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Abstract. This paper addresses the problem of perception and localisation for a mobile robot in an unknown

environment. It describes a modelling of the environment based on two certainty grids: one local model and the other

one a global model. Localisation of the robot is reduced to �nding the best alignment of the local certainty grid onto

the global certainty grid. Four localisation procedures to correct the robot position are introduced. First experimental

results show the capacity of the method.

1 Introduction

Certainty Grids have been proposed as a way to construct an internal model of static environments based

on sensor data ([Mor 85, Mor 88]). This method takes into account the uncertainty of sensory data by
working with probabilities or certainty values. The certainty grid representation can be used directly in
robotic planning ([Wal 92]) or navigation ([Elf 89]). Other authors have used a certainty grid method for
collision avoidance ([Bor 91, Bor 90]). Two drawbacks of the certainty grid method have not been solved so
far satisfactorily. One is the modelling of dynamic obstacles and the second is the localisation process for
the robot.

In this paper we o�er a solution for the localisation problem in mobile robotics. We use a modelling
of the environment which is based on two certainty grids. The �rst certainty grid is centered on the robot
and models its vicinity. The second certainty grid is the global model of the environment where we do not
suppose an a{priori model. The goal of the paper is to introduce and compare localisation procedures based
on these two certainty grids that have been implemented in our robot.

Section 2 introduces the modelling of the environment using two certainty grids. The two following sections
3 and 4 describe the re{localisation procedures we have implemented in our robot. Section 3 describes the
matching procedures for the re{localisation procedures and section 4 the Kalman �lters we are using for
the updating of the estimated robot position. Section 5 introduces the integration of the local certainty grid
data into the global certainty grid. In section 6 the �rst experimental results of the described localisation
procedures are discussed. A more detailed description of the perception and localisation process is given in
[Sch 93].

2 Certainty Grids

The certainty grid method for modelling of a mobile robot environment is mainly motivated to obtain a map
of free space, in order to compute safe trajectories for the vehicle. This modelling is suitable for planning of
safe trajectories, navigation and collision avoidance for a mobile robot.

In the certainty grid method ([Mor 85]) the space is represented by a regular grid with each cell holding
a certainty value that a particular patch of space is occupied. The certainty value is based only on sensor
readings. This section introduces a model of the robot environment based on two certainty grids. The �rst
is centered on the robot and models the vicinity of the robot. The second has global parameters and models
the entire environment. We do not suppose to have an a{priori model of the environment. Rather the robot
\explores" the environment in order to build the global model.



The local certainty grid contains informationabout the environment of the robot which is directly perceivable.
Therefore, the grid is centered on the robot and the robot integrates the sensory data into the local grid.
This local certainty grid is suitable to avoid collisions with static and with dynamic obstacles. As described
in 3 and 4, the local certainty grid is used together with the global certainty grid for the correction of the
estimated robot position.

In order to avoid collisions with static and dynamic obstacles the updating process of the local certainty
grid has two important characteristics: On the one hand, the updating process is rapid so that we can
update frequently. And on the other hand, the data of the local grid becomes outdated. Consequently, the
local certainty grid always contains the most present data of the vicinity of the robot.

The resolution and the region of this grid depend on the velocity of the robot. When the robot is moving
relatively fast, the region of the local grid grows at expense of the resolution. It is obvious that we do not
obtain the best correction of the estimated robot position with a poor resolution. But at the moment of
high robot velocity it is much more important to avoid collisions with static and dynamic obstacles as it is
possible with the enlarged region of the local grid. The opposite is true for a low vehicle velocity where we
have a smaller region and a better resolution of the local grid. With such a local grid we can correct the
estimated position more accurately. Lower velocities are typical in the vicinity of the goal position so that
the robot can reach this position accurately.

2.2 Global Certainty Grid

The global certainty grid is the two{dimensional representation of the static environment. The initial state

of the global certainty grid is completely unknown because we do not provide an a{priori model of the
environment. While moving, the robot explores the environment by integrating the observations into the
global grid. As described in 2.1 the robot integrates the observations into the local certainty grid that
models the vicinity of the robot. The updating process of the global certainty grid integrates the data of the
local certainty grid into the global certainty grid (see 5).

The global certainty grid can be used for global path{planning and together with the local grid to correct
the estimated position of the robot (see 3 and 4). In the future, it should be possible to also model dynamic

objects in this global certainty grid. Zhang andWebber ([Zha 92]) have proposed a modi�ed Hough{transform
to detect moving objects. However the described method currently works only with a few integer velocities
and is relatively time consuming.

2.3 Finding Line Segments in the Grids

A characteristic of man made environments is that objects tend to lie in straight lines. Examples are walls
and doorways. It is possible to use line segments for the correction of the estimated position as explained
in section 3. Such straight lines can be found in the certainty grids as aligned cells of high probability of
occupation. By interpreting a grid and its probabilities as an image with di�erent levels of resolution we can
apply vision functions for the search of straight lines.

Our current method for searching straight lines is an extended Hough{transform. The ordinary Hough{
transform ([Bal 82]) is based on a function shown in equation (1). In this function, (x; y) are the coordinates
of a point and (�; �) are the parameters of a straight line. As illustrated in �gure 1, � is the perpendicular
distance of the straight line to the origin and � is the angle of the normal with the x{axis. The function (1)
computes for a certain (�; �){couple all points ((x; y){couples) which lie on the same straight line. But this
function computes as well for a certain point ((x; y){couple) all the straight lines ((�; �){couples) passing
that point. The Hough{transform enters for a certain point (possible member of a straight line) all straight
lines passing that point into a Hough{parameterspace (which is indexed with � and �). Such a certain point
is in our case a grid{cell with a high probability to be occupied. Local maxima of the Hough{space represent
straight lines which exist in the grid.

f(x; y; �; �) = x cos � + y sin � � � = 0 (1)

Our extension of the Hough{transform is to compute a probability for a (�; �){couple and to compute
the uncertainty (�2�; �

2
�
) of that couple. For a (�; �){couple representing a in�nite line, we �nd the beginning

and ending point of the line segment lying in our certainty grid. To arrive at the probability, we look at the
probabilities of the grid{cells lying on the line segment and in a certain region around the line segment. The
computation of the uncertainty (�2

�
; �

2
�
) of a (�; �){couple is based on the Hough{space. As described above,

the (�; �){couple of a line segment is a local maxima in the Hough{space. If we model the local maxima in



Our segment representation is composed of the following parameters (see �gure 1):

{ �: perpendicular distance of the segment to the origin with uncertainty �2
�
,

{ �: angle of the normal with the x{axis with uncertainty �2
�
,

{ (x; y): coordinates of the midpoint and
{ h: half length of the segment.
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Fig. 1.: Representation of a line segment

3 Matching Certainty Grids

In this section four matching procedures for the re{localisation process of the robot are introduced. Because
these procedures are based on an estimated position of the robot we call this process \correction of the

estimated position". The estimated position of the robot r̂ = (r̂xr̂y r̂�)
T and the covariance of that estimation

Cr is given by wheel{encoders of the robot.
As described in 2.3 we can �nd line segments in the grids with a Hough{transform. Thus, the �rst re{

localisation process works with segments obtained of the local segments and from the global segment. This
process is composed of three parts:

1. Finding line segments in the two grids with our extended Hough{transform,
2. matching the segments (see 3.1) and
3. applying two independent Kalman �lters for the correction of the orientation r� and the position (rxry)

T

of the robot (see 4.1 and [Cro 89]).

The other re{localisation processes search the best transformation t = (txtyt�)
T of the local grid into the

global grid. Three matching procedures are described to �nd the best transformation t and its covariance
Ct:

{ Matching local segments directly against the global certainty grid (see 3.2),
{ matching global segments directly against the local certainty grid (see 3.3) and
{ matching directly the two certainty grids (see 3.4).

After we have found such a transformation t and its covariance Ct, we also apply a Kalman �lter to
correct the robot position (see 4.2).

The matching procedures described in this section allow to decrease the uncertainty of the robot position
with the help of Kalman �lters (see 4). In consideration of this uncertainty we integrate the data of the local
grid into the global grid (see 5) in order to obtain a global model of the environment.

3.1 Matching Local Segments against Global Segments

The �rst re{localisation process starts with �nding segments in the two certainty grids. As segments are
obtained with the extended Hough{transform from the local grid (see 2.3) they are matched against segments
obtained from the global grid.

Two segments Slo and Sgl are given, one of the local and the other one of the global grid with the
following parameters (see �gure 1):

Slo : (�lo ; �
2
�lo
; �lo; �

2
�lo
; xlo; ylo; hlo)

Sgl : (�gl ; �
2
�gl
; �gl; �

2
�gl
; xgl; ygl; hgl)



y (3) p ( ) ( [C 89])

(�gl � �lo) � �
2
�lo

+ �
2
�gl

(2)

(�gl � �lo) � �
2
�gl

+ �
2
�gl

(3)

(xgl � xlo)
2 + (ygl � ylo)

2
� hgl + hlo (4)

To the segment with the highest probability that has passed the these three comparison test we apply
two independent Kalman �lters. These �lters are described in 4.1.

3.2 Matching Local Segments against the Global Grid

In the second re{localisation process the global grid is matched with local segments obtained from the local
certainty grid. Therefore, the process starts with �nding line segments in the local certainty grid, continues
by computing the best transformation of the segments into the global grid and ends by applying the Kalman
�lter which is described in 4.2.

For matching a local segment directly against the global grid, we produce a mask of the segment. This
mask contains the probabilities of the local grid cells lying on this line segment. This mask is transformed
into the global certainty grid and correlated with the global grid cells lying under this mask. The value of
that correlation increases when the cells are of the same state (both have a probability to be occupied or both
have a probability to be free). On the other hand the value decreases when two cells have di�erent states
(one cell has a probability to be occupied and the other to be free). The value of that correlation is the basis
for the estimation of the quality of the transformation. By varying the transformation of the segment mask
into the global grid we �nd the best transformation between the two grids. With the estimated position of
the robot we have also an estimation of the transformation between the two grids which we are using to �nd
the best transformation.

The computation of the covariance Ct is based of the values of the correlations around the best transfor-
mation. The distribution of the correlation values are supposed to be of Gaussian form. So we can compute
the covariance Ct of the transformation t by analysing the distribution of the correlation values.

3.3 Matching the Local Grid against Global Segments

The principle of the third re{localisation process is the same as of the second re{localisation process (see
3.2). The sole di�erence is that we are using global segments and directly the local certainty grid. If we have
found the best transformation of a global segment into the local grid, we apply as well the Kalman �lter
described in 4.2.

3.4 Matching the Local Grid against the Global Grid

The fourth re{localisation process also searches for the transformation of the local grid into the global grid.
This time we directly use the two certainty grids. It is possible to correlate the entire local grid with the global
grid. But we have decided to use only a part of the local certainty grid and to �nd the best transformation
of this part into the global certainty grid. One reason for that selection is the data reduction. But as well
the free regions of the environment are not suitable for the re{localisation process. So we produce a mask

of the local grid, which contains the grid cells with a probability to be occupied above a certain threshold.
This mask is used in the same manner as the segment masks to �nd the best transformation between the
two grids (see 3.2). After �nding the best transformation t and the covariance Ct of this transformation we
apply the Kalman �lter described in 4.2.

4 Updating the Estimated Position of the Robot

Because the parameters of the global grid are absolute and those of the local grid are relative to the robot
the uncertainty of the local grid relatively to the global grid is the same as the uncertainty of the robot
position r = (rxryr�)

T . If we can correct the position of the local grid, we can correct the robot position.
The following section 4.1 presents the Kalman �lters for the �rst re{localisation process which is based on
segments obtained from the two certainty grids (see 3.1). The section 4.2 discusses the Kalman �lter for the
other re{localisation processes (see 3.2, 3.3 and 3.4).

For the updating of the estimated position of the robot we use a Kalman �lter ([Bab 78, Cro 89, Cro 92]).
Here we want introduce only the notions of the Kalman �lter for the linear and discrete case that will be
used in the following:



g y
Xk = �k=k�1Xk�1 +Wk

�k=k�1 is the transition matrix between the state Xk�1 and Xk. Wk is the noise of the model with
expectation zero and known covariance Qk.

{ Zk is the observation vector at the instant k. The connection of the observation and the state vector is
given by:

Zk = HkXk + Vk

Hk is the observation matrix. Vk is the noise with expectation zero and known covariance Rk.

The prediction (or the estimation) of the state vector X̂k+1=k (for the following instant k + 1), the error

of this prediction P̂k+1=k and the prediction of the observation vector Ẑk+1=k are given by:

X̂k+1=k = �k+1=kX̂k

P̂k+1=k = �k+1=kP̂k�
T

k+1=k + Qk

Ẑk+1=k = Hk+1X̂k+1=k

In the equations of the Kalman �lter we compute an intermediary Kk+1 called Kalman gain for the
correction of the predicted state vector X̂k+1 and of the predicted error P̂k+1:

Kk+1 = P̂k+1=kH
T

k+1(Hk+1P̂k+1=kH
T

k+1 + Rk+1)
�1 (5)

X̂k+1 = X̂k+1=k +Kk+1(Zk+1 � Ẑk+1=k) (6)

P̂k+1 = P̂k+1=k �Kk+1Hk+1P̂k+1=k (7)

4.1 Kalman Filters for the First Re{localisation Process

The �rst re{localisation process is based on local and global segments obtained from the two certainty grids.
Each match of a local segment with a global segment (see 3.1) provides a one dimensional constraint on the
position of the robot (rxry)

T and its uncertainty as well as a constraint on the orientation of the robot r�.
These constraints may be applied using two Kalman �lters ([Cro 89]).

The �rst Kalman �lter corrects the robot orientation r� and using consequently the robot orientation as
the state vector (8). The �lter uses the di�erence of the orientations of the matched segments as observation
vector. In the ideal case this di�erence computes as well the robot orientation (9). The observation \matrix"
is than given by (10) and the noise of the observation by the covariance of the obtained segments (11).

The prediction of the robot orientation X̂k+1=k (12) and the error of this prediction P̂k+1=k (13) is given

by the robot. The prediction of the observation Ẑk+1=k is then the predicted orientation of the robot (13).

Xk = r� (8)

Zk = �gl � �lo = r� (9)

Hk = 1 (10)

Rk = �
2
�gl

+ �
2
�lo

(11)

X̂k+1=k = r̂� (12)

Ẑk+1=k = r̂� (13)

P̂k+1=k = �
2
� (14)

After the equations of the Kalman �lter (see equations (5), (6) and (7)) we can correct the predicted
robot orientation X̂k+1 and the precision of this correction P̂k+1 by the following equations:

Kk+1 =
�
2
�

�
2
�gl

+ �
2
�lo

(15)

X̂k+1 = r̂� +
�
2
�

�
2
�gl

+ �
2
�lo

(�gl � �lo � r̂�) (16)

P̂k+1 = �
2
� �

�
2
�

�
2
�gl

+ �
2
�lo

�
2
� (17)

The second Kalman �lter corrects the robot position (rxry)
T . Therefore, we use the vector (rxry)

T as the
state vector (18). We apply the correction of the robot position only in the direction perpendicular to the
segment. Consequently we use the perpendicular distance of the local segment to the robot as observation



( )
The predictions for the state vector X̂k+1=k (22) and the error of this prediction P̂k+1=k (24) are estimated

by the robot. The predicted observation Ẑk+1=k is then given by (23).

Xk = (rxry)
T (18)

Zk = �lo (19)

Hk = (sin r� � cos r�) (20)

Rk = �
2
�gl

+ �
2
�lo

(21)

X̂k+1=k = (r̂xr̂y)
T (22)

Ẑk+1=k = r̂x sin r� � r̂y cos r� (23)

P̂k+1=k =

�
�
2
x
�xy

�yx �
2
y

�
(24)

After the equations of the Kalman �lter (see equations (5), (6) and (7)) we can correct the predicted
robot position X̂k+1 and the precision of this correction P̂k+1 by the following equations:

Kk+1 =

�
k1

k2

�
=

1

�2�gl
+ �2�lo

�
�
2
x
sin r� � �xy cos r�

�yx sin r� � �
2
y
cos r�

�
(25)

X̂k+1 =

�
r̂x + k1(�lo � r̂x sin r� + r̂y cos r�)

r̂y + k2(�lo � r̂x sin r� + r̂y cos r�)

�
(26)

P̂k+1 = P̂k+1=k �

�
k1 sin r� �k1 cos r�
k2 sin r� �k2 cos r�

�
P̂k+1=k (27)

4.2 Kalman for the second, third and fourth Re{localisation Process

In 3.2, 3.3 and 3.4 we have introduce matching procedures which �nd the best transformation t of the local
grid into the global grid. In this section we discuss the Kalman �lter which is based on this transformation
t and which will correct the robot position (rxryr�)

T .
As state vector Xk of this Kalman �lter we use the whole robot position (28). As observation vector we

can apply directly the transformation t (29). In the ideal case this transformation t of the local grid into the
global grid is equivalent to the robot position. Therefore, the observation matrix is the unity matrix (30).
In 3.2 we have explained the computation of the covariance matrix Ct which is also the covariance of the
observation. The matrix is given in (31).

The prediction of the state vector X̂k+1=k (32) as well the prediction of the observation vector Ẑk+1=k

(33) is given by the robot. Also the covariance of the predicted state vector P̂k+1=k is given by the robot
(34).

Xk = r = (rxryr�)
T (28)

Zk = t = (txtyt�)
T (29)

Hk = I (30)

Rk = Ct =

0
@ �

2
tx

�txy �tx�

�tyx �
2
ty

�ty�

�t�x �t�y �
2
t�

1
A (31)

X̂k+1=k = r̂ = (r̂xr̂y r̂�)
T (32)

Ẑk+1=k = r̂ = (r̂xr̂y r̂�)
T (33)

P̂k+1=k = Cr =

0
@ �

2
rx

�rxy �rx�

�ryx �
2
ry

�ry�

�r�x �r�y �
2
r�

1
A (34)

After the equation of the Kalman �lter (see equations (5), (6) and (7)) we compute the Kalman gain
Kk+1 and the correction of the predicted state vector X̂k+1 and his predicted covariance P̂k+1:

Kk+1 = Cr(Cr + Ct)
�1 (35)

X̂k+1 = r̂ +Cr(Cr +Ct)
�1(t � r̂) (36)

P̂k+1 = Cr �Cr(Cr +Ct)
�1
Cr (37)

5 Updating the Global Grid

The updating process of the global certainty grid integrates the data of the local certainty grid into the
global grid. It is indispensable, that the updating process takes into account the uncertainty of the local grid
position. Because the local grid is centered on the robot, this uncertainty is the uncertainty of the robot
position. We remark that the correction of the estimated position of the robot is very important for the
updating process particular during exploration of unknown environment.
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global{grid(x; y) =

�
conv{grid(x; y) if global{grid (x; y) = unknown
1

2
(conv{grid(x; y) + global{grid(x; y)) otherwise

(38)

In this formula global{grid(x; y) is the global certainty grid with the absolute parameters x and y. conv{
grid(x; y) is the local grid convoluted with the uncertainty of the robot position and transformed to the

absolute parameters.

6 Experimental Results

We have incorporated the perception and the re{localisation procedures described in this paper into the
overall system of our mobile robot platform. After the �rst series of experiments we found that specially the
�rst and the fourth re{localisation procedures generate stable results for the re{localisation.

The �rst re{localisation procedure uses segments retrieved from the local grid and from the global grid
(see 3.1 and 4.1). The results are comparable or more accurate than the ones we obtain with our previous
approach which is based on a parametric model. This latter extracts directly line segments from the sensory
data ([Cro 89]).

The fourth re{localisation procedure correlates a part of the local certainty grid with the global certainty
grid (see 3.4 and 4.2). The covariance we obtain from such a correlation is relatively large. However, by
each application of the re{localisation procedure we can make an accurate correction of the estimated robot
position. Thereby, repeated application reduces the uncertainty of the robot position. Because of the reduced
data the procedure is computed in real time.

7 Conclusion

In this paper we have considered a certainty grid method for perception and localisation in order to model the
robot environment and to correct the robot position with this representation of the environment. Therefore,
we have introduced a local certainty grid which is centered on the robot and models the vicinity of the robot.
A second certainty grid, the global grid contains the two{dimensional representation of the environment. We
have described four localisation processes using a Kalman �lter to reduce the uncertainty of the estimated
robot position. First experimental results show the capacity of the method.

References

[Bab 78] M. Babarrere, P. P. Krief, and B. Gimonet. Le Filtrage et ses Applications. Cepaclus Edition, 1978.

[Bal 82] D. H. Ballard and C. M. Brown. Computer Vision. Englewood Cli�s, NJ: Prentice Hall, 1982.

[Bor 90] J. Borenstein and Y. Koren. Real{time obstacle avoidance for fast mobile robots in cluttered environments.

In IEEE International Conference on Robotics and Automation, pages 572{577, 1990.

[Bor 91] J. Borenstein and Y. Koren. The vector �eld histogram { fast obstacle avoidance for mobile robots. IEEE

Transactions on Robotics and Automation, 7(3): 278{288, June 1991.

[Cro 89] J. L. Crowley. World modelling and position estimation for a mobile robot using ultrasonic ranging. In

IEEE International Conference on Robotics and Automation, pages 674{680, 1989.

[Cro 92] J. L. Crowley, P. Stelmaszyk, T. Skordas, and P. Puget. Measurement and integration of 3-d structures by

tracking edge lines. International Journal of Computer Vision, 8(1): 29{52, 1992.

[Elf 89] A. Elfes. Using occupancy grids for mobile robot perception and navigation. IEEE Computer, pages 46{57,

June 1989.

[Mor 85] H. P. Moravec and A. Elfes. High resolution maps from angle sonar. In IEEE International Conference on

Robotics and Automation, pages 116{121, March 1985.

[Mor 88] H. P. Moravec. Sensor fusion in certainty grids for mobile robots. AI Magazine, 9(2): 61{74, 1988.

[Sch 93] B. Schiele. Perception et Localisation pour un Robot Mobile. Technical report, DEA Informatique, LI-
FIA/INP Grenoble, 1993.

[Wal 92] F. Wallner, T. C. Lueth, and F. Langinieux. Fast local path planning for a mobile robot. In ICARCV'92

Second International Conference on Automation, Robotics and Computer Vision, September 1992.
[Zha 92] Y. Zhang and R. E. Webber. On combining the hough transform and occupancy grid methods for detection

of moving objects. In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 2155{

2160, July 1992.

This article was processed using the TEX macro package with IRS93 style


