partition the histogram and mark each bin
either as “accept” or “reject”, we can get the overall false
positive and false negative rate of feature "� for activity
!. This is applied to all "�, � � �����. If "����� turns out
to have the lowest false positive rate (False negative rate
of each feature is almost the same, which is equal to or
slightly smaller than the specified value. In case that two
features have the same false positive rate, we choose the
one with a smaller false negative rate), we select "�����
as the best �-� feature for !.

If "����� alone performs poorly in distinguishing pos-
itive samples from negative samples, we combine "�����
with each of the rest features: Assume the current feature
is "� (( � �# �# ���# %�	��-�# %�	��+�# ���# �), we use the
previously computed partitions of "����� and "� to build
�-� histograms(joint distribution) of positive and nega-
tive samples. Once again, the �-� ����	��� algorithm
is used to search for the optimal classifier for ("����� ,"�).

Similarly, we select the pair with the lowest false pos-
itive rate as the best �-� classifier. Assume the pair is
("����� ,"�����). If the result is still not good enough, we
combine ("����� ,"�����) with each of the rest features. So
on and so forth, until either the false alarm rate is lower
than a threshold, or the upper limit of number of itera-
tions has been reached.

This greedy approach is not globally optimal. As a
matter of fact, finding the optimal set of features needs an
exhaustive search in the whole feature space and thus is
not feasible due to the large dimensionality of the feature
space.

The complexity (mostly on constructing joint his-
togram and recursive calling of ����	���) of this algo-
rithm grows exponentially with the number of features
added to the classifier. But better data structure (using
hash table instead of array) can reduce it to be polyno-
mially bounded in the number of training samples. Ex-
periments show that up to 3 features with at most 32 bins
each can produce satisfactory results.

After the classifier for the activity is learned, the la-
beling process becomes straightforward: Step1.The val-
ues of the same set of features are computed; Step2.Find
the bin number in the �-� histogram of each feature;
Step3.Compute the bin number in the joint histogram;
Step4.If the bin marked with “accept”, then accept it;
otherwise, reject it.

5 Experimental Results

We conducted experiments as follows: (1)In exp.1,
all 14 ground-truth sequences were used for training and
testing. The purpose is to find out if the result feature
set is consistent with our perception and also to get an
estimate of the computational cost; (2)In exp.2, in or-
der to test the algorithm’s capability of making correct
predictions on unknown data, we used 75% of ground-
truth data for training and the rest 25% for testing; (3)In
exp.3, we changed the ratio to 50%-50% to investigate
the robustness of the algorithm in terms of the quantity of
training data; (4)In exp.4, we adjusted the detection rate
to obtain the ROC curve; (5)In exp.5, we tested our sys-
tem on an unknown (���� without ground-truth) sequence
Fight RunAway2. Note that due to the limited time, we
didn’t test our tracking algorithm in the first four exper-
iments. Instead, we used the ground-truth tracking data
(of individual box only) and focused on evaluating our
labeling algorithm.

5.1 Exp.1: Training and testing on same data

The results of Exp.1 are shown in Fig.5. Eight
columns of each row are the label, best feature set, ����,
����, ���
���, ���
��, training time and testing time
(in second), respectively. The group detection is the last
row of the second category. Here we used 
�� as the
detection rate for training, thus ���
��� � ��.

As we can see, the false positive rates of most labels
are quite low (less than ��) and the learned best fea-
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ture sets are understandable. Take label �� for example,
� ����
� and ������ 	�)� mean �� occurs mostly at
the first several frames and the size of the bounding box
changes significantly during this period of time. The po-
sition features (� and �) appear in many results, which
is not surprising because all activities in the training data
happened within a very limited space and due to the ap-
parent perspective effect, many other features(���� speed,
direction, ����) are not independent of position. In case
that we do believe the best feature set contains feature
that contradicts our common sense, which usually im-
plies an over-fitting problem, we can intentionally re-
move that feature before training and this is how hu-
man knowledge helps in feature design. For detection of
group activities, the results confirm our hypothesis that
the statistics of group members is playing an important
role.

The results also show the efficiency of our algorithm.
For a dataset with more than �# ��� samples in total,
the training of each label takes less than 5 seconds and
labeling less than 0.15 second on a desktop PC with dual
P4 2.4GHz CPUs. The labeling process is significantly
faster than real-time.

5.2 Exp.2&3: Training and testing on different data

Since each ground-truth sequence has different
amount of labels (Some labels appear in only one se-
quence), we split the dataset based on individual boxes
instead of sequences, ����, for each label, we mixed all in-
dividual boxes containing the label and randomly chose
75% for training and the rest 25% for testing. In order
to get an unbiased result, we run Exp.2 and 3 five times
and the mean(*) and standard deviation(+) of ���
���
and ���
�� are shown in Fig.6. We didn’t show the
best feature sets because they depend on the training data
and may change each time, but we did find that the best
feature sets are generally consistent with those of Exp.1.
Again, we used 
�� as the detection rate for training.

The overall results of both experiments are good. The
average of (���
���# ���
��) of all labels (We did not
count those marked with �,� because they appeared
only once or didn’t appear at all in our dataset.) are
������# ���
����� and ������# ��������� , compared
with ����
�# ����� in Exp.1. The fact that Exp.2 per-
formed better than Exp.3 confirms the common charac-
teristic of learning-based algorithms: The more training
data there are, (usually) the better testing result it can
have. Despite this fact, the result of Exp.3 does not de-
generate much, which indicates that the algorithm is ro-
bust regardless the amount of available training data. The

Figure 5: Training and testing results on same ground-
truth data

algorithm is also stable in terms of low standard devia-
tion: The average of (+������� # +������) of all labels are
������# ��������� and ������# ��������� .

Fig.6 also shows that the false positive rates are in
general lower than the false negative rates. This reveals
the power of the algorithm in eliminating negative train-
ing samples, which somehow compromises detection of
positive testing samples.

5.3 Exp.4: ROC Curve

We repeated Exp.2 but with different detection rates.
The ROC curve is shown in Fig.7. Due to the limited
space, here we only show several labels with large error
rate in Exp.2.

As we have expected, there is a tradeoff between a
high detection rate and a low false alarm rate. Please be
aware that the detection rates we can directly control are
for training, not for testing, but this can end up influenc-
ing the detection rate and false alarm rate of testing.
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Figure 6: Training and testing results on different
ground-truth data

Figure 7: ROC curve

5.4 Exp.5: Results on sequence Fight RunAway2

In the last experiment, we tested our labeling algo-
rithm as well as our tracking algorithm on sequence
Fight RunAway2. Several frames are shown in Fig.3.
We used training result from Exp.1 and we found that it
could successfully detect all critical events such as fight
start, fight end, leaving group, ���� Since no ground-truth
data is provided for this sequence, we don’t have a quan-
titative evaluation for the results.

6 Conclusion

We have addressed the challenging problem proposed
by ������ for automatic labeling of human activi-

ties in a video sequence. The major contributions are:
(1)We have presented a novel approach for tracking mul-
tiple objects using the appearance model which com-
bines color and edge information of the detected blob,
and in return is invariant to �� rigid transformation and
scaling; (2)We have proposed a statistical learning ap-
proach for detection of primitive activities which does
not require any knowledge of activity models; (3)We
have developed a training algorithm to select best fea-
tures and combine them to form a stronger classifier.
This algorithm is generic and thus applicable to other
classification problems.
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1 Abstract

Automated video surveillance demands the ability to de-
tect, track and analyze the behavior of multiple moving ob-
jects at high frame rates. The system should also be le-
nient towards temporary occlusions of the objects and also
to missing frames.

In this paper, we begin with the assumption that moving
objects in a scene have been detected using some reasonable
motion detection algorithm. We proceed on to describe an
algorithm that tracks these detected objects across frames,
and builds a history of object state and appearance that can
be used for doing higher-order inference about the activi-
ties in the video. The key tracking step,Data association
is performed by integrating appearance and trajectory in-
formation. The appearance component exploits the color
or gray-level composition of the detected objects, while the
trajectory component exploits models of the object dynam-
ics. Combining these two sources of information makes the
system more robust to occlusions and allows it to handle
multiple objects crossing each other. For every tracked ob-
ject, we extract its bounding box and build the motion his-
togram of the object’s motion history image. This motion
histogram provides an insight to the kind of activity being
performed by that particular object. We built motion his-
tograms for a range of activities (walking, running, pushing,
punching and kicking) and were successful in tracking the
object performing these activities.

2 Introduction

The objective of an automated video surveillance system
is to monitor a given environment with minimal interven-
tion from an operator. Generally when monitoring a given
scene for suspicious activity, we would like to answer the
following questions.

• Is there any change in the scene?

• If so, what objects are moving about the environment?

• Where are they located?

• Where are they going?

• What are they doing?

A variety of motion detection algorithms, based on dif-
ferent methods have been proposed [4] that lend answers to
the first three questions. In this paper, we assume the exis-
tence of a reasonable detection algorithm that can provide
us with the segmented blobs that represent moving fore-
ground objects. We propose a method that can robustly
track these segmented blobs, label them and use this infor-
mation to do some reasoning on their actions. This paper is
organized as follows. Section 3 describes a filtering mech-
anism that helps a detection algorithm in handling shadows
caused by illumination changes. Section 4 illustrates the
data association methods adopted by us to associate the dif-
ferent detected blobs between frames. In Section 5, we
describe a ranking assignment algorithm, based onBert-
sekas’ auction algorithmto find the optimal set of assign-
ments between multiple targets. Experimental results are
presented in Section 9. A discussion of the strengths and
weaknesses of the current approach along with directions
for future work are outlined in Section 10. Final conclu-
sions are presented in Section 11.

3 Motion Detection

Detection of moving objects in video streams is a signif-
icant and difficult, research problem by itself. Apart from
its intrinsic utility of segmenting video streams into mov-
ing and background components, detecting moving blobs
provides a focus of attention for recognition, classification,
and activity analysis, making these later processes more ef-
ficient since only moving pixels need be considered. There
are three conventional approaches to moving object detec-
tion: temporal differencing, background subtraction and op-
tical flow. Temporal differencing is very adaptive to dy-
namic environments, but generally does a poor job of ex-
tracting all relevant feature pixels. Background subtraction
provides the most complete feature data, but is extremely
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sensitive to dynamic scene changes due to lighting and ex-
traneous events. Optical flow can be used to detect inde-
pendently moving objects in the presence of camera mo-
tion;however, most optical flow computation methods are
computationally complex, and cannot be applied to full-
frame video streams in real-time without specialized hard-
ware.

We also note some general concerns with background
subtraction techniques that are not specific to the back-
ground estimation scheme:

• Stationary camera and stationary background assump-
tions.

• Fragmentation and disappearances. If an object
passes over a region of similar gray-level (or color
if using color images), the object may completely
disappear. Similarly, if only part of an object, say a
person’s pants, match the background then that part
will disappear in the background subtraction leading
to fragmentation of the person (the head and torso
may appear disconnected from the shoes).

• Easily tricked by sudden, gross changes due to illumi-
nation/weather.

These issues can wreck havoc on a tracking system and
make it impossible to uniquely associate objects. To keep
the overhead of detection very low and maintain focus on
the problem of tracking, we adopted a simple adaptive back-
ground subtraction technique. However to tackle the prob-
lems described above, we apply a preprocessing step prior
to the background estimation.

The grouping or clustering process is a straightfor-
ward extension of the classical connected components al-
gorithm [9]. Instead of requiring that a pixel be strictly con-
nected to another (e.g., an 8-neighbor), there is a distance
threshold that requires any two pixels within the specified
spatial distance threshold from each other to be assigned to
the same cluster. This rule is applied transitively as in the
single linkage clustering algorithm [3].

4 Gating and Association

4.1 Trajectory-based

Given that we are tracking an object and have observa-
tions up to and including framek, Equations 13 and 14 pro-
vide a means to predict where the next observation from this
track should occur and how much uncertainty from the pre-
dicted position we might expect. By setting a bound on the
squared Mahalanobis distance fromẑk+1|k, i.e., on

d2 = (zk+1 − ẑk+1|k)T Σ̂
(z)−1

k+1|k(zk+1 − ẑk+1|k) (1)

we can establish an ellipticalgateinto which the next mea-
surement for a particular track should fall. Since we will be
tracking multiple objects, we expect there to be multiple de-
tected objects (observations) and more than one object may
fall into the gate of a particular track. If we havent cur-
rently active tracks andnz separate observations (“objects”)
in the current frame then the process of gating amounts to
determining a(nt×nz) trajectory association matrixAtraj

in which entryAtraj
i,j = 0 if measurementj does not fall

inside gatei and will be non-zero if measurementj does
fall in gate i. For convenience, we assignAtraj

i,j to be the
Mahalanobis distance squared of measurementj from the
position predicted for the measurement in tracki.

4.2 Appearance-based

For the tracking system to perform properly, the most
likely measured potential target location should be used to
update the target’s state estimator. The probability of the
given measurement being correct is some distance measure
between the predicted state of the target and the measured
state. The state vector used in traditional data association
methods, like the one above is normally the position vec-
tor of the object. Limiting ourselves to position alone gives
rise to problems under conditions of occlusion. We propose
an extension that utilizes color information from the scene
and uses that as a feature in conjunction with the position.
This allows objects to cross directly in front of one another
without losing track of which is which after they separate.
The color histogram is well suited to this task because of its
ability to implicity capture complex, multi-modal patterns
of color. Moreover, because it disregards all geometric in-
formation, it remains invariant to non-rigid motions.

The motion detection module, followed by spatial clus-
tering gives an estimate of a detected object’s bounding box.
We construct a color histogram by filling buckets of a trans-
formed discretized color space [R + 16 G + 256 B] with
pixels inside the bounding box. This serves as a model his-
togramM . With every new frame, the bounding boxes are
computed and the candidate histograms are computed. If
we assume the color of the model has a density functionqz

and the candidate object at locationy has a density function
distributed aspz(y), then [8]

ρ(y) = ρ[p(y), q] =
∫ √

pz(y)qzdz (2)

This is the general form of the Bhattacharya coefficient
and its computation from sampled data involves estimating
the densitiesp andq. In our case the densities are given by
the color histograms of the model and the candidate targets.
Based on the sampled estimates of the Bhattacharya coeffi-
cient, the distance between the two (model and candidate)
color distributions is given by
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d(y) =
√

1− ρ[p(y), q] (3)

This measure is a metric valid for arbitrary distributions
and is invariant to scale.

4.3 Joint Association

In order to obtain a distance metric for data association
that incorporates both the histogram intersection and posi-
tion difference, we calculate the joint probability of the two
measurements, appearance and position. Let us defineXi,j

as the event that a detected objecti is actually the previous
objectj, Yi,j as the value of the histogram intersection be-
tween objectsi andj, andZi,j as the distance between the
position of objecti and the predicted position of objectj.
Since the color and position measurements are statistically
independent, the conditional probability can be expressed
as

P (Xi,j |Yi,j , Zi,j) =
p(Yi,j |Xi,j)p(Zi,j |Xi,j)P (Xi,j

p(Yi,j)p(Zi,j)
(4)

If we assume equal prior probabilities for allXi,j ,
the above equation can be simplified to maximize
Fy(Yi,j)Fz(Zi,j), where

Fy(Yi,j) =
p(Yi,j |Xi,j)

p(Yi,j)
(5)

Fz(Zi,j) =
p(Zi,j |Xi,j)

p(Zi,j)
(6)

whereFy(Yi,j) andFz(Zi,j) are functions that represent
the feature difference and position difference respectively.
Using this naive Bayes approach, we have a joint associa-
tion matrixAjoint that now has information from both color
and position. This association matrix represents the proba-
bilities that a new measurement belongs to an already de-
tected blob, is a newly detected blob or is a false alarm.

5 Solving the joint association matrix and
linking trajectories

Motion detection for each frame imageAt leaves us with
a set ofT (total number of frames) matricesCt ∈ <Nt×2,
where the total number of objects in framet is given byNt.
The task is now to identify observations of the same object
in subsequent frames in order to linkCtT

t=1 into trajectories
over time. The basic idea is to determine a set of associa-
tions between two sets of detected object states, such that
the set of associations is optimal (minimizes a linear cost

functional). Based on the joint association computed from
the previous section, we define an association matrixG with
elementG(i, j) = gij equal to 1 ifpi in framet andqj in
framet + 1 are produced by the same object. In order to
let the number of detected objects vary between frames, i.e.
Nt 6= Nt+1, the association matrix is augmented with both
a row g0j and a columngi0 for dummy targets at timest
and t + 1. Linking an object to a dummy means that the
detected object has disappeared between framest andt + 1
and linking the dummy to an object means that the object
has freshly appeared in the scene. With this in place, the
following topology constraint onG can be formulated

Every rowi > 0 of G and every columnj > 0
of G must contain exactly one entry with value ,
all others zero. Row 0 and column 0 can contain
more than one entry

In order to find an optimal set of links,gij , we need to
define the functional to be minimized. The only restriction
in the definition of such a functional is that it needs to be
linear in the association variablesgij and may be written as

φ =
Nt∑

i=0

Nt+1∑

j=0

φijgij (7)

where,φij represents the cost of associating objectpi in
framet with objectqj in framet + 1. The definition ofφ
encompasses information about the objects’ states (position
and color).

5.1 Initialization

The association matrixG is initialized by assigning each
particle in framet to its ”nearest neighbor” (using the dis-
tance measureφ) in frame t + 1 that is not already as-
signed to some other object. This means that, for every
i = I, j = J is chosen such thatφIJ is the minimum of
all φIJ for which no othergiJ is set to one. ThisgIJ is then
set to one. If no such minimum is found then the object is
linked to a dummy, i.e.gI0 = 1. After having done this for
all objects,pi, everyJ for which nogiJ is set is determined
and the correspondingg0J = 1. This initialization creates
a matrixG that fulfills the above mentioned topology con-
straint. In practice, this solution will be very close to the
optimal since only few conflicts will occur in practice.

6 Tracking

Object detection and spatial clustering identify moving
regions and group these together into spatially consistent
”objects”. The next steps involve linking the objects from
different frames together into tracks. For these steps, we
have used the machinery of the Kalman filter [10, 1].
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Underlying the Kalman filter is a linear dynamical model
of the following form (following the notation of [1]):

xk+1 = Fkxk + Gkwk (8)

zk = HT
k xk + vk (9)

wherexk is an(xr× 1) vector describing the state of a par-
ticular object at discrete time-stepk (frame number in our
case),wk is a (wr × 1) noise process (assumed Gaussian
with zero-mean and covarianceQk) that drives the object
dynamics, andzk is the (zr × 1) measurement (observa-
tion) made at time-stepk. Note thatzk is a function of the
system state and the noise processvk (assumed to be Gaus-
sian with zero mean and covarianceRk). The statistics of
the initial statex0 are assumed to be Gaussian with mean
x̄0 and covarianceP0.

The dynamical equations above satisfy the discrete
Gauss-Markov property so that the state at time stepk+1 is
Gaussian distributed and the densityp(xk+1|xk, . . . ,x0) =
p(xk+1|xk), i.e., knowing the most recent statexk tells
us as much aboutxk+1 as knowing the full state history.
Since the various quantities are Gaussian distributed, we
only need to keep track of means and covariances to know
the full distributions.

Given the sequence of observationsZk =
{z1, z2, . . . , zk}, we will define two estimators: one
estimates the current state and the other predicts the next
state (one-step prediction).

x̂k|k = E[xk|Zk] (10)

x̂k+1|k = E[xk+1|Zk] (11)

(12)

The notationx̂k|k means the estimate of the state at time
stepk given observations up to and including time stepk.
Similarly, the notationx̂k+1|k means the estimate of the
state at time stepk + 1 given measurements up to and in-
cluding time stepk. In addition to the state estimators, we
also keep track of the covariance of the estimates withΣ̂k|k
andΣ̂k+1|k. From the one-step state state predictor and its
covariance, we can determine the expected value for the ob-
servation and its covariance. Specifically,

ẑk+1|k = HT
k x̂k+1|k (13)

Σ̂
(z)

k+1|k = HT
k Σ̂

(x)

k+1|kH
T
k + Rk (14)

Given that we want to track both position and color, the
Kalman filter equations described in Section 6 need to mod-
ified accordingly. The state vectorxk = [pT

k , µT
k , φk(Ck)]T ,

now contains both the centroid information,pk = [xk, yk],
the meanµk = [µ1k, µ2k]T of the updated histogramMk in
a transformed RGB color space and the valueφk(Ck) cor-
responding to the histogram intersection between the his-
togram of the bounding region in the new frame (Ck) with
the one in the previous frame (Mk−1).

7 Update and Prediction

7.1 Measurement Update (Correction)

Once a specific measurement is associated to a specific
track, we can perform themeasurement update. The trajec-
tory update is based on the Kalman filter update equations,
while the appearance update is simply a weighted average
of the current histogram (from the measurement) and the
previous histogram (from the associated track).

The trajectory update step amounts to computing an es-
timate of the current state using all of the observations up
to and including the current time. The equations can be
conveniently written in terms of theinnovation, νk, which
reflects the difference between the actual measurement and
the predicted measurement.

x̂k|k = x̂k|k−1 + Lkνk (15)

Σ̂k|k = Σ̂k|k−1 − LkHT
k Σ̂k|k−1 (16)

νk = zk − ẑk|k−1 (17)

Lk = Σ̂
(x)

k|k−1HkΣ̂
(z)

k|k−1 (18)

The matrixLk is known as the innovations gain matrix.
The Kalman filter is also able to track through situations

in which a measurement is not acquired during a particular
frame. In this situation, the state estimate and its covariance
are just based on the predictions. Thus, if no measurement
is acquired, the tracker uses:

x̂k|k = x̂k|k−1 (19)

Σ̂k|k = Σ̂k|k−1 (20)

When this happens, the uncertainty in the state estimate
grows with each frame, which can eventually lead to prob-
lems with the gating process. In practice, if a measurement
is not acquired for some limited number of frames the track
is deactivated. If the object is later detected again, it will be
assigned a new track.

The appearance update is given by:

φ(NEW ) = (1− β)φ(OLD) + βφ(CURRENT ) (21)

7.2 Time Update (Prediction)

For the trajectory, we need to predict ahead to the next
frame to aid in locating the next measurement. For the ap-
pearance, we do not have a dynamical mode, so the appear-
ance at the next frame is predicted to be the same as the
appearance from the measurement update.

The time update step of the Kalman filter involves pre-
dicting the state in the next frame and the covariance of that
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prediction. Basically, this step reduces to propagating the
current estimates through the linear dynamical model.

x̂k+1|k = Fkx̂k|k (22)

Σ̂k+1|k = FkΣ̂k|kFT
k + GkQkGT

k (23)

Similarly for the measurements, we can predict ahead one
step to find (same as Equations 13 and 14):

ẑk+1|k = HT
k x̂k+1|k (24)

Σ̂
(z)

k+1|k = HT
k Σ̂

(x)

k+1|kH
T
k + Rk (25)

If the predictions for a given track are outside of the visible
image (taking into account the covariance and gate size),
then the track is deactivated. If we fail to take this action, the
number of tracks that have to be updated will grow linearly
with the number of frames collected.

The time update and deactivation step completes all the
work to be done on the current frame. The algorithm then
returns to the top of the process and repeats on the next
frame.

8 Activity Analysis

Once the targets have been detected and tagged with a
unique label, we extract the bounding boxes of the tagged
targets. The region within this bounding box forms the ba-
sis of our analysis. The Motion History Image (MHI) [13]
focusses on accumulating and recognizing patterns of mo-
tion rather than structural features. The MHI is constructed
by successively layering selected image regions over time
using a simple update rule:

MHIδ(x, y) = τ, ψ(I(x, y)) 6= 0 (26)

MHIδ(x, y) = 0,MHIδ(x, y) < τ − δ (27)

where each pixel(x, y) in the MHI is marked with a cur-
rent timestampτ if the function ψ signals object motion
in the current video frame. The remaining timestamps in
the MHI are removed if they are older than the decay value
τ − δ. This update function is called for every new video
frame.

The functionψ that selects a pixel location in the input
image can be arbitrarily specified. As described in [12], we
apply a fixed Sobel gradient mask to compute the motion
vectors of the image. The convolution with the gradient
mask will ensure consistency in the motion vectors. Prior
to performing this analysis, we establish ground truth infor-
mation for the various activities/roles under consideration.
A priori, we apply the above described process and build a
database of motion histograms of detected objects in a va-
riety of roles. The activities we considered were walking,

running, punching, kicking, pushing and waving. For ev-
ery frame, we extract the motion histogram and compute
a measure of similarity/dissimilarity with the histograms in
the database. The measure we adopt is the Bhattacharya
coefficient and it provides a reasonable estimate of the cor-
relation between different motion histograms.

9 Experiments and Results

The key claims we have made are that the set of algo-
rithms described earlier can robustly detect and track mul-
tiple moving objects under varying indoor conditions. We
further claim that comparisons of the motion histograms of
the motion history images gives a fair idea on the kind of
activity being performed. In this section, we illustrate some
of the results obtained by us on the PETS datasets.

Figure 1. Walk1

Figure 2. Walk1

10 Discussion and future work

Once the moving targets have been detected and tracked
(assigned unique labels), the activity analysis routine (as
described in Section 8) comes into play and is applied to
the tracked region. The data from the detection and track-
ing routines is collated with the results of activity analysis
to build an information table similar to the PETS ground
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Figure 3. Walk1

Figure 4. Meet Crowd

Figure 5. Meet Crowd

Figure 6. Meet Crowd

Figure 7. Fight1

Figure 8. Fight1

Figure 9. Fight1

Figure 10. Fight1
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truth data. The results of our analysis depend very heav-
ily on the kind of detection output obtained. When peo-
ple in the scene are very close to each other, the detection
module has difficulty in segmenting the people individually.
This leads to the detected target being tracked together as a
group (as shown in the results above). We tested our al-
gorithm on the available datasets and the results of activity
classification have been favorable. We compared our re-
sults with the PETS ground truth data and tabulated devia-
tions on positions, bounding box coordinates, track appear-
ance/disappearance, role and activity of the tracked object.

Some scope for future work in comes from the rationale
behind combining a color histogram and a position tracker?
There are a lot of existing algorithms to track multiple ob-
jects. Each of these come with their own advantages and
disadvantages. Our experiments gave us empirical evidence
that this combination is potent to track objects effectively.
Our current system combines these two approaches in a
simple unweighted fashion. If we would like give impor-
tance to either of these methods, we need a good mecha-
nism to determine how they complement each other. We
could think of these algorithms as models we could be ap-
plying to a tracking system. Let us take the case where
we apply a position tracker. The measurable output of this
tracker would be the centroids of the object(s) that is be-
ing tracked. We could treat this output as a random vari-
able and define a distribution on how it evolves over all the
frames. We could also construct a similar distribution for
the color tracker. These two random variables have a joint
probability distribution and also have their individual distri-
butions. By measuring the amount of mutual information
(KL-Divergence) in these distributions, we can come to a
mutual agreement on how to weight these two models.

11 Conclusions

In this paper, we have developed a prototype system that
can effectively detect and track multiple moving objects in a
dynamic environment. We have proposed a method to com-
bine two different tracking approaches and demonstrated a
technique to integrate them and manage the tracks gener-
ated. We have also experimentally validated and justified
the combination.
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Abstract

This paper presents a novel approach to evaluating the
detection of unusual or interesting events in videos involv-
ing certain types of human behaviour, such as pedestrian
scenes. The holy grail of computer vision for surveillance
can be thought of as an interesting or unusual event detec-
tor which when given an input video stream, outputs some
form of alarm whenever anything unusual happens inside
its field of view. This paper addresses the question of how
we would go about evaluating such a system, suggests one
possible evaluative schema, and presents an example of this
evaluative procedure in use on a prototype Interesting Event
Detector.

1 Introduction

When you monitor a pedestrian scene, a number of dif-
ferent behaviour patterns can be observed. People walk
along pathways and cars are driven along roads, and occa-
sionally people will take shortcuts or get into a car or stop
for a chat. Very occasionally, someone will do something
different or interesting – something that does not fit our
general understanding of what behaviour people exhibit in
that scene. Humans are very good at detecting such events,
but are not so good at articulating what exactly it is that
makes such events unusual or interesting. It is worth mak-
ing the distinction between events which are interesting and
events which are atypical - most Computer Vision systems
for surveillance attempt to detect the latter, whereas humans
are much more interested (by definition) in the former. It is
easy to imagine a system which would ring an alarm if a
pedestrian strayed from a path. But if the path was blocked,
this behaviour, although atypical, would not really be inter-
esting.

A number of systems have been constructed which can

be portrayed as attempts at identifying such events. Many
systems are actually designed to do something else, and
atypicality detection emerges as a “bonus” feature: by mod-
elling a particular feature of the environment (path usage,
patterns of pedestrian motion over time etc.) and deter-
mining which instances do not fit the model, some form of
interesting-event detector has magically been constructed.

One approach is exemplified in [4], in which the typ-
icality or otherwise of pedestrian trajectories is assessed
based upon learned models of absolute location and speed
over time. In [6], a model of the paths within a scene is
constructed based upon the behaviour of pedestrians, and
this path model can subsequently be used to detect unusual
trajectories. The relationships between objects can also
be used to judge typicality [7]. In [9] patterns of activity
are learned at a site, and unusual event detection is per-
formed by spotting events which do not fit the pattern or
co-occurrence data. In [3] “suspicious” behaviour is corre-
lated with the rapid head movements.

Determining the overall effectiveness of algorithms of
this type has historically been unsystematic. This is ac-
knowledged by the authors of [9], who state they are work-
ing on methods of evaluating the unusual event detection
aspect of their work.

Evaluative techniques at their simplest involve investi-
gating the problematic cases by hand - looking at the out-
liers - and saying “Yes, that’s unusual” [9, 4]. One model,
trained on pedestrians, had a major outlier which turned
out to be a cyclist. This is, of course, confirmation that
the model provides a reasonable basis for the detection of
strange pedestrian activity, however, the confirmation such
evidence provides is at best anecdotal. It is also completely
self-justifying - if we look at the examples which do not fit
the model, and find they are odd in some way, then of course
they are interesting to us - they fit our frame of reference (or
rather, they don’t fit our frame of reference) by definition.

Another means of evaluating such systems is through the
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use of “actors” 1. These people are recorded behaving in an
unusual fashion, and the system in question is evaluated on
its ability to single out the sequences featuring the strangely
behaving actors [3, 7, 4]. Problems with this approach are
manifold, but all hinge upon the question of whose idea of
interesting or unusual we are dealing with. If the decision
as to what constitutes unusual behaviour is left up to the ac-
tors, questions about who the actors are, what their precon-
ceptions of the project are and most importantly, their links
to the software designers, become paramount. If the actors
are lab-mates of the paper author, do they know how the al-
gorithm in question works? The alternative case, where the
actors are instructed by the system designer on the nature
of unusual behaviour, could be even worse - it is easy to
imagine a scenario in which the instruction “We need some
footage of supicious behaviour, like walking from car to car
across the car park in a wavy line” is issued. This is not
exactly good science.

Computer Vision systems for surveillance are generally
model based. And things which do not fit the model can
only be classed as unusual or interesting with respect to that
model. We cannot really claim that events which fall outside
the model are interesting or unusual - all we can really say
about them is just that they don’t fit the model. Thus we re-
ally cannot claim any more or less for these interesting event
detectors until we have a more principled way of evaluating
their performance. This paper proposes a way out of this
model-based trap - by providing a form of “ground-truth”
for interestingness.

2 Am I interesting or not?

Within the surveillance domain, what we are interested
in are events which might be associated with criminal or
dangerous behaviour. A recent study [10] investigates
whether such events can be predicted from CCTV footage
- that is , whether it is possible to distinguish sequences
where a crime was about to occur from neutral sequences.
The authors conclude that not only is it possible, but that
naı̈ve observers perform as well as trained security guards.
This suggests that there is no learned or innate ability to
detect the type of events security guards detect.

Our central assumption is that benchmarking against a
number of humans is an improvement over relying on the
author, actors, or serendipity to provide some measure of
the interestingness or otherwise of the data set.

The evaluative schema we propose involves requiring a
number of volunteers (in this case, undergraduate and post-
graduate students with no knowledge of the project being
evaluated) to rank the behaviour of each agent in the scene

1These actors often look suspiciously like computer vision postgradu-
ates.

in question. To assist in this task, separate videos are pro-
duced for each agent containing only those frames of video
encompassing the agent’s trajectory. A highlight indicates
exactly the agent we are interested in - this makes the cog-
nitive task of those evaluating much easier in scenes with
multiple, occluded agents.

Volunteers are asked to rate the “interestingness” of these
videos on a scale of 1 to 5. The instructions given to the
volunteers were as follows:

“If you were a security guard, would you re-
gard the behaviour of the agent highlighted in this
video as interesting? Please indicate on the fol-
lowing questionnaire, with one being uninterest-
ing and five being interesting.”

Volunteers were also invited to note down any comments
they wished to make about any of the videos.

An average of the scores from the human rankers is then
assumed to provide a simple measure of “interestingness”:
we choose the median, as this is less sensitive to outliers.
We can then compare it directly to the output of any ma-
chine generated indication of typicality, and if we want
our system to output a binary decision (interesting, or not)
we can use ROC graphs to assist in the determination of a
threshold.

However, the median is just one statistic we can use: the
advantage of having the opinions of a number of people is
that there is a richness of information we can incorporate
into our evaluations. We can, for example, calculate the
correlation statistics - both within the human set (to deter-
mine consistency within the set of human rankers) and be-
tween the set of human rankings and the machine generated
statistic. The correlation statistic applicable to this data is
Spearman’s Rho [1], as the data is clearly non-parametric
and on different scales - that is to say that any computer
generated statistic is unlikely to map directly onto a 1-5 rat-
ing of interestingness. Nevertheless, if those videos rated
highly by the computer are those videos rated highly by the
human volunteers this is a positive result.

Spearman’s Rho is a similar calculation to the product-
moment correlation (sometimes called Pearson’s), except
Spearman’s operates on ranked data. Given ranked data,
Spearman’s can be calculated using the following formula:

rs � 1 � 6∑n
i � 1 d2

i
n � n2 � 1 �

Where n is the number of videos, and d is the difference
between the matched pairs of ranks. Spearman’s Rho can
be tested for significance: for small values of n, rs has a non
standard distribution and specific tables must be used. For
large (n � 10) values of n the following function of rs fol-
lows approximately the distribution of a t-test statistic with
n � 2 degrees of freedom:
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ts �
�

n � 2
1 � r2

s

The resultant value ts can be compared against any stan-
dard statistical tables for significance testing.

As well as the possibility of performing a range of sta-
tistical tests we have a wealth of qualitative information in
the form of comments made by the subjects as they were
ranking the dataset. These can help in instances where dis-
agreement occurs - for example, in one outdoors scenario
an object was reported as being highly interesting by sev-
eral subjects, but the trajectory taken by that object was very
dull. Inspection of their forms revealed that it was interest-
ing because it was an ambulance.

3 The evaluative schema applied to the PETS
dataset

A subset of the PETS2004 dataset was used in this
study.2 This consists of pedestrian footage filmed in a foyer
situation, with actors performing various roles such as meet-
ing, walking, fighting and browsing. Included in the dataset
are various people we assume are bystanders. As we are
only interested in evaluating high level classifications of be-
haviour (and not tracking), we only consider those videos
for which ground truth has already been provided. We then
exclude those agents whose trajectories are only partially
covered by the video, and those agents who hover on the
periphery. In short, we only analyse the main actors in each
scene, and those bystanders whose trajectories are shown in
full. This leaves us with a total of 23 agents from 12 movies.
These are listed in detail, alongside an image showing the
path of the trajectory, in Appendix A at the end of this paper.

The 12 original videos are used to produce 23 (n � 23)
labelled videos. These were presented to 12 subjects (ns �
12), who rated each on the 1-5 scale as detailed in Section
2. Spearman’s Rho was calculated for each pair of human
raters, giving a correlation matrix with 66 entries ( n2

s 	 ns
2 ).

All of these correlations were positive, and 62 of the 66
were significantly positive at the 0.05 level. This means we
can safely assume that the group of humans are in broad
agreement about which clips are interesting.

It is interesting to take a closer look at the behaviour of
those agents where the human rankers were in disagreement
- where the standard deviation of the human scores is high.
Some of these were due to partial trajectories, and to the
inclusion of people such as ID1 from Walk3.mpg, who en-
tered the scene then immediately turned around and left (we
assume he was a passer-by, perhaps put off by the camera).

2This data comes from from the EC Funded CAVIAR project/IST 2001
37540

In particular, there are four cases in particular where the hu-
man rankings range from lowest (1) to highest (5) and it is
worth investigating these in a little more detail:


 ID 0 from Walk1.mpg: Standard Deviation = 1.07.
In this movie clip, the agent walks out and waves at
the camera, then leaves the scene by the same door
they came in from. The actor in this clip is presumably
signalling to the camera person that they are ready to
go, although this was not clear from context.


 ID 0 from Rest SlumpOnFloor.mpg: Standard Devi-
ation = 1.48. In this movie, the agent walks out of the
scene (the clip clearly starts before the actor is ready)
then re-enters, crosses to the object on the left, then sits
on the floor for a short while before leaving. Some of
the subjects think that sitting on the floor was uninter-
esting.


 ID 1 from Meet WalkSplit.mpg: Standard Deviation
= 1.62. This clip and the following feature agents en-
tering the scene from different doors, meeting in the
middle, and then leaving from different doors. Com-
ments by those subjects who rated these clips highly
indicate that they thought a package was passed be-
tween the two actors - which would be suspicious
given the instructions to subjects.


 ID 3 from Meet WalkSplit.mpg: Standard Deviation
= 1.56. See above.

That there was disgreement between the human subjects
on some of the clips should not be seen as a drawback to
this evaluative schema - indeed, one of the reasons for in-
cluding a number of subjects is to allow for such differences
and disagreements. These help provide a richer framework
against which to evaluate our software.

4 A prototype interesting event detector

The interesting event detector we will use as a demon-
stration is inspired Dennett’s large body of work on inten-
tional explanation (for example, [2]), which describes dif-
ferent ways of thinking about and explaining the behaviour
of agents. It is hoped that this system, when completed,
will provide a new way of thinking about the problem of
behaviour modelling in the surveillance domain. However,
it is still at the prototype stage and we will just sketch an
overview of its operation here.

Our system tries to work out where the agent might be
heading, and combines this hypothesis with a simple model
of the way in which people intentionally navigate towards
the geographical goals in a scene. In our original formula-
tion, the hypothesis about where the agent may be heading
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(a) Exits (b) Obstacles

(c) Scene

Figure 1. The exit model, obstacle model and
scene.

is built up using information from a person tracker [5], an
obstacle model and an exit model, but in the current im-
plementation we simply use the ground truth information
provided (specifically, the position of the object centroid)
for the agent’s position (x). We apply a Kalman filter to this
and store the directional component to obtain an estimate of
direction of travel θ .

All calculations are carried out in the image plane, and
we make the simpifying assumption that the wide-angle
lense used to capture the PETS2004 datasets will not have
a significant effect on our calculations.

Central to our approach is the concept of a goal. We de-
fine goals as places where the agent can leave the scene -
doors and exits - or to borrow terminology from Ellis and
Xu [11] “Long-term Occlusions” or “Border Occlusions”.
In the types of pedestrian scene typically subject to surveil-
lance, these are the goals of the agents therein - in a car
park, the pedestrian goals are either their cars or the door;
in a general pedestrian scene like a shopping mall or the
foyer of a research institute, the goals are the exits of the
scene, and perhaps some other form of attraction such as an
information desk or an ATM machine. The goals for any
particular scene can be learned, if enough example footage
is present. In the current experiment the PETS2004 dataset
(which features a number of short videos) does not provide
the body of data required for learning to take place, and
so the exit model was hand crafted. This consists simply

of rectangular boxes representing each exit. The obstacle
model is similarly hand crafted, but for computational rea-
sons does not have to be regular and is simply stored as a
bitmap. Figure 1 shows these models and an image of the
scene.

Our central assumption is that people move consistently
towards their goal. If there is an obstacle between the agent
and their goal, virtual “sub-goals” are constructed in places
where the agent might be able to see more of the scene than
they currently can - thus, sub-goals are constructed on the
edge of obstacles, in places where the agent would be able
to see further around the obstacle. From each sub-goal, we
compute which goals would be visible if the agent were at
that point, and also any sub-sub-goals. And from each sub-
sub-goal, we compute which further goals would be visible.
Thus for each goal xg within the scene we can determine
whether that goal is directly visible, or whether it would be
visible by turning a corner, or whether it would be visible
by turning two corners (in the current implementation we
stop computation at two levels of sub-goal analysis). This
takes the form of a label - Label � xg � - which can have the
values V , for those goals which are directly visible; N, for
those goals which are not visible at all, and S1 or S2 for
those goals which are accessible via a sub-goal or two.

Indeed, there are four possible relationships between an
agent and each goal for each frame, which can be deter-
mined from the label of the pixel at the position of the goal
Label � xg � , and the angle φ , which is the angle subtended
by a line between the position of the goal xg, the position
of the agent x, and the agent’s current direction estimate θ .
These are:

1. A: The goal is directly visible: Label � xg � � V ; and the
agent is heading towards it 1 � φ ��� 1. g2 is in this
state in Figure 2.

2. D: The goal is directly visible to the agent:
Label � xg � � V ; but they are heading away from it:
φ � 1 or φ �� 1. g4 is in this state in Figure 2.

3. N: The goal is not visible to the agent: Label � xg � � N
(it is on the other side of an obstacle, and is not reach-
able by means of a sub-goal) . g3 is in this state in
Figure 2.

4. Sn: The goal is visible to the agent, but only via a sub-
goal (S1) or a sub-sub-goal (S2): Label � xg � � Sn. g1
is in state S1 in Figure 2.

Given these frame-by-frame classifications for each goal,
we can build an idea of how likely - or rather, unlikely - that
goal is as an explanation for the trajectory as a whole. This
is done by associating a cost with certain state transitions.
The diagram in Figure 3 shows costs associated with transi-
tions in the current model.
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Obstacle (O)

Direct path headed away (V , later D)

Direct path headed towards (V , later A)

Reachable via sub-goal (S1)

Reachable via sub-sub-goal (S2)

Figure 2. An example of the sub-goal al-
gorithm in action in an outdoor pedestrian
scene. The agent is represented by a white
dot and a white arrow (corresponding to its
velocity vector); white dots with black cen-
tres are sub-goals; the obstacle model is
shown in black; areas which are not visi-
ble (either directly or via a sub-goal or two)
in white; areas shaded very light grey rep-
resent areas directly visible and headed to-
wards; darker shades of grey represent areas
of the scene accessible only via sub-goals or
sub-sub-goals; very dark grey represents ar-
eas directly visible but not within the angle
of vision; g1, g2, g3 and g4 are example goals
referred to in section 4.

Applying costs as laid out in Figure 3 provides us with
a cost for each goal within the scene, and that cost can be
thought of as representing the number of frames in which
the agent’s behaviour is inconsistent with travel towards that
particular goal. These costs are then divided by the total
length of the trajectory to provide a statistic which is com-
parable across agents. Finally, we need to simplify matters
and provide a single cost for each actor. If the system were
fully recursive and we were able to work out the final exit
for each agent, the cost associated with the final exit would
be an alternative measure. However, in the current dataset
there are some trajectories which finish whilst the agent is
still in view of the camera, making this statistic unreliable.
The highest cost or average cost would be inappropriate, as
it is possible for perfectly uninteresting trajectories to avoid
one or more exits completely; these would have very high

Figure 3. State transition diagram indicating
the cost of each transition. Those transi-
tions which are free (drawn with thick lines)
are those associated with progress towards
the particular goal; those with a cost are
those associated with movement away from
the goal

costs indeed - this would also affect any attempt to use the
average cost or some other aggregate score over all goals.
Therefore, in the current situation, the best choice for a sin-
gle cost is the lowest cost.

We can think of the Cost% statistic as representing the
percentage of frames in which the agents’ travel was incon-
sistent with motion towards their most likely goal. Cost%
scores for the PETS2004 dataset are set out in full in Ap-
pendix A. The next section of this paper discusses ways
in which our Cost% statistic can be compared with the
“ground truth” scores discussed in section 3. It is worth not-
ing that with simple scenes without obstacles, the algorithm
just described simplifies to straightest path and the sub-
goal mechanism does not make any difference to the out-
put. For several of the simpler trajectories in the PETS2004
dataset this was indeed the case, and the power of the ap-
proach would be better demonstrated in a more complicated
scene with multiple obstacles. That said, the results on the
PETS2004 dataset are still promising and worth discussion.

5 The prototype evaluated

The question we now have to address is how well our
prototype results agree with the results of the subjects de-
tailed in Section 3. Firstly, we can calculate Spearman’s
Rho - rs - the correlation coefficient, between the computer
generated Cost% statistic and the human subjects, and be-
tween the Cost% and the human mean and median (making
the assumption that it is appropriate to reify the averages in
this way). The correlation statistic rs and the t-statistic ts are
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Correlation with rs ts
H1 0.639 3.807
H2 0.679 4.234
H3 0.408 2.05
H4 0.353 1.729
H5 0.507 2.692
H6 0.453 2.329
H7 0.277 1.319
H8 0.292 1.4
H9 0.386 1.917
H10 0.319 1.542
H11 0.47 2.439
H12 0.626 3.676
Median Human 0.607 3.499
Mean Human 0.639 3.810

Table 1. Correlation statistics for the Cost%
score against each individual subject and the
human averages. Those values which are
statistically significant at the 0.05 level are
highlighted in boldface, and those which are
significant at the 0.1 level but not the 0.05 in
italics.

set out in Table 1.
The significance levels for ts with n � 23 are 1.721 at

the 10% level and 2.080 at the 5% level. As is clear from
Table 1 the correlation with the average human is statisti-
cally significant. In Figure 4 we have drawn the graph of
Cost% and the median human score by video clip (sorting
the video clips by median) it is clear that those clips rated
highly by humans generally scored highly on the machine
generated statistic as well. This graph also enables us to see
the anomalous cases clearly.

The spike labelled A in Figure 4 corresponds to
Meet WalkTogether1.mpg id 2. In this clip, the agent en-
ters from one side, meets someone, changes direction and
heads towards an exit - he does not actually exit the scene,
but turns around and comes a short way back into the foyer
before the video cuts off. We assume that this is an arti-
fact of video editing - it is definitely strange behaviour if
not. Given that our system can be thought of as providing a
measure of behaviour consistency, it is acceptable for it to
pick up on such artifacts.

The spikes labelled B and C in Figure 4 correspond
to Meet WalkSplit.mpg. These trajectories are both quite
complicated, involving first moving towards the other agent
in the scene and then moving towards an exit (different ex-
its in each case). This is an aspect of our software that we
hope to address in future - specifically, making other tracked
agents within the scene legitimate goals in themselves. This

 0

 1

 2

 3

 4

 5

 0  5  10  15  20  25

R
an

ks

B C

D

A
Median
Cost%

Figure 4. A comparison of the Cost% statistic
and the median human rankings. Cost% has
been scaled, in order to place both outputs in
the same range (1-5). The x-axis values are
ordered by median.

is one of the clips highlighted for attention in Section 3 as
being a video with high variance amongst human rankers.

The trough labelled D in Figure 4 corresponds to id 6 in
Fight RunAway1.mpg. This agent enters the scene moving
quite rapidly, has a play-fight with another agent (lasting
just a few seconds), then runs across to the exit opposite.
His trajectory is essentially a straight line with a slight kink
in the middle, and as our software operates solely on indi-
vidual trajectories does not pick up on this behaviour. An
extension to our system which might cope with this would
be to take into account the relative positions of other agents
in the scene.

6 Conclusions

Evaluation in Computer Vision should be about more
than merely x � y � t. And even when evaluating something
as simple as x � y � t, it has been suggested [8] that reliance on
just one estimate is unwise. As we produce more compli-
cated systems, performing higher level cognitive tasks than
“simple” classification or location, we need more compli-
cated, higher level evaluative techniques. If a system is
presented as a general-purpose surveillance system, or an
“Interesting Event Detector”, then it should be evaluated as
such. Specifically, it should be evaluated in such a way that
the opinions and prejudices of the designers cannot affect
the evaluation. Evaluation by accident - simply noting that
the events detected seem to be odd - is not good enough.
Evaluation by actor - by engineering test cases which in-
volve people behaving strangely - is suspect, and evaluation
based upon the opinion of the system author is also unsatis-
factory. In this paper, we have presented a novel approach
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which uses a group of naı̈ve subjects who together provide
a rich background against which the performance of an al-
gorithm can both be measured statistically and compared
qualitatively.

The software outlined in this paper is also novel, in that it
adopts a high level intentional analysis of what is essentially
quite simple behaviour. Previous work consists of analy-
ses of the resultant behaviour: the fact that people follow
similar trajectories across a scene [4] is because they have
similar goals; the fact that paths can be approximated by
trajectory analysis [6] is because paths join two goals. This
work attempts instead to analyse the cause of the behaviour
– the goals – directly. The initial results presented here are
promising, and show that in principle such an analysis could
be used in a practical situation to provide a filter on surveil-
lance data.
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A Table of agents and results

Filename Id Image Description Cost%
(Scaled)

Human
mean

Human
SD

Human
Median

Walk1.mpg 0
Walks in, waves at camera, goes
back through same door

37.8
(3.52) 3.33 1.07 3.5

Walk1.mpg 1 Walks slowly across scene
8.57
(1.57) 1.25 0.45 1

Walk3.mpg 1
Walks out, turns around, walks back
through same door

38.1
(3.54) 2.08 1.16 2

Walk3.mpg 2 Walks slowly across scene
16.4
(2.09) 1.58 0.67 1.5

Meet WalkTogether1.mpg 1
Enters, meets, shakes hands,
changes direction, exits

49.46
(4.3) 1.92 1.16 1.5

Meet WalkTogether1.mpg 2
Enters, meets, shakes hands,
changes direction, exits

43.82
(3.92) 1.92 1.16 1.5

Rest FallOnFloor.mpg 2
Enters in a wobbly fashion, falls
over, gets up and leaves

58.6
(4.91) 4.67 0.65 5

Rest SlumpOnFloor.mpg 0
Leaves scene, re-enters, slumps on
floor, leaves scene again

58.52
(4.9) 3 1.48 3

Meet WalkSplit.mpg 1
Walks towards person, shakes
hands, turns, leaves scene

58.13
(4.88) 2.5 1.62 2

Meet WalkSplit.mpg 3
Walks towards person, shakes
hands, turns, leaves scene

36.31
(3.42) 2.33 1.56 2

Meet Crowd.mpg 0 Walks in straight line across scene
8.33
(1.56) 1.33 0.78 1

Meet Crowd.mpg 1 Walks in straight line across scene
11.95
(1.8) 1.5 0.67 1

Meet Crowd.mpg 2
Walks in relatively straight line
across scene

27.86
(2.86) 1.5 1 1

Meet Crowd.mpg 3
Walks in relatively straight line
across scene

29.67
(2.98) 1.58 1.16 1

Fight RunAway1.mpg 6 Walks in, fights, runs out
18.5
(2.23) 4.75 0.62 5

Fight RunAway1.mpg 7
Hangs around, Walks in, fights,
runs out

56.44
(4.76) 4.67 0.65 5

Fight OneManDown.mpg 4
Walks in, fights, runs in circles,
runs out

50
(4.33) 4.75 0.62 5

Fight OneManDown.mpg 5
Enters, gets fought with and
knocked over, leaves

55.43
(4.7) 4.33 1.15 5

Browse WhileWaiting2.mpg 0 Wanders aimlessly
41.97
(3.8) 2.08 0.9 2

Browse4.mpg 1 Wanders aimlessly
33.62
(3.24) 1.92 0.9 2

Browse4.mpg 2 Walks directly across scene
0
(1) 1.17 0.39 1

Browse2.mpg 1 Walks in, waves at camera, leaves
37.66
(3.51) 2.75 0.97 3

Browse2.mpg 3
Wanders towards bookshelves,
browses, leaves

58.87
(4.92) 1.67 0.78 1.5
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Abstract

Ontologies offer a convenient means of encoding hierar-
chical knowledge in terms of entities, attributes and rela-
tionships which may be used to characterise a given do-
main. This paper shows how modern techniques for struc-
ture and parameter learning in Bayesian networks can be
applied to ground truth data to automatically generate ef-
fective high-level state and event recognition mechanisms
for video analysis. The manual annotations are used to in-
stantiate visual tracking appearance modelling modules in
order to augment the ground truth with states which may be
directly estimated by means of video object tracking. Both
the structure and parameters of Bayesian networks are then
trained to infer high-level object and scenario properties on
the basis of the visual properties and an ontology of states,
roles, situations and scenarios which is easily derived from
the original ground truth schema.

1 Introduction and Overview

As visual surveillance applications become increasingly
prevalent, automated techniques for the detection and anal-
ysis of objects and events in video data are gaining promi-
nence. It is likely that an increased reliance on such meth-
ods will bring about important changes to the way that re-
search and development in relevant fields of computer vi-
sion is conducted and assessed. The case of vision-based
biometrics in recent years offers some insights into likely
developments in other areas of computer vision which are
pertinent to the booming security industry.

Increased commercial and government interest in au-
tomated visual surveillance is not only resulting in in-
creased emphasis on performance analysis and evaluation
standards, but also fundamentally affects the way such re-
search is conducted. Rather than focussing on the particular
merits and intellectual importance of particular vision al-
gorithms and representations, developers of visual surveil-
lance systems will be confronted with largely externally im-
posed specifications of what information such systems are

to extract from available video footage.
This paper presents a study of how the process of creat-

ing recognition systems for high-level analysis of surveil-
lance data can be largely automated, provided sufficient
quantities of ground truth data which has been annotated
with descriptors from the desired analysis specification are
available. Such a specification may usefully be regarded as
an ontology which provides a prior description of the appli-
cation domain in terms of those entities, states, events and
relationships which are deemed to be of interest. The hier-
archical organisation and relational constraints imposedby
such an ontology may then be used to guide the design of a
complete visual analysis system.

In this paper, video sequences and ground truth from the
CAVIAR project 1were used to define an ontology of vi-
sual content descriptors arranged in a hierarchy of scenar-
ios, situations, roles, states, and visual properties. Thelat-
ter category was defined by choosing object attributes such
as translational speed and appearance change which could
easily be extracted by means of a pre-existing blob track-
ing and appearance modelling framework. The CAVIAR
training data was then re-labelled with this extended set of
descriptors by instantiating the tracking framework with the
individual objects in the ground truth and computing the se-
lected visual attributes for all frames in the sequences.

The resulting data was then used to learn both the struc-
ture and parameters of Bayesian networks for high-level
analysis. Evaluations were performed to assess how eas-
ily the categories of the ontology could be inferred on the
basis of the chosen visual features and on the basis of pre-
ceding layers in the hierarchy. The former allows one to
assess the (in)adequacies of a set of given visual content
extraction and representation methods, which is an impor-
tant tool in designing the computer vision components of
a surveillance system in order to maximise their utility for
high-level inference in light of the domain ontology. Con-
versely, one can use the probabilistic scoring methods ap-
plicable to Bayesian networks to evaluate how well-defined

1EC Funded CAVIAR project/IST 2001 37540, see
http://homepages.inf.ed.ac.uk/rbf/CAVIAR/

57



e.g. the pre-defined set of situation descriptors are in terms
of the labels for object roles and states which appear in the
ground truth. From this one can draw conclusions as to
the semantic and syntactic self-consistency and complete-
ness of the ground truth schema and the extent to which the
manual annotations are consistent with the assumptions in-
corporated into the ontology. Such results then allow one to
iteratively refine both the ontology and the underlying vi-
sual content extraction methods in order to arrive at a com-
plete system which meets its requirements. They may also
serve as a valuable basis for comparison of alternative ap-
proaches to solving a particular set of tasks.

2 Related Work

In recent years, Bayesian graphical models have played a
prominent role in visual surveillance tasks [3, 2]. They offer
many advantages for tracking tasks such as incorporation
of prior knowledge and good modelling ability to represent
the dynamic dependencies between parameters involved in
a visual interpretation.

In [15] tracking of a person’s head and hands is per-
formed using a Bayesian network which deduces the body
part positions by fusing colour, motion and coarse intensity
measurements with context dependent semantics. Track-
ing on the basis of multiple sources of information is also
demonstrated by Choudhury et al [4] who present a system
which fuses auditory and visual cues for speaker detection.
As an improvement to earlier work by the same authors, the
fusion is performed by a Dynamic Bayesian network whose
structure was learned by means of a modified AdaBoost al-
gorithm. [7] uses a relatively sophisticated mixture of Gaus-
sians model for the background and a Bayesian network to
reason about the state of tracked objects. Objects are rep-
resented by a combination of predictive features. A method
for recognising complex multi-agent action is presented in
[9]. Belief networks, including some automatically gener-
ated from the temporal structure descriptions of compound
actions, are used to probabilistically represent and inferthe
goals of individual agents and integrate these in time from
visual evidence.

Ontologies offer a way of incorporating structured syn-
tactic and semantic knowledge into visual analysis frame-
works [16]. [11] presents an ontology of actions represented
as states and state transitions hierarchically organised from
most general to most specific (atomic). The paper stresses
the point that language-based description of video requires
one to establish correspondences between concepts and fea-
tures extracted from video images. Appropriate syntactic
components such as verbs and object labels can then be
determined to generate a natural language sentence from a
video sequence. In [5], an architecture for perceptual com-
puting is presented which integrates different visual pro-

cessing routines in the shape of a “federation of process”
where bottom-up data is fused with top-down information
about the user’s context and roles based on an ontology of
roles and relations. The use of ontologies for visual con-
tent analysis also features in [13] which describes an event
recognition language for video. Events can be hierarchical
composites of simpler primitive events defined by various
temporal relationships over object movements.

3 Visual Analysis and Tracking

This section provides an overview of the visual tracking
and object modelling methods which were applied to the
CAVIAR training sequences.

3.1 Background modelling and foreground
detection

The system maintains a background model and foreground
motion history (obtained by frame differencing) which are
adapted over time using an exponential rate of decay to de-
termine the decreasing influence of previous framesimi−1

in the history:

Mi = β ∗ |imi − imi−1|+ (1 − β) ∗ Mi−1 (1)

where β = 1 − e−1/λM (2)

The motion historyMi is used to identify a background
imagebimi of pixels undergoing sufficiently slow change
(i.e. due to noise or gradual changes in lighting conditions)
which can then be used to reliably update the background
modelBi and estimate its variance:

Bi = α ∗ bimi + (1 − α) ∗ Bi−1; B0 = im0 (3)

where bimi = |imi −Mi| < τ ; α = 1 − e−1/λB (4)

Pixels are deemed to be part of the non-static foreground
if they exceed a difference threshold which is a multiple
of the background varianceσB

i . Furthermore, pixels which
are thus classified as outliersBoutlier

i from the background
process are not labelled as foreground if they are likely to
be part of (moving) shadows as determined by the DNM1
algorithm described in [14]:

Boutlier
i = |imi −Bi−1| > k ∗ σB

i (5)

Fi(x, y) = Boutlier
i (x, y) ∧ ¬shadowi(x, y) (6)

3.2 Blob tracking and adaptive appearance
modelling

Foreground pixels are clustered using connected compo-
nents analysis to identify moving regions (“blobs”). These
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Figure 1:Tracking results (from left to right): Original frame; Model of the background variances; Results of back-
ground subtraction; Detected blobs after morphological operations; Resulting tracked objects (outlined in green) with
ground truth data and results shown in yellow.

Figure 2: Sample frames from a surveillance sequence showing the objects tracked by the blobtracking framework
outlined in green.

Figure 3:Overview of the blob tracking method.

are then parameterised using shape (bounding box, cen-
tre of gravity, major axis orientation) and colour measures.
Colour appearance is modelled by means of both an RGB
histogram and a Gaussian mixture model in hue-saturation
space. In a similar manner to [12], re-estimation of the mix-
ture parameters is performed selectively by weighting frame
contributions with the blob’s colour log-likelihood under
the model.

Blob positions are tracked using a Kalman filter or
Condensation tracker with a second order motion model.

Tracked objects are matched to detected blobs using a
weighted dissimilarity metric which takes into account dif-
ferences in predicted object location vs blob location and
changes in shape and appearance. Histograms are com-
pared using the EMD measure and provide a useful measure
of short-term appearance variation while the Gaussian mix-
ture models a more stable and long-term representation of
appearance which is useful e.g. for identity maintenance
across object occlusions. Figure 3 summarises the blob
tracking framework.

Figure 4:Bayesian network for occlusion reasoning and
prediction of object interactions.

3.3 Occlusion reasoning

To make tracking more robust, the object to blob assign-
ment stage features a Bayesian network for reasoning about
occlusions and object interactions (see figure 4) based on
observed or predicted overlap of object bounding boxes and
failures of object assignment.

59



4 High-level Analysis

4.1 Data Set

The aforementioned CAVIAR data comprises 28 sequences
taken by a surveillance camera in the entrance lobby of
the INRIA Rhone-Alpes research laboratory in Montbon-
not, France. They consist of six scenarios of actors per-
forming different activities such as walking around, brows-
ing information displays, sitting down, meeting one another
and splitting apart, abandoning objects, fighting and run-
ning away.

Each sequence has been annotated with the spatial loca-
tion, angle of rotation and extent of bounding boxes around
individuals and groups of people. Each such box is assigned
a numerical label to identify it in subsequent frames and
a list of properties (see section 4.2). These consist of bi-
nary states and probabilities (which are effectively either
1 or 0 in the ground truth) for the events, scenarios, sit-
uations and roles which are deemed to best describe the
behavioural and situational context of the given person or
group. Groups have a different set of descriptors from in-
dividuals and are defined in terms of their constituent indi-
viduals and the smallest bounding box which encompasses
them.

However, this paper limits its scope to the individuals
and their descriptors. This is because high-level analysis
on the basis of individual state and actions was found suf-
ficient to investigate the use of the extended ground truth
ontology for the creation and evaluation of Bayesian infer-
ence networks. Moreover, the criteria for grouping in the
data were found to be somewhat ill-defined, for example
often people are grouped together at a particular frame on
the basis that they will interact in some way several sec-
onds later in the sequence. Furthermore, the training of
Bayesian networks was limited to the subset of the ground
truth data made available for such purposes as part of the
2004 IEEE Workshop on Performance Evaluation in Track-
ing and Surveillance (PETS2004). This subset encompasses
half the sequences for a total of 17374 annotations of indi-
vidual people.

4.2 Domain Ontology

Ontologies encode the relational structure of concepts
which one can use to describe and reason about aspects of
the world. Ontology is the theory of objects in terms of
the criteria which allow one to distinguish between differ-
ent types of objects and the relations, dependencies, and
properties through which they may be described.

The CAVIAR annotations can naturally be organised into
a hierarchical ontology as shown in table 1. This arrange-
ment offers guidance for the design of Bayesian inference
networks. For example, one would expect an individual’s

state to depend primarily on their current role, their current
role to depend on the situation they are facing, and their
situation to depend on the scenario in which they are partic-
ipating. These broad hierarchical relationships can be used
as a structural prior for the training of Bayesian networks as
described in the next section.

In order to study the extent to which elements of the on-
tology may be inferred on the basis of automatically ex-
tracted visual information, one needs to augment the ontol-
ogy with appropriate descriptors that can be computed from
raw sequence data using computer vision techniques. Us-
ing the tracking and appearance modelling framework de-
scribed in section 3, a set of such descriptors was defined in
order to form the bottom layer of the ontology:
cvSpeed: Current object speed (as estimated from the
tracker) in terms of the estimated displacement of the ob-
ject’s bounding box expressed in pixels per second (calcu-
lated per frame and normalised using the camera’s frame
rate)
cvFlow: Amortised flow measure representing a recent his-
tory of the object’s motion:

flt = γ ∗ (|cxt − cxt−1| + |cyt − cyt−1|)+(1−γ)∗flt−1

whereγ = 1 − e−1/3 and (cxt, cyt) = object centre of
gravity at time t.
cvLifetime: Whether or not the object has been newly
instantiated or is about to be terminated due to no longer
being detectable in the image (in the absence of any other
explanation offered by the occlusion reasoning).
cvHistdist: Measure of inter-frame appearance variation
calculated as the weighted sum of histogram EMD measure
and Gaussian mixture model likelihood. The weight given
to histogram distance is increased if the object is moving
rapidly.
cvOccstat: Whether the object is estimated to be unoc-
cluded, occluded, or to have disappeared based on the
occlusion reasoning network shown in figure 4.

These visual descriptors are not claimed to constitute the
best choice for the analysis task at hand. They are merely
properties of tracked objects which can be simply and ro-
bustly defined using the techniques described in section 3
and offer a reasonable basis for studying the requirements
for low-level analysis mechanisms which result from the
pre-defined ontology of higher-level terms. Additional ob-
ject tracking and analysis modules could easily be inte-
grated into the existing framework to provide additional in-
formation for terms which are currently hard or impossible
to infer (e.g. the detection of left objects and other roles
which require knowledge of multi-object interactions). The
principle goal of the investigation was to study the suitabil-
ity of the ontology and ground truth for automated con-
struction of Bayesian inference networks independent of the
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performance of any particular tracking methods. Thus the
available annotations were used to initialise objects main-
tained by the visual tracking framework in order to then
augment the ground truth for each individual with the re-
sulting visual descriptors listed above.

Scenario A description of an individual’s overall con-
text.

scBSC Browsing scenario
scIM Immobile scenario
scWG Walking scenario
scDD Drop-down scenario
Situation The situation in which the individual is par-

ticipating.
siM Moving situation
siIS Inactive situation
siBSI Browsing situation
Role The individual’s role in the current situation.
rF Fighter role
rBR Browser role
rLV Left victim role
rLG Leaving group role
rWR Walker role
rLO Left object role
State The individual’s current attributes.
tAP Appear
tDI Disappear
tO Occluded
tIN Inactive: visible but not moving
tAC Active: visible, moving but not translating

across the image
tWK Walking: visible, moving, translating across

the image slowly
tR Running: visible, moving, translating across

the image quickly

Table 1:Ontology

4.3 Learning Bayesian Network Structure
and Parameters

There are a variety of methods for learning both the pa-
rameters and structure of Bayesian networks from data, see
[8, 10] for an overview and further references. In this pa-
per, the goal was to learn the structure and parameters of a
static directed Bayesian network given fully observed data,
i.e. the values of all nodes are known in each case from
the ground truth (augmented as required with the infor-
mation gathered by the computer vision techniques). All
nodes were represented as discrete states, with the nodes
cvSpeed, cvFlow and cvHistdist quantised to 5 different val-
ues. Nodes cvLifetime and cvOccstat have 3 states while all
other variables are binary.

scBSC

scIM 

scWG 

scDD

siIS siBSI

rF rBRrLG

rWR 

tAP

tO

tACrLO

tDI

tWK

siM

tR

rLV tIN

Figure 5: Bayesian network structure trained using
the K2 algorithm applied to the original ground truth
schema.

Learning of networks structure was performed using the
K2 algorithm (Cooper and Herskovits, 1992). Other tech-
niques such as Markov Chain Monte Carlo (MCMC) were
largely found to provide inferior results and required many
thousands of iterations to converge to a solution. Further-
more, the K2 method directly benefits from the prior struc-
tural information contained in the ontology. The K2 al-
gorithm is a greedy search technique which starts from an
empty network but with an initial ordering of the nodes. A
Bayesian network is then created iteratively by adding a di-
rected arc to a given node from that parent node whose ad-
dition most increases the score of the resulting graph struc-
ture. This process terminates as soon as none of the possible
additions results in an increased score. Scoring was per-
formed using the marginal likelihood of the model. Once
the network structure has been trained, parameters can be
estimated easily using maximum likelihood estimation us-
ing Dirichlet priors (pseudo-counts).

Figure 5 shows the Bayesian network which results from
training a Bayesian network using the K2 method and the
data from the CAVIAR ontology in table 1. As can be seen
from the graph, several of the nodes are not definable in
terms of the other nodes and the overall connectivity seems
somewhat ad-hoc. By contrast, figure 6 shows a network
which was trained using the full ontology and a structural
prior specifying that nodes which are part of the same se-
mantic level in the ontology (e.g. all situation labels) should
be treated as equivalent in terms of the ordering of nodes.
The resulting network structure encompasses many of the
causal relationships one would expect from the semantics
and shows that there are strong dependencies between the
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Figure 6:Bayesian network structure trained using the K2 algorithm with a structural prior and using the extended
ontology.

computer vision derived terms and the states and roles in
particular.

5 Performance Analysis

5.1 Visual Tracking Accuracy

Figure 1 shows results from the visual tracking for one
frame of the CAVIAR sequences, while figure 2 shows
results of vision-based tracking over several frames of a
sequence. A range of performance evaluation metrics have
been proposed to assess the quality of visual object tracking
[6, 1]. Important factors include the number of
True positives Ntp (’hits’): the number of visually tracked
objects confirmed by the ground truth
False positives Nfp (’duds’): the number of objects not
matching the ground truth
False negatives Nfn (’misses’, ’false rejects’): the number
of ground truth objects not matched by the tracking
True negatives Ntn (’true rejects’): the number of erro-
neous observations rejected by the visual tracking
It follows that the number of objects in the ground truth,N ,
can be expressed asN = Ntp + Nfn. One can then define
metrics such as
Detection rate (sensitivity)DR = Ntp/N
False alarm rate FR = Nfp/(Nfp + N)

A mean distance-from-track measureTD is also com-
puted. For each object in the ground truth, this is the aver-
age distance across the sequence of the normalised (in terms
of the maximum possible distance across the image) Eu-
clidean distance of object and matching observation centres
of gravity.

Figure 7 shows results ofDR, FR andTD calculated
for the visual object tracking framework in section 3 over
the approximately 13000 frames of CAVIAR sequences
used purely for evaluation.

5.2 Performance of High-level Analysis

One useful measure of comparing Bayesian networks is the
likelihood of the training data. Assuming independence of
the training cases, the log-likelihood of the training setD =
{D1, . . . , DM} can be computed over allN nodes of the
network:

LL = log

M∏

m=1

Pr(Dm|G) =

N∑

i=1

M∑

m=1

log P (Xi|Pa(Xi), Dm)

wherePa(Xi) are the parents of nodeXi. In order to ar-
rive at a simple statistic for comparison of different net-
works, one can compute the average likelihood of the data
per node:

L∼ = eLL/(M∗N)

Using this measure, the network in figure 5 achieves a score
of L∼ = 0.729, while the network in figure 6 scoresL∼ =
0.888. Its likelihood scores for each node are shown in table
2.

These scores indicate how well the conditional distribu-
tion at each node represents the training data for that node.
For example, the values derived using computer vision have
no support in the ground truth and their derivation there-
fore involves a greater amount of uncertainty, resulting in
a lower likelihood score. Even within the nodes corre-
sponding to terms in the ground truth, some such as “rWR”,
“scWG”, “scIM” and “scBSC” exhibit smaller likelihood

62



Figure 7: Performance results of the visual tracking for about 13000 frames from the CAVIAR sequences. Top:
detection rate DR. Middle: false positive rate FR. Bottom: Average distance from track TD.

Figure 8: Expected detection rates for the nodes in the Bayesian network in figure 6 given different evidence (see
section 5.2). The values on the x-axis correspond to nodes in the network when enumerated in topological order as in
table 1 (i.e. scBSC=1, scIM=2, ..., cvOccstat=25).

values. This may be due to inconsistencies in the ground
truth or failure of the Bayesian network to fully model their
interdependencies.

Perhaps more useful conclusions can be drawn from an
analysis of posterior probability scores. Using a suitable
inference algorithm such as the Junction tree method, one
can compute the marginal probabilities for each possible
state of a given node for the available evidence. By com-
puting the marginal probability of a given node for its “cor-
rect state” (i.e. that provided in the ground truth data), one
can compute the expected detection rate for a given term in
the ontology as the mean of these marginal scores over the
evaluation data set. This allows one to quantify the value
of adding and removing nodes and edges in the Bayesian
network.

The dashed red line on the left of figure 8 indicates how
well defined the upper-level terms are given only the value
of the states (tAP, tDI, tO, tIN, tAC, tWK, tR) as evidence
for the network in figure 6. By comparison, the solid red
line shows expected correct detection rates if the Bayesian
network is given both the values of the states in the ground

truth and that of the computer vision derived nodes as ev-
idence. It can be seen that adding the latter improves the
performance of higher-level inference. The blue line on the
right side of figure 8 indicates the expected correct infer-
ences for each state given the values of the computer vision
nodes only.

6 Summary and Conclusions

This paper demonstrates the value of using ontologies to
build working high level vision systems. It is shown how
such ontologies can be derived from an existing ground
truth schema and a set of visual tracking methods. Together
with a set of annotations, such an ontology can then be used
to derive training data and prior structural information for
automated learning of both the connectivity and parameters
of Bayesian networks for high-level inference. Provided
sufficient amounts of such data are available, this process is
reasonably robust to human errors in the annotations and in-
adequacies in the automatically extracted visual content de-
scriptions. Performance analysis of the resulting networks

63



Node Likelihood Node Likelihood
scBSC 0.604 tAP 0.959
scIM 0.534 tDI 0.980
scWG 0.505 tO 0.978
scDD 0.867 tIN 0.999
siM 0.999 tAC 0.728
siIS 0.832 tWK 0.718
siBSI 0.902 tR 0.937
rF 0.904 cvSpeed 0.266
rBR 0.845 cvFlow 0.278
rLV 0.999 cvLifetime 0.993
rLG 0.927 cvHistdist 0.392
rWR 0.695 cvOccstat 0.555
rLO 0.985

Table 2:Likelihood scores

and the quality of the visual tracking provides a useful ba-
sis for comparison of alternative schemes and methods. It
allows alternative ontologies to be compared for their self-
consistency and realisability in terms of the different visual
detection and tracking modules.

It was shown how this can be done using the CAVIAR
project’s ground truth annotated sequences. Using the an-
notations and a robust but straightforward blob-based track-
ing framework, one can gather co-occurrence statistics for
the terms in the ontology and use these together with the hi-
erarchical relationships implied by it (event, scenario, situ-
ation, role, state) to build Bayesian nets for high-level anal-
ysis tasks in the chosen visual surveillance domain.
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Abstract

A video tracker should be able to track multiple objects
in the presence of occlusions. This is a difficult task since
there is not enough information during the occlusion time
intervals. This paper proposes a tracking system which
solves these difficulties, allowing a long term tracking of
multiple interacting objects. First active regions are tracked
using simple image analysis techniques. Then, a Bayesian
network is used to label/recognize all the detected trajec-
tories, taking into account the interaction among multiple
objects. Experimental results are provided to assess the pro-
posed algorithm with PETS video sequences.

1. Introduction

Video surveillance systems aim to detect, track and clas-
sify human activities from video sequences captured by sin-
gle or multiple cameras. Several systems have been recently
proposed to perform all or some of these tasks (e.g., see
[13, 16, 6, 11, 14]).

The problem becomes difficult when there is an overlap
of several objects in the image or the occlusion of some
of the objects to be tracked. In such cases it is not possi-
ble to track each moving object all the time and inference
strategies must be devised in order to recover tracking when
enough information becomes available. Fig. 1 shows the
superposition of multiple objects with partial occlusion of
some of them and their separation into isolated active re-
gions.

Several methods have been used to recover from object
superposition and occlusion as well as detection errors (mis-
detection and false alarms). Some of them are modified ver-
sions of the methods used in the tracking of point targets
in clutter e.g., nearest neighbor tracker [4], the JPDAF [2],
the multiple hypothesis tree or particle filtering [3, 8]. The
two problems (target tracking and video objects tracking)

∗This work was supported by FEDER and FCT under project LTT
(POSI 37844/01).

(a) (b)

(c) (d)

Figure 1. Occlusion example: merge & split

are very different however and they should be tackled with
different techniques.

This paper describes a new method which has been de-
veloped by the authors which formulates object tracking in
video sequences as a labeling problem. It is often simple to
detect and track moving objects in video sequences when
they are isolated. This can be efficiently done using sim-
ple image analysis techniques (e.g., background subtrac-
tion). When the object is occluded by other objects or by
the background it is usually not possible to separately track.
All we can expect to achieve most of the time is to track
the group of objects. However, when the object becomes
isolated again we should be able to recognize it and recover
the track. How can we perform these tasks using all the
available information (e.g., information about the interac-
tion among multiple objects, visual characteristics of the
objects to be tracked, physical laws)?

This paper described a solution based on Bayesian net-
works which addresses all these problems. Object tracking
is decomposed in two steps: tracking of active regions and
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labeling/recognition of detected trajectories. The labeling
task is formulated as an inference problem which is solved
by resorting to the use of Bayesian networks which provide
useful models for objects interaction and occlusion.

This paper is organized as follow. Section 2 presents an
overview of the Bayesian Network tracker. The low level
processing is described in section 3 and the generation of
the Bayesian network is presented in section 4. Section 5
deals with computation and implementation aspects of the
proposed tracker. Section 6 described experimental results
and section 7 presents the conclusions.

2. Bayesian Network Tracker

The Bayesian network (BN) tracker consists of two
steps. The first step tries to track all the active regions in
the video stream. These regions are either isolated objects
or groups of objects. The output of the first step is a set of
trajectories (see [1, 10] for details).

When the objects overlap in he image domain or when
they are occluded, the methods used in first step are not able
to reliably associate active regions detected in consecutive
frames and the trajectories are broken. A labeling operation
is then performed in the second step in order to recognize
trajectories of the same object.

Furthermore, we wish to perform a consistent track of
object groups i.e., we want to know if a given region is a
group, to estimate the group trajectory and to know which
objects are in the group.

The labeling operation is performed using a Bayesian
network. The Bayesian network plays several roles. It mod-
els the interaction among the trajectories of different objects
and with the background. Second it provides a consistent la-
beling which accounts for known restrictions (e.g., in object
occlusions, group merging and splitting). Finally, it allows
to update the labeling decisions every time new information
is available. Fig. 2 shows the output of the two steps for the
example of Fig. 1

Let sk, k = 1, ..., N be the set of segments detected by
the low level operations of step 1 (see Fig. 2a). In order to
interpret this data, a label xk is assigned to each segment
sk. Each label identifies all the objects in the segment i.e.,
if the segment corresponds to a single object, the label is
the object identifier. If the segment corresponds to a group,
the label is a set of identifiers of all the objects inside the
group. The key issue is how to estimate the labels from the
information available in the video stream?

Three information sources should be explored. First, la-
bels should be compatible with physical restrictions (e.g.,
the same object can not be in two places at the same time,
the objects velocities are bounded). Second there is prior
information which should be used e.g., if the trajectories of
two isolated meet a given point and a new trajectory is cre-
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Figure 2. BN tracker: a) object trajectories b)
Bayesian network.

ated, then the new trajectory is probably a group with the
two previous objects. Finally, visual features can be eas-
ily extracted from the video stream (e.g., color histogram)
which aid to recognize the objects especially in the case of
isolated objects.

A Bayesian network is used to represent the joint distri-
bution of the labels x = (x1, ..., xN ) and visual features
y = (y1, ..., yN ) detected in the video stream. Additional
variables r denoted as restriction variables are also used to
guarantee that the physical restrictions are verified (details
are given in section 4). Fig. 2.b shows the Bayesian net-
work associated with the example of Fig. 2a. The labeling
problem is solved if we manage to obtain the most probable
configuration given the observations,

x̂ = arg max
x

p(x/y, r) (1)

where x is the label configuration, y the visual features and
r the restriction variables. Each variable corresponds to a
node of the BN. Object interaction (trajectory geometry) is
encoded in the network topology. Two nodes xi, xj are
connected if the j-th segment starts after the end of the i-
th segment. Additional restrictions are used to reduce the
number of connections as discussed in Section 4.

Three issues have to be considered in order to specify a
Bayesian network for a tracking problem: i) computation of
the network architecture: nodes and links; ii) choice of the
admissible labels Li associated to each hidden node; iii) the
conditional distribution of each variable given its parents.

The last two items depend on the type of application.
Different solutions must be adopted if one wants to track
isolated objects or groups of objects. Group tracking leads
to more complex networks since each segment represents
multiple objects. These topics are addressed in the next sec-
tions. Section 3 describes low level processing and section
4 describes the network architecture.
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Since the network represents all the trajectories detected
during the operation, the number of nodes increases with
time without bound. As mentioned before, this approach
can only be used for off-line analysis of short video se-
quences with few tens of objects. Section 5 describes the
extension of this method for on-line operation.

3. Low Level processing

The algorithm described in this paper was used for long
term tracking of groups of pedestrians in the presence of
occlusions. The video sequence is first pre-processed to de-
tect the active regions in every new frame. A background
subtraction method is used to perform this task followed by
morphological operations to remove small regions [14].

Then region linking is performed to associate corre-
sponding regions in consecutive frames. A simple method
is used in this step: two regions are associated if each of
them selects the other as the best candidate for matching
[15]. The output of this step is a set of strokes in the spa-
tial/temporal domain describing the evolution of the region
centroids during the observation interval.

Every time there is a conflict between two neighboring
regions in the image domain the low level matcher is not
able to perform a reliable association of the regions and
the corresponding strokes end. A similar effect is observed
when a region is occluded by the background. Both cases
lead to discontinuities and the creation of new strokes.

The role of the Bayesian network is to perform a con-
sistent labeling of the strokes detected in the image i.e., to
associate strokes using high level information when the sim-
ple heuristic methods fail. Every time a stroke begins a new
node is created and the inference procedure is applied to de-
termine the most probable label configuration as well as the
associated uncertainty.

4. Network Architecture

The network architecture is specified by a graph, i.e., a
set of nodes and corresponding links. Three types of nodes
are used in this paper: the hidden nodes xi representing the
label of the i-th segment, the observation nodes yi which
represent the features extracted from the i-th segment and
binary restriction nodes rij which are used to avoid labeling
conflicts. The restriction node rij is created only if xi and
xj share a common parent. A link is created from a hidden
node xi to xj if xj can inherit the label of xi. Physical con-
strains are used to determine if two nodes are linked (e.g.,
the second segment must start after the end of the first and
the average speed during the occlusion gap is smaller than
the maximum velocity specified by the user). Furthermore,
we assume that the number of parents as well as the num-
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Figure 3. Basic structures (grey circles repre-
sent restriction nodes).

ber of hidden children of each node is limited to 2. There-
fore, seven basic structures must be considered (see Fig. 3).
These structures show the restriction nodes rij but the vis-
ible nodes yi are omitted for the sake of simplicity. When
the number of parents or children is higher than two, the
network is pruned using link elimination techniques. Sim-
ple criteria are used to perform this task. We prefer the con-
nections which correspond to small spatial gaps.

4.1. Tracking Isolated Objects

A stroke si is either the continuation of a previous stroke
or it is a new object. The set of admissible labels Li is then
the union of the admissible labels Lj of all previous strokes
which can be assigned to si plus a new label correspond-
ing to the appearance of a new object in the field of view.
Therefore,

Li =


 ⋃

j∈Ii

Lj


 ∪ {lnew} (2)

where Ii denotes the set of indices of parents of xi. See Ta-
ble 1 which shows the labels associated to the hidden nodes
of the Bayesian network of Fig. 2. The Bayesian network
becomes defined once we know the graph and the condi-
tional distributions p(xi|pi) for all the nodes, where pi are
the parents of xi. As mentioned before, seven cases have
to be considered (see Fig. 3). The distribution p(xi|pi) for
each of these cases are defined following a few rules. It is
assumed that the probability of assigning a new label to xi

is a constant Pnew defined by the user. Therefore,

p(xi = lnew|xj = k) = Pnew (3)

All the other cases are treated on the basis of a uniform
probability assignment. For example in the case of Fig. 3c,
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k Lk

1 1
2 2
3 1 2 3
4 1 2 3 4
5 1 2 3 4 5
6 1 2 3 4 6

Table 1. Admissible labels (isolated objects).

xi inherits the label of each parent with equal probability

p(xi|xp, xq) = (1− Pnew)/2 (4)

for xi = xp or xi = xq. Every time two nodes xi, xj have a
common parent, a binary node rij is included to avoid con-
flicts i.e., to avoid assigning common labels to both nodes.
The conditional probability table of the restriction node is
defined by

p(rij = 1/xi ∩ xj = ∅) = 1
p(rij = 0/xi ∩ xj �= ∅) = 0 (5)

It is assumed that rij = 0 if there is a labeling conflict i.e.,
if the children nodes xi, xj have a common label; rij = 1
otherwise. To avoid conflicts we assume that rij is observed
and equal to 1. Inference methods are used to compute the
most probable configuration (label assignment) as well as
the probability of the admissible labels associated with each
node. This task is performed using the Bayes Net Matlab
toolbox [12]. Each stroke detected in the image is charac-
terized by a vector of measurements yj . In this paper yj is a
set of dominant colors. The dominant colors are computed
applying the LBG algorithm to the pixels of the active re-
gion being tracked in each segment. A probabilistic model
of the active colors is used to provide soft evidence about
each node [9]. Each label is also characterized by a set of
dominant colors. This information is computed as follows.
The first time a new label is created and associated to a seg-
ment, a set of dominant colors is assigned to the label. The
probability of label xj ∈ Lj given the observation yj is
defined by

P (xj/yj) =
(

N

n

)
Pn (1− P )N−n (6)

where n is the number of matched colors, N is the total
number of colors (N = 5 in this paper) and P is the match-
ing probability for one color.

4.2. Group Model

This section addresses group modeling. Three cases
have to be considered: group occlusions, merging and split-
ting. Fig. 2 shows a simple example in which two persons

k Lk

1 1
2 2
3 1 2 (1,2) 3
4 1 2 (1,2) 3 4
5 1 2 (1,2) 3 4 5
6 1 2 (1,2) 3 4 6

Table 2. Admissible labels (groups of ob-
jects).

meet, walk together for a while and separate. This example
shows three basic mechanisms: group merging, occlusion
and group splitting. These mechanisms allow us to model
more complex situations in which a large number of objects
interact forming groups. After detecting the segments using
image processing operations each segment is characterized
by a group label xi. A group label is a sequence of labels of
the objects present in the group. A Bayesian network is then
built using the seven basic structures of Fig. 3. Let us now
consider the computation of the admissible labels. The set
of admissible labels Lk of the k-th node is recursively com-
puted from the sets of admissible labels of its parents Li,
Lj , starting from the root nodes. This operation depends
on the type of connections as follows:

occlusion
Lk = Li ∪ lnew (7)

merging

Lk = Li ∪ Lj ∪ Lmerge ∪ Lnew

Lmerge = {a ∪ b : a ⊂ Li, b ⊂ Lj , a ∩ b = ∅}
(8)

splitting
Lk = Lj = P(Li) ∪ lnew (9)

where P(Li) is the partition of the set Li, excluding the
empty set. In all these examples, lnew stands for a new la-
bel, corresponding to a new track. Table 2 shows the set of
admissible labels for the example of Fig. 2. Labels 1,2 cor-
respond to the objects detected in the first frame and labels
3-6 correspond to new objects which may have appeared.
Conditional probability distributions must be defined for
all the network nodes, assuming that the parents labels are
known. Simple expressions for these distributions are used
based on four parameters chosen by the user:

• Poccl - occlusion probability

• Pmerge - merging probability

• Psplit - splitting probability

• Pnew - probability of a new track
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These parameters are free except in the case of the occlusion
(Fig. 3b). In this case, the conditional probability of xk

given xi in given by

P (xk/xi) =
{

1− Pnew xk = xi

Pnew xk = lnew
(10)

The computation of all conditional distributions for the
basic structures are detailed in [10].

The probabilistic models for the observations is the same
used in the previous section (see (6))

Since the network represents all the trajectories detected
during the operation, the number of nodes increases with
time without bound. As mentioned before, this approach
can only be used for off-line analysis of short video se-
quences with few tens of objects. The following section
describes the extension of this method for on-line operation.

5. On-line Operation

A tracking system should provide labeling results in real
time, with a small delay. Therefore it is not possible to
analise the video sequence in a batch mode i.e., perform-
ing inference after detecting the object trajectories. Further-
more, the model complexity must be bounded since it is not
possible to deal with very large networks in practice.

To avoid these difficulties two strategies are proposed in
the paper: periodic inference and network simplification.
The first strategy consists of incrementally building the net-
work and performing the inference every T seconds. If we
denote by xkT

0 , ykT
0 , rkT

0 the variables of the video signal in
the interval [0, kT [, then the inference problem is given by

x̂kT
0 = arg max

xkT
0

p(xkT
0 /ykT

0 , rkT
0 ) (11)

The network grows as before but the labeling delay is
reduced to less than T seconds. The solution of (11) can
be obtained by several methods e.g., by the junction tree
algorithm. The Bayes net toolbox was used in this paper
[12].

In practice we wish to have an instantaneous labeling of
all the objects i.e., we do not wish to wait T seconds for a
new global inference. To obtain on-line labeling a subop-
timal approach can be devised which combines the optimal
decision obtained at the instant kT with the new informa-
tion. Let xi be a hidden node associated to a trajectory ac-
tive in the interval [kT, t[. Using the Bayes law

P (xi/yt
0, r

t
0) = P (xi/ykT

0 , yt
kT , rkT

0 , rt
kT )

= αP (yt
kT , rt

kT /xi)P (xi/ykT
0 , rkT

0 )
(12)

where P (xi/ykT
0 , ykT

0 ) is a prior, computed before in the in-
ference step at time kT and P (yt

kT , rt
kT /xi) represents new

information. The choice of the best label xi is performed by
selecting the highest a posteriori probability P (xi/yt

0, r
t
0).

When xi is a new variable which was created in the inter-
val [kT, t[, then we assume that the prior P (xi/ykT

0 , ykT
0 )

is uniform: no label is preferred based on past information.
The previous strategy converts the batch algorithm into

an on-line algorithm i.e., it solves the first problem. How-
ever, the network size increases as before. To overcome this
difficulty, a simplification is needed. The main idea used in
this work is to bound the memory of the system.

Old (hidden and visible) nodes influence the labeling
assignment of current nodes. However this influence de-
creases and tends to zero as time goes by: recent variables
are more important than old ones. So, we need to use tech-
niques to forget the past. In this paper, we allow a maximum
of N nodes and freeze all the other nodes by assigning them
the most probable label obtained in previous inferences. In
this way, the complexity of the network remains bounded
and can be adapted to the computational resources available
for tracking. Several strategies can be used to select the
nodes to be frozen (dead nodes). A simple approach is used
in this paper: we eliminate the oldest nodes and keep the N
most recent. A comparison of this strategy with other using
synthetic and real data will be presented elsewhere.

6. Experimental Results

Experimental tests were performed with video surveil-
lance sequences using the implemented on-line tracker de-
scribed in this paper. The tests were performed with PETS
sequences (PETS2001 dataset1 training [5] and PETS2004
”Meet Split 3rdGuy” [7]) used as benchmarks in video
surveillance, as well as other video sequences obtained in
an university campus.

Figure 4 shows the performance of the tracker in the
PETS2004 ”Meet Split 3rdGuy” sequence at 25 fps. This
is a difficult example, useful to illustrate the performance
of the tracker in the presence of occlusions, group merging
and splitting. Fig. 4a shows the evolution of all active re-
gions detected in the video stream. This figure displays one
of the coordinates of the mass center (column) as a func-
tion of time. Every time there is an occlusion or when two
or more objects overlap it is no longer possible to associate
the new active regions with the ones detected in the previous
frame. The trajectories are interrupted in such cases. Fig.
4b shows the labeling results obtained with the on-line al-
gorithm described in the paper. The BN tracker manages to
disambiguate most of the occlusions well (only the yellow
stroke is misclassified).

Figure 5 shows examples of the tracker performance in
group merging and splitting for PETS 2004 sequence. This
sequence has three moving objects (3,4,6) and three static
objects. The tracker manages to correctly track the three
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Figure 4. Example (PETS2004 test sequence) :
a) detected strokes; b) most probable labeling
obtained with the on-line algorithm.

moving objects most of the time as shown in Fig. 5. Three
persons walk in separately (Fig. 5a), they merge in groups
of two (Figs. 5b,c,e) and they split after a while (Figs. 5d,f).
All these events are correctly interpreted by the tracker.
Namely, the correct label is assigned after the two splits of
Figs. 5d,f.

The tracker has some difficulty to deal with the static ob-
jects (labels 1,2,5) since they are not correctly detected by
the low level algorithms (background subtraction). These
objects remain in the same place during the whole sequence.
They are therefore considered as background. However,
there are small movements which are detected and appear
in Figs. 4, 5.

The Bayesian network is automatically buils during the

(a) (b)

(c) (d)

(e) (f)

Figure 5. Labeling examples (PETS2004 se-
quence) after group formation (b,e) and split-
ting (d,f).

tracking operation. Figure 6 shows the Bayesian network
architecture at the instant t = 12 sec. Although the num-
ber of nodes grows quickly with time, only the most re-
cent ones are updated by the inference algorithm, therefore
keeping the computational burden under control. The gray
nodes were classified as frozen by the prunning algorithm
and their labels and are not allowed to change.

The BN tracker was also applied to other video se-
quences as well. Figures 7 and 8 show two examples which
illustrate the performance of the tracker in group merging
and splitting in other video sequences (PETS2001 and cam-
pus sequences). Both occlusions are correctly solved e.e., a
correct labeling is produced by the tracker once the persons
appear isolated again.

Table I shows statistics which characterize the complex-
ity of the three video sequences and the performance of the
tracker. It displays the number of objects in the video se-
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Seq. NO NG NT LE D CT
CAMPUS 7 3 20 0 22.9 2.1
PETS2001 8 5 34 3 120 12.8
PETS2004 7 4 67 5 36 26.6

Table 3. Performance of the BN tracker: Seq. -
sequence name; NO - number of objects; NG
- number of groups; NT - number of tracks;
LE - labeling errors; D - duration (sec.); CT -
computational time (sec.).

quence (NO), the number of groups (NG), the number of
tracks detected by the low level processing (NT), the num-
ber of labeling errors (LE), the duration of the sequence (D)
in sec and the computational time (CT). It is concluded from
this table that most of the occlusions are well disambiguated
by the proposed algorithm (LE � NT) and the computa-
tional time is smaller than the duration of the sequences1.

7. Conclusions

This paper presents a system for long term tracking of
multiple objects in the presence of occlusions and group
merging and splitting. The system tries to follow all mov-
ing objects present in the scene by performing a low level
detection of trajectories followed by a labeling procedure

1these tests were performed with Murphy toolbox for Matlab [12], run-
ning on a P4 at 2.8 GHz

(a) (b)

(c) (d)

Figure 7. Labeling examples (PETS2001 se-
quence) after c) group formation and d) split-
ting.

which attempts to assign consistent labels to all the tra-
jectories associated to the same object. The interaction
among the objects is modeled using a Bayesian network
which is automatically built during the surveillance task.
This allows to formulate the labeling problem as an infer-
ence task which integrates all the available information ex-
tracted from the video stream and updates the interpretation
of the detected tracks every time new information is avail-
able. This is a useful feature to solve ambiguous situations
such as group splitting and occlusions in which long term
memory is needed.

To allow an on line operation of the tracker, inference
is periodically performed and pruning techniques are used
to avoid a combinatorial explosion of the Bayesian network
complexity.

Experimental tests with video sequences were carried
out to assess the performance of the system. It is shown
that the proposed tracker is able to disambiguate many dif-
ficult situations in which there is a strong overlap among
different objects.
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Abstract

In this paper we present a generative probabilistic model of the appearance of a non-
rigid object and an iterative procedure for searching for the maximum likelihood (ML)
estimate of the position and shape of the tracked object in a new image. The shape of the
object in an image is approximated by an ellipse that is described by a full covariance
matrix. The appearance of the object is described by a color-histogram. The algorithm
is used for tracking persons in image sequences.

1 Introduction

Object tracking requires a model of the tracked object at a certain level of abstraction.
Using color-histogram as the model of the tracked object is a very robust representa-
tion of the object appearance [9]. Since color histogram abstracts away the information
about spatial distribution of the image colors it is particulary interesting for modelling
complex non-rigid objects. An efficient method for color-histogram-based object track-
ing is presented in [1]. The shape of the tracked non-rigid object is approximated by
an ellipse. The similarity function between the color histogram of the object and the
color histogram of the candidate ellipsoidal regions from a new image from an image
sequence is regarded as a probability density function and the ellipse that approximates
the shape of the tracked object is regarded as kernel smoothing factor. Then the ’mean-
shift’ procedure [5] is used to find the closest region in the new image that is the most
similar to the object. The shape of the object can change in the image. The object can
get close or far away from the camera. The ellipse that approximates the shape of the
object should be adapted when the shape and the size of the tracked object change. This
problem remained unsolved. In [1] after each tracking step the ellipse is adapted by
checking a +10% larger and a -10% smaller ellipse and choosing the best one. Some
local shape descriptors were used in [4]. In [7] an extensive search is performed within
a range of scales of the ellipse.

The algorithm we present in this paper will address the mentioned unsolved prob-
lem of estimating the approximate shape of the tracked object during color-histogram-
based object tracking. The contribution of the paper is threefold. First, we present a
generative probabilistic model of the appearance of a non-rigid object. The shape of
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the object is approximated by an ellipse. The appearance of the object is described
by a set of features. The features should be invariant to complex non-rigid object de-
formations. We use here each bin of a color-histogram as a separate feature with an
associated probability density function. Finding an object in a new image becomes then
a maximum likelihood (ML) estimation of the object position. Approach [1] is using
the Bhattacharyya distance measure between histograms as a similarity measure. It is
possible to get the similarity measure from [1] for a particular choice of probability
density function that is used to model features in our probabilistic model. Therefore [1]
becomes just a particular case in our more general ML framework. Second, we present
an iterative procedure to search for ML estimate of the position and also the covariance
matrix that describes the ellipse that approximates the shape of the object. We recently
proposed this procedure in [10]. However, this paper presents a probabilistic view on
the problem. Finally, the paper is using PETS2004 data to present evaluation of the new
method and comparison of the new method to [1].

The paper is organized as follows. In section 2 we present a probabilistic framework
that can be used to model a non-rigid object. In section 3 we describe color-histogram
features. We present in section 4 an EM-like algorithm to search for ML estimate of the
position and shape of the non-rigid object in a new image. In section 5 we present the
whole practical algorithm and in section 6 we present some experimental results.

2 Probabilistic model

We present here a general generative probabilistic model of the appearance of an ob-
ject.The model that we presented here is related to the model for color-histogram fea-
tures that was used for example for texture segmentation in [8]. The position of the
tracked object in the image is θ and the approximate ellipsoidal shape of the object is
described by a covariance matrix V . We describe the appearance of the tracked object
using a set of M scalar features f1(θ, V ), ...fM (θ, V ) that are extracted from the local
area of an image defined by θ and V . Each feature fm can be regarded as a stochastic
variable which has a probability density function p(fm). We assume that the features
are independent. The log-likelihood of a certain observed set of features for a certain θ

and V is then given by:

logL(f1(θ, V ), ...fM (θ, V )) =

M
∑

m=0

log p(fm(θ, V )) (1)

For each feature fm we need its probability density functions p(fm). This can be
learned for example from some test images of the object. Finding the object in a new
image image is performed by finding the θ and V that maximize the log-likelihood
function (1).

3 Color-histogram features

The shape of a non-rigid object is approximated by an elliptical region in an image. We
will constrain ourselves here to a class of features that describe color statistics of the
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elliptical region. The color-content can be represented by a color-histogram. This repre-
sentation is very popular and considered to be quite robust to non-rigid transformations
of the object. We regard each bin of the color histogram as a feature. Let the histogram
have M bins and let the function b(xi) : R2 → 1, ...,M be the function that assigns a
color value of the pixel at location xi to its bin. We define a function hm for the m-th
bin of the histogram as:

hm(xi) = δ [b(xi)−m] , (2)

where δ is the Kronecker delta function. The m-th bin of the histogram can then be
calculated using:

fm(θ, V ) =
N

∑

i=1

hm(xi)K(xi;θ, V ) (3)

The kernel K defines the elliptical region. We use Gaussian kernel:

K(x;θ, V ) =
1

(2π)1/2|V |1/2
e−0.5(x−θ)T V −1(x−θ). (4)

to rely more on the pixels in the middle of the object and to assign smaller weights
to the less reliable pixels at the borders of the objects. For computational reasons we
usually use only the N pixels from a finite neighborhood of the center of the kernel.
This and other practical issues are discussed in more detail later in section 5.

4 An EM-like algorithm

Given a new image we would like to find the position and the approximate shape of
the object. We use the model described in section 2 and we search for the parameters θ

and V that maximize the log-likelihood function (1). We propose here an iterative pro-
cedure. The procedure is using EM-like iterations [2]. Before the E and the M step the
log-likelihood function (1) is approximated locally. These three steps, approximation
of the log-likelihood, E and M are repeated iteratively. In this section we describe the
local approximation and the E and M steps.

Let us denote current estimated values of the parameters by θ
(k) and V (k). Under

the assumption that feature density functions p(fm) are smooth, we can approximate
the log-likelihood function (1) locally using first order Taylor expansion approximation:

logL(θ, V ) ≈ ... +
M
∑

m=1

p′(fm(θ(k), V (k))

p(fm(θ(k), V (k)))
fm(θ, V ) (5)

where we omitted the constant terms. We denote the variable term from above by
f(θ, V ). We replace (3) into this term and get:
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f(θ, V ) =

M
∑

m=1

p′(fm(θ(k), V (k))

p(fm(θ(k), V (k)))
fm(θ, V )

=

M
∑

m=1

p′(fm(θ(k), V (k))

p(fm(θ(k), V (k)))

N
∑

i=1

hm(xi)K(xi;θ, V )

=
N

∑

i=1

wiK(xi;θ, V ), (6)

where

wi = wi(θ
(k), V (k)) =

M
∑

m=1

p′(fm(θ(k), V (k))

p(fm(θ(k), V (k)))
hm(xi). (7)

Maximum of the approximated log-likelihood function (5) is achieved for the maxi-
mum of (6). Finding the θ and V that maximize (6) can be done using EM-like iterations
[6]. From the Jensen’s inequality we get:

logf(θ,V ) ≥ G(θ,V,q1, ...,qN ) =

N
∑

i=1

log

(

ωiK(xi;θ,V )

qi

)qi

, (8)

where qi-s are arbitrary constants that meet the following requirements:

N
∑

i=1

qi = 1 and qi ≥ 0. (9)

The E and M steps described below are repeated then until convergence:
1. E step: find qi-s to maximize G while keeping θ

(k) and V (k) fixed. It is easy to
show that the maximum (equality sign in (8)) is achieved for:

qi =
ωiK(xi;θ

(k), V (k))
∑N

i=1 ωiK(xi;θ(k), V (k))
. (10)

2. M step: maximize G with respect to θ and V while keeping qi-s constant. The
qi-s are now fixed we need to minimize only a part of G that depends on the parameters:

g(θ, V ) =
N

∑

i=1

qi log K(xi;θ, V ). (11)

For the Gaussian kernel and ∂
∂θ

g(θ, V ) = 0 we get:

θ
(k+1) =

N
∑

i=1

qixi =

∑N
i=1 xiωiK(xi;θ

(k), V (k))
∑N

i=1 ωiK(xi;θ(k), V (k)).
(12)

Note that this update equation for the position estimate is equivalent to the ’mean shift’
for functions in form of (6) and for the Gaussian kernels. For other kernel types this
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might be different. This new EM-like view of the problem gives us the update equations
for the smoothing factor in straightforward manner. For the Gaussian kernel and from
∂

∂V g(θ, V ) = 0 we get:

V
k+1 =

N
∑

i=1

qi(xi − θ
(k))(xi − θ

(k))T (13)

Further discussion about the estimation of the smoothing factor is given in the next
section.

The iterative procedure repeats the described three steps. First, for the local approx-
imation we need to compute weights (7). After that, E-like step is given by (10) and
M-like step updates the parameter estimates using (12) and (13). The EM algorithm
converges always to a local maximum. However, the described procedure does not have
guaranteed convergence because of the additional local approximation (5). The EM al-
gorithm makes steps in gradient direction. Using the ’chain-rule’ for calculating deriva-
tives we can easily show that the total result from the described three step procedure
is also in the gradient direction. It is then easy to make a procedure with guaranteed
convergence by adding a line search step at the end [3]. However, in practice it turns
out that this is not needed. This was also noticed for the simpler but related procedure
from [1].

5 Implementation

In this section we discuss some practical issues.

5.1 Normalization

The feature value defined by (3) should not depend on the size of the object. Total mass
under the Gaussian function (4) is equal to one. However in practice for computational
reasons we usually use only a finite neighborhood of the center of the kernel. Therefore
the feature values should be re-normalized. This can be done by multiplying the feature
values by |V |γ/2:

fm,γ = |V |γ/2fm (14)

The EM-like iterative algorithm from the previous section can be applied to the γ-
normalized features. The only difference is in the M-step. Instead of (11) we have now:

g(θ, V ) =

N
∑

i=1

qi log |V |γ/2K(x;θ, V ). (15)

The position update equation (12) stays the same. From ∂
∂V g(θ, V ) = 0 it is easy to

show that the update equation (13) for the covariance matrix V is now given by:

V
k+1 = β

N
∑

i=1

qi(xi − θ
(k))(xi − θ

(k))T , (16)
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where β = 1/(1 − γ). In our implementation we disregard the samples further than
2.5-sigma from the center of the Gaussian kernel. It is easy to show that we should use
then β ≈ 1.1. Small errors in choice of β leads to slightly biased solution but since the
ellipse is just an approximation of the shape this is acceptable.

One more practical issue might rise from the fact that we use a discrete version of
the Gaussian kernel. We use a discrete approximation defined by the image grid and the
discretization effects can be also large for small objects.

5.2 Feature probability densities

We use Gaussian distribution to model the color features p(fm) = N (fm;µm, σm).
For current position and shape estimates θ

(k) and V (k) we get the following weights:

wi = wi(θ
(k), V (k)) =

M
∑

m=1

µm − fm(θ(k), V (k)))

σ2
m

hm(xi). (17)

The parameters µm, σm can be learned from some training data. In the simplest case we
have only one training image - the object is selected in the first image of the sequence.
Then we can simply set µm-s to the measured feature values and set all σm-s to be
equal.

5.3 Practical algorithm

For the sake of clarity we present here the whole algorithm:

Input: the object model defined by the density functions p(fm) (µm-s and σm-s in
the Gaussian case), the object initial (k = 0) location θ

(k) and shape defined by V (k).

1. Compute the features of the current region defined by θ
(k) and V (k) from the cur-

rent frame using (3).
2. Calculate weights using (17).
3. Calculate qi-s using (10).
4. Calculate new position estimate θ

(k+1) using (12).
5. Calculate new variance estimate V (k+1) using the normalized equation (16).
6. If no new pixels are included using the new elliptical region defined by the new

estimates θ
(k+1) and V (k+1) stop, otherwise set k ← k + 1 and go to 1.

The procedure is repeated for each frame. In the simplest version the position and shape
of the ellipsoidal region from the previous frame are used as the initial values for the
new frame.

6 Evaluation and comparison

A number of experimental results is presented here. If the object is tracked for T
frames we will get a set of position estimates θ(1), ...,θ(T ) and a set of shape esti-
mates V (1), ..., V (T ). To describe the quality of a trajectory we will use the following
measures.
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Position Errors Measure should describe how close is an estimated track of an
object to the ground truth track. The ground truth position is given by θgt(1), ...,θgt(T ).
If at time t we have ground truth size of the object in x and y direction Rx,gt(t) and
Ry,gt(t), then the positional accuracy in x and y direction can be defined as:

ex(t) = (θx(t)− θx,gt(t))/Rx,gt(t)

ey(t) = (θy(t)− θy,gt(t))/Ry,gt(t) (18)

We also report the average value and variance per track.
Shape Errors Measure gives an indication of the level of agreement between the

tracked object shape and the estimated shape. The ground truth about the shape in the
PETS2004 data set is given by a set of rectangular regions Rgt(1), ..., Rgt(T ). There-
fore we convert our shape estimates V (1), ..., V (T ) to R(1), ..., R(T ) where R(t) is
bounding box of an 2-sigma ellipse defined by V (t). Note that our approximate shape
estimate by an ellipse with a full covariance matrix is closer to the real shape than
the rough bounding box. Unfortunately, only the bounding box ground truth data was
available in the PETS2004 data. The error measure we are going to use is given by:

eshape(t) =
nonoverlaping area between R(t)and Rgt(t)

area of Rgt(t)
(19)

The average and variance of this measure are also reported.

6.1 Computation time

mean-shift EM-shift

Fig. 1. Example estimated shape for the frame 350 of the Walk1 sequence algorithm.

First in figure 1 we illustrate the performance of the algorithm on the Walk1 se-
quence from the PETS2004 data. The estimated position and shape of the tracked ob-
jects is represented by the dashed ellipse. We observe that both the new shape and the
position are accurately estimated by the new algorithm. The mean-shift algorithm pro-
vides just an rough approximation. In [7] it was shown that when the size of the object
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Fig. 2. Number of iterations per frame for the mean-shift and the new EM-like algorithm (for the
Walk1 sequence).

changes considerably the mean-shift algorithm fails to adapt the ellipse and often looses
its track. Unfortunately there were no such sequences in the PETS data. We tested our
algorithm on some of our sequences similar to the sequences shown in [7]. The new
algorithm has no problems with adapting and it is much faster then the extensive search
method proposed in [7]. In figure 2b) we present the number of iterations of the mean-
shift algorithm and the new algorithm for a part of the Walk1 sequence. The average
number of iterations per frame was approximately 6. This is slightly more then 4 for
the mean-shift based iterations (the same number of iterations was reported in [1]).
The computational complexity of one iteration of the new algorithm is slightly higher
than the computational complexity of the previous algorithm from [1]. On average our
5-degrees of freedom algorithm is only around 2 times slower than the 2-degrees of
freedom mean-shift algorithm but still fast enough for real-time performance. In our
current implementation the algorithm works comfortably in real-time on a 1GHz PC.

6.2 Orientation estimation

Our new algorithm estimates the full covariance matrix that describes the ellipse that is
used to approximate the shape of the tracked non-rigid object. The covariance matrix V
contains also the information about the orientation of the ellipse (see figure 1). In figure
3 we show the estimated orientation angle and the ground truth that was available for
the Walk1 sequence. We notice large errors for the both algorithms around the frame
number 300. Around this frame the person walks into an area in the scene with very
different light conditions, the color histogram of the object changes drastically and the
color-histogram model from the first image is not valid anymore. Some adaptation pro-
cedure that would adapt the model on-line might lead to some improvements. Another
possibility is to combine the results with some other method that is invariant to such
changes. However, this is beyond the scope of this article. For the rest of the track the
estimates are close to the ground truth. In figure 1 an example was given that illustrates
the quality of the shape estimates using the full covariance ellipse.
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Fig. 3. Orientation estimated by the new EM-like algorithm on the Walk1 sequence and the
ground-truth.
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Fig. 4. Performance measures of the mean-shift and the new EM-like algorithm on the Walk1
sequence.

6.3 Quality of the track comparison

We use the proposed measures to describe the quality of the track and to compare the
new algorithm with the mean-shift algorithm. The measures are shown for the Walk1
sequence for the track of the women that walks across the corridor (see 1). In figure
4a) and 4b) we present the position error measure in x an y direction for the mean-
shift and the new algorithm. Both algorithms perform very similar. We observe again
the problems and big errors around the frame number 300. In figure 4c) we show the
Shape Error Measure we defined at the beginning of this section. Since our method can
efficiently adapt the ellipsoidal approximation to the shape of the object we observe
here a big improvement in performance. the average error for the new method is 0.34
while for the mean-shift has an average of 0.56. We should also mention again here that
this comparison is not fair because there was only a crude ground truth given by the
bounding box of the tracked object. If a better shape description was given, we expect
that the difference would be even larger. Furthermore, in order to compare the results
with the ground-truth we used the conversion from an ellipse to a bounding box as
described and this could lead to some bias. However both for the mean-shift and the
new algorithm we used the same conversion so the comparison can be considered to be
fair in this sense.
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7 Conclusions

We presented a new 5-DOF color-histogram-based non-rigid object tracking. We demon-
strated that he new algorithm can robustly track the objects in different situations. the
algorithm is evaluated on the PETS2004 data. The data is also used to compare the new
algorithm with the ’mean-shift’ algorithm. The new algorithm can adapt to changes
in shape and scale of the object. The algorithm works in real-time and the compu-
tational cost is only slightly higher than for the previously proposed algorithms that
had problems with shape and scale changes. The color-histogram-based object tracking
procedure can be seen as more general version of the mean-shift algorithm. Presented
probabilistic framework could be used to combine the color-histogram features with
other features in a consistent way. This is a point of our further research. Furthermore,
the presented ideas might be useful for other computer vision problems.
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Abstract

This paper presents a integrated solution to track multiple
non-rigid objects (pedestrians) in a multiple cameras system
with ground-plane trajectory prediction and occlusion mod-
elling. The resulting system is able to maintain the tracking
of moving objects before, during and after occlusion. Mov-
ing targets are detected and segmented using a dynamic back-
ground model combined with motion detection and brightness
and color distortion analysis. Two levels of tracking have been
implemented: the image level tracking and the ground-plane
level tracking. Several target cues are used to disambiguate
between possible candidates of correspondence in the track-
ing process: spacial and temporal estimation, color and ob-
ject height. A simple and robust solution for image occlusion
monitoring and grouping management is described. Experi-
ments in tracking multiple pedestrians in a dual camera setup
with common field of view are presented.

1. Introduction

Tracking non-rigid objects (humans) and classifying their
motion is a challenging problem. Effective solutions to these
problems would lead to breakthroughs in areas such as video
surveillance, motion analysis and recognition.

Tracking people in relatively unconstrained, cluttered en-
vironments as they form groups, and part from one another
requires robust methods that cope with the varied motions of
the humans, occlusions, and changes in illumination. When
occlusion is minimal, a single camera may be sufficient to re-
liably detect and track objects, although, in most cases, robust
tracking of multiple people through occlusions requires hu-
man models to disambiguate occlusions [11]. However, when
the density of objects is high, the resulting occlusion and lack
of visibility requires the use of multiple cameras and coopera-
tion between them so that the objects are detected using infor-
mation available from all the cameras covering a surveillance
area [9, 13].

The system described on this paper explore the combina-
tion of multiple cameras to solve the problem of autonomously
detect and track multiple people in a surveillance area. Since
no a priori model of people is available, the paper presents a

tracking method based on appearance: tracking the perception
of people’s movements instead of tracking their real structure.
An improved image tracking mechanism that combinesimage
segmentationandrecursive trajectory estimationis proposed.
The recursive approach is used to feedback into the image
tracking level the ground-plane predicted target information.
The integration of this information in the image tracking level
enables robust tracking of multiple pedestrians, helping to dis-
ambiguate problems of temporary occlusion (people crossing,
forming and leaving groups) as well permanent occlusion sit-
uations (people standing behind closets). The ground-plane
pedestrians trajectory prediction is obtained fusing the infor-
mation supplied by the multiple cameras, managing people’s
grouping. Several target cues are used to disambiguate be-
tween possible candidates of correspondence in the tracking
processes: spacial and temporal estimation, color and object
height.

Experiments in tracking multiple objects in a dual camera
setup with common field of view are presented. An accurate
ground-plane trajectory prediction is obtained under several
types of occlusion.

2. Related work

The problem of multiple tracking in multiple cameras has
been widely studied. In [10], only relative calibration between
cameras is used, and the correspondence is established using
a set of feature points in a Bayesian probability framework.
Geometric features of the targets such as the height of a per-
son are used. The system is able to predict when a person
is about to exit the current camera’s field of view and selects
the next optimal view for tracking. Occlusion problems are
not robustly solved. The continuous tracking of moving ob-
jects in each view using a Tensor Voting based approach was
presented in [19]. The objects trajectory is obtained by per-
forming a perceptual grouping in 2D+t using Tensor Voting.
The same authors presented a solution for continuous tracking
of moving objects observed by multiple, heterogeneous cam-
eras [18]. They addressed the tracking problem by separately
modelling motion and appearance of the moving objects us-
ing two probabilistic models. Multiple color distribution com-
ponents were used for the appearance model and the motion
model was obtained using a Kalman Filter process. The track-
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ing was performed by the maximization of a joint probability
model. A system for tracking people in multiple uncalibrated
cameras was presented in [17]. The system is able to discover
spacial relationships between the camera fields of view and
use this information to correspond between different perspec-
tive views of the same person. They proposed a solution to
find the limits of the field of view (FOV) of a camera as visi-
ble in the other cameras, and the FOV constraint was used to
disambiguate between possible candidates of correspondence.
In [16] a multi-camera system based on Bayesian modality
fusion was used to track people in a indoor environment. The
system integrates multiple modalities based on motion conti-
nuity and the apparent color, using a kalman filter to estimate
motion and modelling color as Gaussian mixture models in
hue and saturation space. A solution with non-calibrated cam-
eras was proposed in [20]. The camera calibration informa-
tion is recovered by observing motion trajectories in the scene.
Motion trajectories in different views are randomly matched
against one another and plane homographies obtained for each
match. The correct homography is the one that is statistically
more frequent. A multiple camera solution was also presented
by [13] to deal with severe occlusions situations. This ap-
proach assumes the use of calibrated cameras and that people
are moving on a calibrated ground plane. Different character-
istics of people, like color models at different heights of the
person, are modelled in order to facilitate the segmentation
of people in a crowded scene. The system uses an iterative
solution for segmentation and ground plane position estima-
tion, using segmentation results to find people’s ground plane
positions and the positions thus obtained to obtain segmenta-
tions. A multi camera image tracking was developed by [9].
Moving objects are detected by using background subtraction
and viewpoint correspondence between the detected objects
is established by using the ground plane homography con-
straint. The objects are tracked in 3D using a linear kalman
filter. The problem of auto-calibration of a set of cameras
was addressed by [15]. They employ a simple learning cal-
ibration procedure by merely watching objects entering, pass-
ing through and leaving the monitored scene. A linear model
of the projected height of objects in the scene was used in
conjunction with world knowledge about the average person
height to recover the image to ground plane transformation of
each camera. Each camera defines its own ground plane coor-
dinate system. A Hough transform technique was used to re-
cover the transformations between these local ground planes.
A solution for counting people in crowds with a real time net-
work of image sensors was presented in [14]. In this system,
groups of image sensor segment foreground objects from the
background, aggregate the resulting silhouettes over a net-
work, and compute a planar projection of the scene’s visual
hull. This projection was to bound the number of possible
location of people.

3. Multiple Target Detection

In this system, only moving objects are considered as tar-
gets (pedestrians). As the camera (sensor node) is fixed, target
detection is based on a combination of motion detection and

brightness and chromaticity distortion analysis. This approach
allows a robust segmentation of shading background from
the ordinary background or moving foreground objects. The
background image model is regularly updated to compensate
for illumination change and to include or remove in the back-
ground model the objects that stopped or started their move-
ment in the field of view of the camera. The detection model
has to face two kinds of problems: it has to deal with image
processing problems, solving problems like noise, shadows,
reflections and highlights, and also more common segmen-
tation/tracking problems like occlusions, split and merge of
targets and the appearance or lost of targets.

Due to the non-rigid nature of the human motion, and since
de present system don’t use any kind of information concern-
ing human shape, a segmented foreground region can either
correspond to the perception of noise (e.g shadows, ghosts),
a real moving target (e.g human body), just part of that target
(e.g. head or hand of a person) or a group of targets (e.g. a
crowd).

To solve the noisy perception of the target, is special when
the detection module segments shadows and highlights has be-
ing part of the target, we used the brightness and color distor-
tion approach proposed by [4] for static image background
models, adjusting it to the case of dynamic image background
models. Problems concerning incomplete single target per-
ception due to occlusion, incorrect segmentation and targets
split/merge was solved at the single-view tracking module
combining the output of the image processing module and the
information feedback from the master node.

3.1 Moving target segmentation

Each pixel in a new image is classified as one of back-
ground (B), object (O), shadow (S) or highlight (H) and ghost
(G). The clustering of foreground pixels is based on the fol-
lowing validation rules

Object → (foreground pixel)&[∼(shadow/highlight)]&(in motion)

Shadow/Highlight → (foreground pixel)&(shadow/highlight)

Ghost → (foreground pixel)&[∼(shadow/highlight)]&[∼(in mo-
tion)]

The distinction between objects, shadows/highlights
among pixels not classified as background is made using
the brightness and chromaticity distortion [4]. Representing
Et

RGB(x) = µt
RGB(x) the expected background pixel’s RBG

value, the brightness distortionαx is a scalar value that brings
the observed color close to the expected chromaticity line. It
is obtained by minimizing

φ(αx) =
(
It
RGB(x)− αxEt

RGB(x)
)2

(1)

representingαx the pixel’s strength of brightness with respect
to the expected value.αx is 1 if the brightness of the given
pixel in the current image is the same as in the reference im-
age. αx is less than1 if it is darker, and greater than1 if
it becomes brighter than the expected brightness. Color dis-
tortion is defined as the orthogonal distance between the ob-
served color and the expected chromaticity line. The color
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distortion of a pixelx is given by

CD(x) = ‖It
RGB(x)− αxEt

RGB(x)‖ (2)

The brightness distortion and the chromaticity distortion
equations become

αx =

∑
i=R,G,B

It
i (x)µt

i(x)

σt2
i

(x)

∑
i=R,G,B

(
µt

i
(x)

σt
i
(x)

)2 (3)

CD(x) =

√√√√ ∑

i=R,G,B

(
It
i (x)− αxµt

i(x)
σt

i(x)

)2

(4)

Applying the suitable thresholds to the brightness distor-
tion αx and to the chromaticity distortionCD(x) of a pixelx
yields an object maskM(x) according to

M(x) =





O, : ̂CD(x) > δCD or α̂x < δαlow
, else

B, : α̂x < δα1 and α̂x > δα2 , else
S, : α̂x < 0, else
H, : otherwise

(5)
whereα̂x and ̂CD(x) represent the normalized brightness dis-
tortion and normalized chromaticity distortion respectively.
The normalization ofαx andCD(x) is obtained by

α̂x =
αx − 1

ax

̂CD(x) =
CD(x)

bx
(6)

whereax andbx represents, respectively, the variation of the
brightness distortion and chromaticity distortion of pixelx,
defined asax = RMS (αx) andbx = RMS (CD(x)). In [4]
the RMS values are obtained during the modelling of the static
background over a stack ofN frames. In a dynamic back-
ground model, just like the one adopted in this system, the
RMS values need to be dynamically updated. In order to over-
come this constraint, the RMS values are constantly updated
considering only the pixels detected as background.

The three-frame difference rule suggests that a pixelx in
frame t is moving if its intensityIt

RGB(x) has changed sig-
nificantly between both the current imaget and the last image
t− 1, and the current imaget and the next-to-last framet− 2.
Based on this rule, an image mask for moving pixels is create
using





1, if



| It

RGB(x)− It−1
RGB(x) |> δRGB(x)
and

| It
RGB(x)− It−2

RGB(x) |> δRGB(x)
0, otherwise.

(7)

whereδRGB(x) are thresholds forR, G,B image components
for pixel positionx. Moving pixels are clustered into con-
nected regions defining a bounding box per region.

Each pixel of the background image is modelled by a mul-
tidimensional Gaussian distribution in RGB space (mean and
standard deviation). These parameters are updated with each
new frame using the following linear filter

µt
RGB(x) = (1− α)µt−1

RGB(x) + αIt
RGB(x) (8)

σt
RGB(x)2 = (1−α) σt−1

RGB(x)2 +

α
(
It
RGB(x)−µt

RGB(x)
)2

(9)

beingα used to control the rate of adaptation (0 ≤ α ≤ 1).
A critical situation occurs whenever objects stop their move-
ment for a period or when objects modelled as being part
of the background start moving. To deal with this situation,
each pixel has a state transition map defining a dynamic pixel
rate of adaptation. Pixels that have changed from a back-
ground state to a ghost state will have a high rate of adapta-
tion whereas those changing from moving object state to ghost
state will have a low rate of adaptation. The state transition
map will encode in all the moving object pixels the elapsed
time since the beginning of the object movement. Different
rates of adaptation are used according to

α =





1.0 : if [(Ghost)&(elapsed time < δt)]
0.0 : if [Object]
K · e∇t : if [(Ghost)&(elapsed time ≥ δt)]
0.05 : Otherwise

(10)

where∇t is the elapsed time since the target stopped its

movement andδt =
√

w2
b
+h2

b

fr·
√

v2
x+v2

y

being(wb, hb) the width and

height of the bounding box respectively,fr the frame rate and
(vx, vy) the image velocity components of the bounding box
center of mass. This solution enable the detection of moving
objects that stopped their motion for a period of time avoiding
also the detection of the ghost cast created when background
objects start moving.

The output of the target segmentation module is basically
a collection of blobs that represents the segmented shape of
the moving targets. Figure 1 shows the result of the target
detection process in one of the static camera nodes.

Figure 1. Target segmentation with shadow detection

3.2 Image target model

The target model adopted is composed of three primitives:
the image coordinates of the point of contact of the pedestrian
with the ground plane,pf = [xf , yf , 1]T , the image coordi-
nates of the head of the pedestrian,ph = [xh, yh, 1]T , and
the width of the bounding box (wb) measured at the center
of mass. Assuming an upright walking posture for pedestri-
ans, the coordinate pairspf andph are defined as the inter-
section of the line passing through the bounding box center
of mass and the image vanishing point of the vertical pos-
ture with the top and bottom lines of the bounding box (fig-
ure 2). This approach enables a very precise detection of the
feet and head of the pedestrians. Two additional target cues
have been used: the color information associated to the blob
and the estimated 3D height of the target. A targetn is de-
fined byTn = {pn

f , pn
h, wn

b ,Hn,#n}, whereHn represents
the color histogram of the target’s blob and#n is the number
of points of the target segmented blob.
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Figure 2. Image Target Model

3.3 Target color model

In order to track people consistently, in special when they
merge and split, each person’s appearance must be modelled.
This information is particularly important during the tracking
despite the ambiguities that may arise with partial occlusion
and grouping. Color is a very important cue and play an im-
portant role in this process. A color model is built and adapted
to each tracked target, being updated with each new frame.

Color distributions have been effectively modelled for
tracking using both color histograms and gaussian mixture
models [8]. Although both approaches perform well, on the
present solution color histograms have been used. To avoid
problems due to changing light intensity, a simple color con-
stancy algorithm was used that simple normalizes the R,G,B
color components through

r′ = R/(R+G+B) g′ = G/(R+G+B) b′ = B/(R+G+B)
(11)

An histogramHn(i) simply counts the number of occur-
rences ofi = (r′, g′) within the detected blob for personn.
A discrete probability distribution is obtained from the his-
togram

P (i|n) =
Hn(i)
An

, (12)

whereAn is the area of the target blob in pixels. Histogram
models are adaptively updated by storing the histograms as
probability distributions and updating them as

Pt(i|n) = βPt−1(i|n) + (1− β)P tar
t (i|n), (13)

whereP tar
t (i|n) is the probability distribution obtained from

current image, and0 ≤ β ≤ 1.
Each normalized color component (r′, g′) is quantized into

64 values (6 bits). This give a total of4096 = 642 his-
togram bins. Histogram color models are matched using the
histogram intersection method proposed in [7]. Given a pair
of histograms,Hn andHm respectively for targetn and model
m, each containingk = 4096 bins, the intersection of the his-
tograms is defined as

⋂
(Hn,Hm) =

k∑

j=1

min (Hn(j), Hm(j)) (14)

The result of the intersection of a model histogram with a tar-
get histogram is the number of pixels from the model that have

corresponding pixels of the same color in the image. The nor-
malized histogram intersection can be obtained intersecting
the discrete probability distribution histogram of the model
Pm and the targetPn,

M(Hn,Hm) =
k∑

j=1

min (Pn(j), Pm(j)) (15)

or considering

M(Hn,Hm) =

∑k
j=1 min (Hn(j),Hm(j))

∑k
j=1 Hm(j)

. (16)

Equation 15 is used in a one-to-one target matching, defin-
ing the existence of a correct match whenM(Hn,Hm) > 0.8.
Equation 16 is used to detect the presence of a certain target as
a member of a group, considering the histogram of the target
as the model histogram.

For the tracking purpose, each segmented and tracked tar-
get has a target descriptor that stores the updated normalized
histogramPt(i|n).

Color information is also used in the master node to disam-
biguate between possible candidates in the matching process.
Since each sensor node has a normalized color histogram for
each target, the master combines this information to obtain a
reliable color information of the target. A simple color his-
togram union is used to combine the color information of tar-
getn obtained fromx sensor nodes

PG
n =

⋃
(P (j|ny))y=1..x = max (P (j|ny))y=1..x (17)

wherePG
n is the normalized color histogram of targetn in the

master node, andP (j|ny) is the normalize color histogram of
the target obtained by the sensor nodey. PG

n is adaptively up-
dated using the same approach proposed for the sensor nodes.

3.4 Target height model

Target height is modelled astnh = =(pn
f , pn

h,Hi) beingHi

the image to ground plane homography transformation of each
sensor node (Hi = [h1, h2, h3]T ) (section 5). Representing
the ground-plane location of sensor nodei byCi = [cx, cy, cz]
(fig. 3), the height of targetTn is defined as

tnh =
cz ·

√
(pn

gh
(x)− cx)2 + (pn

gh
(y)− cy)2

√
(pn

gh
(x)− pn

gf
(x))2 + (pn

gh
(y)− pn

gf
(y))2

(18)

where pn
gj|j=h,f

(x) = (h1 · pn
j|j=h,f )/(h3 · pn

j|j=h,f ) and

pn
gj|j=h,f

(y) = (h2 · pn
j|j=h,f )/(h3 · pn

j|j=h,f ).
Knowing the height and ground-plane location of a pedes-

trianPn, the image projection of his head and feet is modelled
as p̃n

j|j=f,h = ℘(tnh, pn
gf

,H−1
i ). The coordinates of the head

and feet image projection are obtained by

p̃n
f = H−1 ·




pn
gf

(x)
pn

gf
(y)
1


 (19)
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h ·(pn
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h

pn
gf

(y) +
tn
h ·(pn

gf
(x)−cx)

cz−tn
h

1


 (20)

Figure 3. Target Height Model

4. Single-View Tracking

The single-view tracking aim to track at the image level all
moving targets detected and segmented by the image process-
ing level. The main advantage of using this tracking stage is
basically to filter out noisy segmented target primitives and to
model image occlusions and grouping, increasing the robust-
ness of the global ground-plane pedestrians tracking system.

The target state vector isX =[pf ph wb ṗu ṗb ẇb]
T where

pi = (xi, yi)|i=f,h and ṗi = (ẋi, ẏi)|i=f,h are the position
and velocity of the model target feature points andwb is the
width of the bounding box.

The system model used is the following discrete model:

Xk = f (Xk−1, k − 1) + Wk (21)

Zk = h (Xk, k) + Vk (22)

whereWk is a discrete-time white noise process with mean
zero and covariance matrixQ, Vk is a discrete-time white
noise process with mean zero and covariance matrixR, and
Wj , Vk, andX0 are uncorrelated for allj andk. We consid-
ered the assumption that trajectories are locally linear in 2D
and the width of the bounding box changes linearly, resulting
for the system model the following linear difference equation
Xk = A ·Xk−1 +Wk where the system evolution matrix,Ak,
is based on first order Newtonian dynamics and assumed time
invariant.

The measurement vector isZk = [pf , ph, wb]
T and is re-

lated to the state vector via the measurement equationZk =
C ·Xk + Vk.

4.1. Image occlusion and grouping management

At this stage it is important to define the concept of anob-
ject. An object represents an image tracked target and can
be of a single or compound nature. It is represented by the
descriptorOn =[Tn, ζn, j, {Ł[i]|i=1..j}], whereTn represents
the object descriptor,ζn the tracker parameters andj the num-
ber of targets associated to the objectn. Ł[i] is a list of point-
ers to thej object descriptors that form the compound object
(j > 1).

To disambiguate between possible candidates of correspon-
dence in the tracking process two image cues were used : spa-
cial and temporal estimation and color. The Histogram color
matching

CM(On, Tn) =
⋂

(On, Tn) (23)

and the bounding boxes overlapping ratio

OR(Ôn, Tn) = max

(⋂
(Ôn, Tn)

5Tn
,

⋂
(Ôn, Tn)

5Ôn

)
(24)

were used to build correspondence matrices (CMat) between
a posteriorestimated image positionobjects(Ôn) and targets
(Tn) for time framet. 5 represent the area of the bounding
box and

⋂
the bounding boxes overlapping area.

CMat: T1 T2 ... Tn

Ô1 1 0 ... 1 2
Ô2 0 1 ... 0 1
...

...
... ...

...
...

Ôn 0 1 ... 0 1
1 2 ... 1

(25)

A unitary value at the bottom row represents a1 ←→ 1 cor-
respondence between the object and the target, values greater
than one indicates the existence of object merges and null val-
ues indicates the existence of new detected targets. The last
column of the matrix indicates the existence of an object split
for values greater than one, a1 ←→ 1 correspondence for
unitary values and the lost of an object for null values.

Based on the correspondence matrices, four managers, run-
ning in cascade, were used to handle the imageobjects: split
manager,mergemanager,new/lostmanager andupdateman-
ager.

The Split manager When a split situation is detected, two
possible situations can happen: a compound object split
(the most regular case) or a single object split. This last
case can happen when a group enter the surveillance area
and split.

To handle the compound object split, the manager cre-
ates a new correspondence matrix between the objects
that form the compound object and the image targets
(Tn) that were detected as split candidates. This time
the correspondence is based on color histograms and tar-
get height, associating a segmented target to each object
of the compound object. The descriptors of the objects
are recovered from the compound object and added to
the tracked object list, associating to each object the seg-
mented target primitives of the target they matched. The
compound object descriptor is removed from the tracked
objects list and discarded.

For the case of a single split, a new object is created and
added to the new born object list. This new object is defi-
nitely moved to the tracked object list after being tracked
for 5 consecutive frames.

The Merge manager When a merge situation is detected, a
compound object descriptor is created and added to the
list of object trackers, moving the object descriptors of
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the merged objects from the tracked object list to a dy-
ing object list, decreasing its life vitality over a period
of 10 frames, being definitely discarded after this period.
The new object descriptor includes the color histograms
and the 3D target height of the objects merged (com-
pound objects descriptors) and also the number of targets
merged. If a split situation is detected before the death of
the objects (ex: objects crossing), the objects descriptors
are recovered from the dying objects list to the tracked
list.

The New/Lost manager When a null value is detected on the
last row of theOR matrix this means that a new object
was detected. A single object descriptor is created and
included on a list of new born object increasing is life
vitality over a stack of5 frames. After this period, the
descriptor is moved to the tracked object list.

If a null value is detected on the last column of theOR
matrix a lost object is considered to happen. Its descrip-
tor is moved from the tracked object list to a dying object
list decreasing its life vitality for a period of10 frames
over which it is definitely discarded.

The Update manager At this stage, the tracked object list
has a completeobject→ target matching, updating the
object trackers with the segmented targets (Tn) informa-
tion.

The feedback process supplies to each sensor node infor-
mation about where and how many target should be detected at
timek, takingk−1 observations fromn cameras that are fused
at the ground-plane tracking level. This information is useful
to cross-check the existence of groups and also to validate the
cardinal of those groups by counting the number of projected
targets that fall inside the bounding area of a detected group.
This approach enables a more robust image split/merge and
targets grouping.

5. Target Ground-Plane Mapping

Each one of the elements of the tracked object list has a
state vectorXk and an associated error covariance matrixPk

obtained from the tracker.
Each sensor node has an associated homography

Hi|i=1,2 = [h1, h2, h3]T that maps image points into
the ground plane surveillance area, mapping the tracked
target’s primitives,pf andph, into the ground plane through
the homography transformationpgj|j=f,h

= Hi · pj|j=f,h
.

Considering the existence of a certain uncertainty for the
coordinates ofpj|j=f,h

and an uncertainty for the homography
estimation, which are considered uncorrelated, the mapping of
pj|j=f,h

into the ground-plane will have an associated uncer-
tainty that is given byPpg = JHiPHiJ

T
Hi

+ JpgPkJT
pg

where
J represents the Jacobian matrices,Pk represents the error co-
variance matrix obtained from the object Kalman filter tracker
andPHi the error covariance matrix obtained using the solu-
tion proposed by [3].

Since the 3D target height is modelled astnh =
=(pn

f , pn
h,Hi), that results on the equation 18, the uncer-

tainty associated to the 3D target height is given byPtn
h

=
Jth

Ppg
JT

th
, whereJth

is the Jacobian matrix of equation 18.

6. Ground-Plane Tracking

The ground-plane tracking level has two major purposes:
merge the information mapped on the ground-plane by the
sensor nodes and perform the ground-plane tracking of the
pedestrians detected by the sensor nodes, managing the
group/ungroup occurrences.

Pedestrians are tracked on the ground-plane using a
Kalman filter tracker. The state vector isX = [pg ṗg p̈g th]T

wherepg is the pedestrian ground-plane position,ṗg is the
pedestrian velocity and̈pg is the pedestrian acceleration.th
is the 3D target height. A constant acceleration model was
adopted to the pedestrian movement and the height of the
pedestrian was modelled as constant. The dimension of the
measurement vector is dependent on the number of sensor
nodes that are able to detect and track the pedestrian. As-
suming this number to bem, the measurement vector isZk =[
p1

g, t
1
h, p2

g, t
2
h, ..., pm

g , tmh
]T

, being related to the state vector
via the measurement equationZk = C · Xk + Vk. The di-
mension of the matrixC is 3m ∗ 7. The measurement error
covariance matrixVk is defined using the uncertainty ground-
plane mapping propagation described on previous section.

The ground-plane tracked objects are referenced asPedes-
trians and they are represented by the descriptorPn =
[Kn, ζn, j, {Ł[i]|i=1..j}], where Kn represents the pedes-
trian descriptor (ground-plane position, height and histogram
color), ζn the tracker parameters andj the number of pedes-
trians in case of a group. Ł[i] is a list of pointers to thej
pedestrian descriptors that form the group (j > 1).

6.1. Tracking and group management

At the ground-plane level the major problem to overcame
is the group formation. A group is defined when a pedestrian
is not visible as a single target in any of the sensor nodes.
This definition allow the existence of single and compound
groups. A single group is defined when a pedestrian creates a
compound object with different pedestrians in each one of the
sensor nodes. A compound group is defined when more than
one pedestrian shares a common compound object in different
sensor nodes. In both cases, the system is unable to obtain
the ground-plane position of the pedestrian directly from the
sensor nodes.

Correspondence matching between the pedestrian trackers
and the mapped measurements from the sensor nodes is ob-
tained using correspondence matrices. The Mahalanobis dis-
tance between thea posteriorestimated pedestrian position
and the ground-plane mapped position is used as a match-
ing measurement. This correspondence is cross-checked by
matching the image tracked objects with the projection of
thea posteriorestimated position of the head and feet of the
pedestrian into the image sensor nodes (recursive projection).
An example of a correspondence matrix for the binocular case
is shown below.
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Figure 4. Ground-plane location of compound pedes-
trians

C1 C2

T1 T2 T3 T4 T1 T2 T3

P̂1 1 0 0 0 1 1 0 0 1
P̂2 1 0 0 0 1 1 0 0 1
P̂3 1 0 0 0 1 0 1 0 1
P̂4 0 1 0 0 1 0 1 0 1
P̂5 0 0 1 0 1 0 1 0 1
P̂6 0 0 0 1 1 0 0 1 1

3 1 1 1 2 3 1
(26)

Four managers handled the correspondence and group for-
mation:split, grouping, new/lost andupdate.

The major difference between these managers and the ones
used on the single view tracking lies on thegroupingoccur-
rence. A split occurrence is detected when a pedestrian match
more than one target. The pedestrian descriptors information
stored on the compound pedestrian descriptor are recovered
and new trackers are created. Color information is used to
match the new targets with the pedestrian descriptors. Solv-
ing the split occurrences, it is time to handle the grouping oc-
currences. Analyzing the information stored in the last row
of the correspondence matrix several groups can be created,
representing the pedestrians grouping. The correspondence
matrix for camera1 establish four groupsG1

1 = {P1, P2, P3},
G1

2 = {P4}, G1
3 = {P5} andG1

4 = {P6} while camera2
establish three groupsG2

1 = {P1, P2}, G2
2 = {P3, P4, P5},

G2
3 = {P6}. The groups of cardinal one, likeG1

2, G1
3, G1

4

andG2
3, allows the recovery of the ground-plane position of

the pedestrians directly from the sensor nodes, which means
that the trackers of the pedestriansP4, P5, P6 can be updated
with the measurement supplied by the sensor nodes. The re-
maining trackers are unable to be updated directly from the
sensor nodes. For these cases, a novel solution was imple-
mented to estimate the ground-plane position of thein group
pedestrians. Each compoundobjectmap on the ground-plane
the target primitivespf andph, defining a straight line on the
ground-plane. Different groups define different lines and the
estimated position of the pedestrian belonging to these groups
is defined as the point that minimize the Euclidean distance
to the lines. Figure 4 shows the outcome of this approach on
a simulated situation considering the binocular case. Analyz-
ing in detail what happens in this situation, the pedestriansP1

andP2 has grouped on the ground-plane defining a compound
group whose location is obtained by the intersection of the
lines defined byG1

1 andG2
1, the position ofP3 is obtained by

the intersection of the lines defined byG1
1 andG2

2, the posi-
tions of P4 andP5 are obtained directly from sensor node1

Figure 5. Pedestrians detection using the PETS04
dataset

and the position ofP6 is obtained directly from sensor node1
and sensor node2.

7. Performance Evaluation and Results

Several experiments in tracking multiple pedestrians has
been undertaken. The performance ofpart of the image track-
ing process (single view tracking) was evaluated using the
PETS2004 benchmark data. TheMeet walk splitMPEG video
sequence was used and the results were compared with the
ground-truth values available on the PETS04 database. The
results are shown in figures 5-6. The image trajectories of the
objects bounding boxes center of mass is superimposed on the
images and the performance of the solution adopted is shown
on figure 6. The image orientation of the pedestrian is the ori-
entation of the major axes of the ellipse that was fitted to the
detected pedestrian’s blob.

The integration of multiple cameras to track multiple tar-
gets was also analyzed and some of the results are presented
on figure 7. The green boxes represents the trackedobjects
while the blue ones represents the image projection (recursive
trajectory) of the ground-plane tracked pedestrians. The red
dots on the top and bottom of the blue boxes corresponds to
the projection of the feet and head of the pedestrian. Figure 8
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Figure 6. Image tracking of multiple pedestrians
and ground-truth error evaluation (PETS04 dataset).
(The image trajectories of the bounding boxes center of mass
is superimposed on the images. The blue circles repre-
sents data obtained during the pedestrians grouping.left top:
ground-truth and detected trajectories;left center: ground-
truth trajectories; left right: detected trajectories. right
up&center:coordinates of the bounding box center of mass;
right bottom:orientation.)

shows the ground-plane trajectory recovery for the situation
presented on figure 7. The lines shown at the bottom repre-
sents the occurrence of merge situations at the image level.

Due to the nature of the proposed system, the performance
of the system was also tested with the dataset 3 available from
PETS2001 (figure 9). The system was tested on a small por-
tion of the dataset, to be exact from frame 2625 to frame 2800.
The homography transformation of each camera was obtained
from the data supplied by PETS2001. Since the location of the
cameras was not available the system is unable to estimate the
real height of the pedestrians. In order to maintain the robust-
ness of our ground-plane tracking and group management, a
virtual height was assumed for all the pedestrians (175cm).
The ground-plane trajectories of the pedestrians obtained by
the presented system is shown in figure 9. The blue dots cor-
responds to the ground-plane trajectories obtained from cam-
era 1 while the red dot corresponds to the ground-plane trajec-
tories obtained from camera 2. The cyan dots represents the
trajectory of a compound pedestrian group.

Although the good performance obtained, the system was
unable to manage the situation that occurred when an image
compound object was detected only in one of the images. That
happened when the group of two boys was detected by camera
1 but was occluded in camera 2 by the tree. The error intro-

Figure 7. Tracking two pedestrians with long-term
grouping

duced by the homography transformation for points located
far from the calibration area also degraded the performance of
the system.

8. Conclusions

The integration of several visual sensors for a common task
of surveillance was presented. A simple and robust solution
to handle image occlusion and grouping was proposed. The
ground-plane pedestrian grouping and tracking was solved us-
ing a very simple solution, obtaining the ground-plane loca-
tion of the pedestrian or group of pedestrians even in simulta-
neous camera grouping situations. Experimental results were
presented with excellent results on tracking multiple pedestri-
ans.
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