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Abstract 

'l'his disscrtrttion prcscntr a ncw tcchnique for rcprcscnting digital picturss. 'I'hc principal bcncfit 
of this rcpresc"ntittion is that it greatly simplifics thc problcm of finding thc corrcspondcnce bctwcen 
coinponcnts in tlic description of two pictures. 

This rcprcscntation tcchniquc is bascd on a iicw class of reversible transforms (thc 1)iffcrcncc of 
1,ow IJciss ur 1jOLP transform). A D0L.P transform scparates a signal into a sct of band-pass 
coinponcnts. 'l'hc sct of band-pass filtcrs uscd in a DOLP transform arc dcfincd by subtracting 
iidjacc'nt mcmbers of a scqiiericc of low-pass filters. This sequence of 10wpass filters is fornicd by 
scaling a low-pass filter in  sile by an exponcntial sct of scalc factors. 'Thc result of thcsc suhtractions is 
a sct of band-pass filters which arc all scaled copies of a smallest band-pass filter. 

Scvcrnl tcclrniqucs arc prcscntcd for reducing the complcxity of computing a DOLI' transfonn. It 
i s  sliriwn L!at :IS tiic Zach band-pass image can bc resamplcd at a sample ratc proportional to thc scale 
of thc band-pas irnaFc. This is cnllcd a Samplcd DOLP transform. I~es;rmpling rcduccs the cost of 
cornpiiring 3 !)O: P trnixfonn from O(N') multiplies' to O(iV Log N) multiplies and rcduccs the 
nicmory rcqiircnicnn from O( A7 t o g  A? storage elements to = 3 N storage elcmcnts. 

A fasr algorithm for computing the DOIP transform is then presented. This algorithm, called 
"cascade ccm dlitio11 with expansion" is based on thc auto-consolution scaling propcrty of Gaussian 
fiinctions. Caccadcd convolution with cxpansion also rcduccs thc cost of computing a DOLP 
transform to O(N I.og N) multiplies. When combincd with rcsampling, this fast algorithm can 
computc a Sampled lX)I,P transform in 3 X ,  N multiplies? 

'I'ediniqucs arc thcn dcscribcd for constructing a structural description of an iniagc from its 
Samplcd 1)0!.P transform. l'hc symbols in this dcscription arc dctectcd by dctccting local pcaks and 
ridgcs in  cach band-pass imngc, and ainong all of thc band-pass imagc. Ihis description has the form 
of a trcc of pcAks, ~ i t h  the pcaks iritcrconncctcd by chains of symbols from tlic ridgcs. Thc trec of 
pcaks has a structure which can bc rnatchcd dcspitc changcs in s ix ,  orientation, or position of the 
gray scaic shapc that is dcscribcd. 

'Ihc trcc of pcaks pcrmits the global shapc of a gray-scalc form to bc rnatchcd indcpcndcntly of the 

IN is thc nunibcr of arnplc points in an imagc or signal 

2 .  A , IS thc numbcr of cocficicnu in thc miallcst low-pass filter. 
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hi$ resolution details of thc fonr.. ‘I’htts it can be uscd for rapidly sc;irching thrott:h ;I d3ta b ; w  of 
protot! pc dcscriprions for potential inarchcs. ‘l’iiis rcprcscntnrion is vcrg cfficicnt h r  finding the 
corrcspondcncc of components of forms from two hnrtgcs. In such matching the pcaks s c r m  ;IS thc 
tokcns for \diicli corrcpondcnce is dcrcnnincd. ‘l‘hc corrcspoiidcncc of pcaks 3t each band-pass lcvcl 
constrain thc possibk matches a t  the ncxt. higher resolution ima2c. l‘his rcprcscnt:ition can also be 
uscd to dcscribc forms which arc tcxrurcd or have blurry bouiidarics. Exainplcs arc prcscntcd in 
which the dcsxiptions of  images of the sanic object arc matchcd dcspite chringcs i n  the size and 
iinagc plane oricntalion of the object. 
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Chapter 1 
Introduction 

‘I‘his disscrtntion dcscribcs a repi-cscntation for visual information. ‘I’his rcprcscntdtion is not 
specific to a particular kisual domain; it can be applied to any problem in which a two dinicnsional 
samplcd function must bc rcprcscntcd with symbols. I t  is particularly appropriatc for imagcs where 
thc picturc clemcnts have many values, whcrc the objccts rcprcsntcd in thc picturc hacc blurrcd or 
f u z q  boundaries, or have tcxturcd surfaces, and whcrc objccts occur at unknown siLcs and 
orientations. 

Intcrprcting an image rcquircs asscrtions about regions of the imagc whose sizcs may span the 
range from a fcw picture clcments to the cntire image. The rcprcscntation dcvelnpcd bclow provides 
visual primitives which span this riingc of sizes. The position of thcsc primitives are cncodcd as nodcs 
in a Sraph. ’I’hc rcsult is a data wucturc which is relatively invariant to tlic actual size, oricntation 
and position of the gray scale form in the image. 

1.1 The Problem Context: Machine Vision 

This Section dcscribcs the general vision problcm and how this disscrtation relates to it. 

‘I’his thcsis addrcsscs the problcm of rcprcsenting two dimcnsional (2-D) visual in formation. ‘The 
visual world in which humans Function is a threc dimcnsional (3-D) world. Undcrsmding this 3-D 
visual world rcquires rcprcscntation of thc 3-11 form of objccts. l’hc rcprcscntation dcscribcd in this 
thcsis docs not, by itsclf, provide this capability; it is inherently 2-D. 

‘I’hc human visual systcm receives as raw data a stcrco pair of 2-D imagcs. Each or thcsc images 
must bc rcprcscntcd as a 2-D signal and the pair niztched against cach other to rcccive 3-D 
information. ’I’hc rcprcscntation dcscribcd here is wcll suitcd for thc analysis of stcrco pairs. I t  is also 
wcll suitcd for thc intcrprctation of imagcs from somc domains which arc inhcrcntly two 
dinicnsional, such as many classcs of biomcdical imagcs, acrial and satcllitc photography, and also 
tcrrain d a b  (whcrc dcplli is rcprcscntcd as intcnsity). 

’Tcst data for this rcscarch has bccn acquired from divcrsc domains. Many of thc imagcs were 
digitiml f’rorn photogr;iphs of 3-11 objccts, such as the cup imagc shown 2s figiirc 1-1 bclow. ‘I’hc cup 
imngc is placcd hcrc to illustratc a point about 2-11 iinagcs of 3-11 objccts. Carcful viewing of 3 2-D 
imagc of a 3-11 ohjcct will usually show that thc light and dark rcgions in thc imagc do not dircctly 
corrcspond to  our idcas of thc object’s shape. 
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Figure 1-1: T a t  Image of a Cup. Notc Shape of Dark Regions. 

Notc the shapc of the dark rcgions of thc cup. Thcre is a dark handle which one might expect. 
There is also a dark rcgion at the top whcrc the cup is open, and thcrc is a dark rcgion on the right 
sidc. 'I'hc shape of Lhcse rcgions arc not at all likc what an untraincd pcrson would draw if askcd to 
draw a cup. lhc human visual systcm takcs thc shading, highlights, and tcxtural information, from 

.such an imagc and USCS thcm to reconstruct or rccall a modcl of a 3-11 objcct. 'Ihis proccss is 
unconscious, and thcsc visual cucs arc often not noticcd by an untraincd obscrvcr unlcss thcy are 
explicitly lookcd for. Although intcrprcting shading. highlights and tcxturc is an important and 
timely problcm in machinc vision, it is not thc problcm addrcsscd by this thcsis. Rather, this rcscarch 
will provide a new foundation for such intcrprctation. 

Figure 1-1 also providcs an opportunity to dcfinc an important tcnn. Thc dark rcgions in thc cup 
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im;ye aIc cxamplcs of "p). sciilc fonns". 'Ihc rcprcscntation describes thc shapc 01' both i t id i \kM 
fonns ~17d Ihc shape produccd by a configuration of forms. 'IIIc i5ord "form" is Iiorro\vcd froin thc 
iirt commuiiity. I t  rcfers LO a piittern of any shape which is not i~ecessarilg i;nifo1-111 in intcnsity. It is 
uscd in place of  image objcct, bccausc ima_cc objects could bc confuscd with rcd corld objects. The 
\ b o d s  shape a i d  blob wcrc a\oidcd ~ C C ~ U S C  thcy carry connoti~tion~ of u i i i f i ~ i n i - i r i ~ ~ ~ i s i ~ ~  conncctcd 
pattcrns. 

1.1.1 Role of Representation in 2-D Visual Domains 

In  a 2-11 visual domain. such as acrial photography. many assanbly nud inspection applications, 
somc clacscs of biomcdical images, or tcrrain data, recognition of objects requires thc following 
componcnts: 

1. A rcprcscntation tcchniquc which comprcsscs the information and cxprcsscs it in a uscful 
and cfficiciit form for recognition; 

2. A set of object models ((!r pcrhaps in thc case of terrain data a i-nodd of thc tcrrain of a 
vcry large rcgion). 'l'hcsc inodcls should be exprcsscd in a rcprescntation which can bc 
proccsscd cfficiently for recognition, or any reprcscntation which is casily converted to 
such a rcprcscntation. 

3. A niatclting proccdurc which comparcs observed data to swred modcls, givcs some 
measure of similarity. and. if dcsircd, a dcscription of wlicrc thc obscrvcd data inatchcs 
and docs not match a specific object model. 

Intc'rpretation is thcn a matter of encoding the observed dau and applying thc matching proccdurc 
bctwccn it and the object modcls (or regions of the tcrrain data base). 'I'his sounds simple enough, 
but in fact finding an cffcicnt procedure for such matching can bc vcry difficult. A crucial aspcct of 
the rnatching problem is finding thc corrcct reprcscnlation for both thc obscrvcd data and thc object 
modcls. 'lhc main contribution of this thcsis is thc dcvclopmcnt of such a rcprcscntation. 

In statistical pattern rccognition, a pattcrn is rcprcscntcd by a set of mcasurcmcnts callcd features. 
'I'hc set of fcaturcs comprisc a multi-dirncnsional space callcd 11 "fcature spacc". 'I'hc fcaturcs are 
choscn so hilt cach class of pattcrn produces a vcctors of fcaturcs that rcsidc in a uniquc rcgion of the 
fcaturc spacc. A pattcrn is assigncd to the class which occupics the rcgion of the fcature spacc into 
which its vcctor of fcaturc mcasurcmcnts falls. 

Rcccntly thcrc has bccn intcrcst in a diffcrcnt approach to rccognixing 2-11 patterns: so callcd 
"structuml pattcrn rccognition". A structural pattern rccognition algorithm employs a proto-type 
rcprcwitation for each pattern class. 'lhis prototypc consists of symbols for certain structural 
clcmcnts. such as cdgcs or corncrs. which are linked togcthcr into a spatial rclationship. A pattern is 
classified by constructing a corrcspondcncc bclwccn clcmcnts of the pattcrn and clcmcnts of thc 
prototypcs. A 2-11 pi11tcrn is assigncd thc class labcl f i r  thc prototypc whosc clcmcnts rnost closcly 
corrcspond to tliosc of thc pattcrn. 'I'hc rcprcscntatioii dcvclopcd bclow may bc uccd for structural 
pattern rccognition. although this is not thc only application to which it  may bc applicd. 
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1.1.2 Representation in 3-D Visual Domains 

In a 3-11 visual world in Mhich input data consists of stcrco pairs of 2-11 imagcs, intcrprctation 
rcquircs thc following componcnts: 

1. A rcprcscntation for tlic 2-D imagcs which may bc cfficicntly uscd for dcpth dctcction by 
stc rco matching. 

2. A procedure for obtaining depth information by dctccting corrcsponding objccts in thc 
I % O  irnagcs and obscrbing tlicir rclativs shifi. '1 his proccdurc should also makc usc of 
informalion In slidding, highlights, tcxturc. and othcr iisual cues. 

3. A rcpresciitation for thc 3-D form of objects. 

4. A rcpcrtoirc of models for the 3-D form of objccts. 

5. A matching procedure to idcntify which 3-D objcct model(s) corrcspond to the observed 
3-D input data. 

Although this dissertation is primarily conccrned with 2-D rcprcsentation, some suggcstions will be 
madc as to how this rcprcscntation may be used for interprctation of stcrco pairs. 'Thc othcr 
componcnts rcmain as timely and important research topics. . 

1.2 Thesis Summary and Background 

This Scction presents the thesis of this dissertation. describes the mctliodology for dcrnonstrating 
this thcsis. and rcvicws thc major rcsults of the research. 

1.2.1 The Thesis 

'Ihis rcscarch bcgan as an investigation of thc USC of a sct of band-pass spatial frcqucncy channcls 
for rcprcsenting visual information. This topic wa5 inspircd by psycho-physical thcorics of human 
visual pcrccption that hypotliesitc a sct of "spatial frcqucncy clianncls" in thc human visual sydcm 
[Campbcll68]. 'Ihcsc thcorics are sunimariLcd in an appcndix to [Crowley 761. 

F ~ r l y  in this rcscarch principlcs (rcferrcd to as postulatcs) wcrc fonncd to guidc and constrain the 
dcsign of band-pass filters for rcprcscnting imagcs. 'Thcsc principlcs wcrc rcfincd in thc course of 
cxpcrimcnts in which filtcrs wcrc dcsigncd and convolved with test pattcrns. Somc of thc rcsults 
from thcsc cxpcrimcnts arc dcscribcd in [Crowlcy ?Sa] and [Crodcy 78bJ. A rcfincd vcrsion of thcse 
principlcs is given in Scction 4.2 bclow. 

'I'hcsc principlcs m d  cxpcrimcnts Icd to thc dcvclopmcnt of tlic rcvcrsiblc Diffcrcncc of 1,ow-Pass 
( 1 ~ 1 ~ 1 ' )  'Transform. 'I'hc DOIP transform is bascd on a sct of scalcd copics of ii  circularly symmctric 
low pass filtcr. 'I'hc scalc factors for thcsc filtcrs form an cxponcntial scquencc. FKich low-pass filtcr is 
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subrractcd from thc prcvious Iom -pass filter to form an cxponcntial scqucncc' of bmd-pass tiltcrs. 
Thcl;c. b;iii(i-p;1ss filters may bc convuli.cd with d ~ c  imagc to form a sct of  band-pass imagcs. 'I'hc set 
of 'naiid-p,iss images is \cry similar to the images which would bc produ~cd by tlic sct of  spatial 
frcquency cliannrls which havc bccn hypothesir.ed to cxist in the human visual systcm. 

I h c  set of band-pass filtcrs and thc largcst low-pass filtcr sum to form a single cocfficicnt whosc 
value is 1. ,Inothcr way to say this is that thc sum of ;ill of thc band-pass imazcs nnd thc low-pass 
iinagc produced hy filtcring with the largcs~ lowpass filtcr can bc addcd togcthcr to form the original 
irnagc. This property dc:nonstratcs that no information is lost by thc I101.P transform. 

'Ilic lowpass filtcrs arc each a scrrlcd (in s ix )  copy of the samc fiinction. Thus the band-pass filtcrs 
formcd frcm tticir diffcrcncc arc also scalcd (in six) copics of the samc fitiiction. This givcs the 
propcrty that scaliii_c a 2-11 pattcrn shifts die partern in each band-pass imagc to a new band-pass 
imagc. 'I'hus a rcprescntation based on pcaks and ridgcs in the band-pass imagcs is invariant to 
changes of scalc of tlic pattcrn. 'I'hc scale information is prescrvcd by noting which bsnd-pass image 
thc pcaks and ridgcs actually exist at. I t  is thc network of symbols which is not changcd by scaling 
thc 2-11 image. Note that in fact tbcir are sm;ill cyclic distortions that occur during scaling, but thcse 
can bc obviatcd during matching. 

A striiishtforward implcmcntation of a DOLP transform for an N point signal requires O(N2) 
muitiplici an~ l  produces O(N I,o$N) ) samples. 'Ihis can be quitc expcnsivc on a general purpose 
coinputcr. In an ct'fort to reducc this complexity the concept of rc-sampling each band-pass image 
was invcstipatcd. Re-sampling at a rate proportional to the scalc of the band-pass filter providcs the 
bcncfits of: 

0 making the rcprescntation size invariant, 

0 rcducing the computational complexity, and 

0 reducing the storagc rcquirements 

for thc 1101-P transform. Re-sampling creates a class of DOLP transforms rcfcrrcd to as "the 
Samplcd 1101J' transform". Thc rc-sampling opcration is dcscribcd in Scction 3.3 and the re- 
sampled DOLP transform is dcfincd in Scction 5.5. 

Sccking to furtlicr rcducc the computational complcxity of thc DOLP transform wc invcstigatcd 
thc tibe of rcpcatcdly convolving an imagc with a Gaussian low-pass filter and re-sampling. This 
'algorithm, refcrrcd to as cascadcd filtering Hith sampling. produccs a sct of low-pass imagcs with 
impulse rcsponscs which are scalcd in standard dcviation by a factor of for cach convolution. 
Subtracting cach low-pass imagc from thc previous low-pass imagc gives a sct of band-pass images. 

Cascadcd convolution with Gaussian filters can produce a set of low-pass imagcs whosc impulse 
rcsponscs 3rc arc scalcd cxponcntially in standard deviation. '1Xis is a conscqucncc of thc Gaussian 
Scaling property, discusscd in Scction 6.1. 'I'hc Gaiissiun scaling propcrty shows tliat convolving a 
Gaussian function with itsclf produccs a new Gaussian function which is largcr in standard dcviation 
by a factor of fi. Cascadcd Convolution with sampling using a Gaussian filtcr may be uscd to 
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compute ;I stibclass of tlic S;inipIcil 1)OI.P transform callcd the "Samplcd Iliffcrcncc of Gxissinn" 
(SlIOG) 'I'ransfomi. Stor'igc cfficicncy and s i x  invariancc rcsult froin rc-sanipling. M hilc thc 
compurntional cfficicncy is thc rcsult of both re-sampling and an auto-convolutit,n scaling propcrty 
of Gaussian functions. 

Ihth thc I>OI_P transform and thc SDOG transform cxpand a 2-13 (XJ) imngc into :I 3-1) discrete 
spacc (x ,y ,k) .  'I'hc new dimension of this space is I<. thc filter index. For an N point imagc, thc 
SIIOG transforni 1i;is 3N saniplcs and rcqujrcs 3 N X, multiplics, where X, is t1ic ririmbcr of 
cocfficicnts in thc smallcst low-pass filter. This computational complcxity. dcrived in  Section 6.3. is 
less than that of  an f T I '  for most signals. 

lkcausc tlic filters irnplcmcntcd by thc SDOG transform satisfy thc criteria cstablishcd in Chaptcr 
4 it is possible to ConstrLict a structural rcprcscntation of an itnagc uliich has ccriain dcsirable 
propcrtics for matching object descriptions. This rcprcscntation is created by dctccting pcaks and 
ridgcs in the (x,y.k) space given by the SLIOG transform. 

Lct us claboratc on the terms "pcak" and "ridgc" and on thc rolc of pcaks and ridgcs in this 
structural rcprcscntation. At cach band-pass image, or lcvcl, of thc SDOG Transform. there are 
points whcrc the band-pass impulse rcsponsc is a "best match" to onc of thc gray scale forms in the 
picturc. A t  thcsc points, the filtered picture has a local positive maximum or ncgativc minimum; 
such points are called pcaks. Dccausc thc filter size at any level, k, is 115 larger than the filter at lcvcl 
k-1. there is a connectivity bctwctn bctwecn peaks at adjacent levels. Connccring adjaccnt peaks 
bctwccn all of thc levels givcs a tree (or sct of trees under sonic conditions) i n  which Uic path of the 
branchcs dcscribcs the location, six,  orientation and shapc of objects in the picturc. In hct, it is 
necessary to compare the valucs along each branch to dctcct local maxima d o n g  the brunclz. These 
points scrvc as landmarks for dctcrmining the siz.e, position, and orientation of gray-sc, [i I e f orrns. 

When an objcct has an clongnted shape, it will give rise to a path of valucs which arc largcr tlian 
any adjaccnt valucs, that is. a "ridgc". Ridges tend to bcgin and end at branchcs in the trcc, and 
follow a path which can trawl both bctwccn and along a Icvcl. l h c  paths of the ridgcs gives further 
information about the shape of objccts in the image. 

Figure 1-2 shows an example of a graph composed of pcaks (M's)~ and ridgcs (1,'s) which 
rcprcscnts a rhomboid form. This figurc is takcn from Cliaptcr 7 whew it illustratcs the scqucnce of 
ridgc points that rcprcscnt an clongatcd form which changes width. 

'Iliis trcc and its ridges dcscribcs a gray scalc form with symbols which rcprcscnt circular rcgions. 
l h c  size of lhcsc rcgions span tlie rangc from radius = 4 to the size of thc image. l'hc trcc and 
graphs for a particular gray scalc form will haw thc same stnicturc rcgardlcss of thc gray scale form's 
six. position, or orientation. Ikcausc this rcprcscntation spans from global to local, it may be used to 
align the rcprcscntations of a pair of forms which are to be matched, even if tlicy are of diffcrcnt 

31;our types of synbols arc used in thc rcprcscntation. Thcsc symbols arc labclcd with UIC lcttcrs { M*. M. I,, P). Thcse 
SI rnbols arc briclly d c h c d  in scction 1.3. and discusscd at lcnglh in chapters 7 and 8. 
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sizes. 'Hie correct scdc. orientation. and position of  one fonn to thc5 other ma! bc dctci-mincd by 
making a correspondcncc bcrwcen thc few "distin$uishcd nodcs" in the trec. Similarity in shnpc 
betwcen two forms is readily apparent fr-cun the few symbols at tllc I T I O S ~  global l~\vcl. '1'1~1s if tl~c 
idcntity of a fimn requires matching to a largc set of prototypes. the search may be pruncd b'iscd on 
the few most global sjnibols in the representation. 

'I'hc reprcscntation produced by linking pcaks and ridgcs in thc 3-space function sivcn by a S1)OG 
I'ransfonn of an imagc: 

1. is invariant (except for the cffccts of a discrete space) to cliangcs in the siic or position of 
a gray scale form (the cffccts of 2-D orientation can be casily compcnsAtcd for): 

2. provides a structure which may be used to dctennine the relative sizc. oricntation. and 
position of two gray scalc forms from two images; 

3. permits the global shape of two gray scale forms to bc comparcd without thc cost of 
comparing details; 

4. is not scriously degraded by textured regions, and degrades gracchlly with image noise,or 
blurry edges. 

The invariance to changes in size and position is qualified because thcrc arc small cyclic distortions 
which occur when an object is moved or scalcd in size. Thcsc distortions arc thc rcsult of the discrcte 
naturc of the 3-13 space given by the SDOG transform. 

1.2.2 Demonstrating the Properties of the Representation 

l'hc validity of thc claims made above should become apparent as the rcadcr absorbs thc material 
prcseiitcd ill  Chapters 3 through 8. Thesc claims have been vcrificd by cxpcrimcnts and are 
dcmonstratcd with examples. 'Test images wcrc taken from local data bascs, in particular, from a 
copy of tcst imagcs from GM for the "bin of parts" problcm [Baird 771. and from a tcrrain data base 
of the Washington DC area. Six tcst imagcs werc digitized from 35 mm lllack and white ncgiitives by 
SKI Intcrnational. In the last ycar, the CMU image understanding group 1 ~ s  pcrmittcd access to the 
imagc digitizer on its Grinncll Display systcm. This has bccn uscd to makc stcrco pair imagcs of a 
paper wad and a paint stirrer. 

The par t id  irrvuriurice to size of the reprcscntation is illustratcd by thc reprcscntations from five 
tcapot imagcs. 'Ihcsc images wcrc formed from photographs of a tcapot takcn at tlircc distanccs with 
two oricntntions at cacli distance. The changc in size from thc smallcst tcapot to thc largest tcapot 
spans a factor of approximately fi. The distortion of the rcprcscnwion from changcs in scale is 
cyclic as scalc changcs by a factor of G. 'Hie cffccts of tliis distortion arc illusuatc with thc tcapot 
imagcs in chapter 8. 

l h c  cffccts of oricntation arc cyclic over a rotation of 90'. Rotating an objcct has only minor 
cffccls on the trec of pcaks. 'I'hc major effect of rotation is to change thc dcnsity of thc symbols along 
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d ridge path. This effect can Aso be coinpcnsntcd for in n matching rule. Thic effect ib illusrr,itcd by 
two tcitpot oricnt'rtions that diffcr in orientation by approxiinatcly 30'. 

'l'hc L:SC o f  tlic rcprcscntation ro dctcrminc rhc rclativc six and oricntittion of two ittiagcs of an  
objcct is illustr;wd wi th  LI~C tcapot images. I t  has also bccn demonstrated bit11 thc sicrco pair of 
irnagcs of thc paint stirrcr. 

Graccful degradation of tlic rcprcscntation with noisc, and thc ability to rcprescnt borh sui'face 
tcxturc and tlic shnpc of a rexturcd object have bccn demonstrated \vith the swrco pair o f  iningcs of a 
papcr wad. A portion of  oiic of thc paper wad imagcs wiis degraded b y  strbstciniial high frcqucncy 
noisc during dizitization. This high frcqucncy noisc is almost cntircly confincd to tlic most local lcvcl 
of tlic reprcscntation. 'l'hc papcr wads also hwc surfrlce tcxturc which is rcprescntcd in tlic lower 
(morc local) lcvcls of' thc rcprcscntation while the shapc of the papcr wads is rcpres~'ntcd in the 
highcr (more global) levels. 

A simple cxplanation can nbviatc concern about blurry edges. A blur is thc rcsult of n convolution 
with a low-pass "blurring function" which occurs optically in the imaging systcm. usually from poor 
focus, dirty Icnscs, or motion. Only thc highcst frcquency filtcrs uscd in t'ic rcprevntation are 
scnsitivc to such a distortion. Thus blurring affccts only the most local lcvcls of the rcprcscntation. 
The samc can bc said for othcr high frcquency noise, and for textured surfaces. 

1.2.3 Research Methodology 

Ihcrc 3rc both analytic and experimental aspects to this rcsearch. The lzaturc of imagc signals and 
thc desired properties of the reprcscntation are uscd to synthesize a set of constraints for the filter 
dcsign. -This is an informal analysis. A more rigorous analysis is uscd to dcmonstrntc that the 
sequcncc of band-pass filters formed by subtracting a scqucncc of low-pass filtcrs formed a class of 
rcvcrsiblc transforms (the Iliffcrence of low-pass (D01,P) Transform). Mathcmatics arc also 
employed to dcrivc a "fast" or O(ii) form of DOLP transform using Gaussian filters (Thc samplcd 
DOG transform). 

On thc othcr hand, thc tcchniqucs for dctccting pcak and ridgc points, and thc rulcs for dcscribing 
thcir behavior have bccn dcvclopcd by trial and crror. Most importantly, cxpcrimcntal tasks were 
pcrfonncd dcnionstrating that thc reprcscntation is not corruptcd by certain visual phcnomcna such 
as blurry cdgcs, surface texture. and imagc noisc, and dcmonstrating thc dcgrcc of invariancc of the 
rcprcscntation to object six, oricntation, and position. 

'I'his cmpirical stagc of the rcscarch was undcrtakcn to dcmonstratc that the 1X)L.P and Sampled 
IIOG 'I'ransforms had thc propcnics which thcy wcrc dcrivcd to have. and that thcy could bc applied 
LO thc problem of rcprcscnting visual information whosc structure must be comparcd to othcr visual 
information (As in stcrco matching) or prototype rcprcscntation of classcs of visual objccts (as in 
structural pattcrn matching). Of coursc. the cmpirical stage of the investigation yiclcicd important 
principlcs and tcchniqucs for dcscribing visual information with band-pass filters. 



1.3 Results 

This Scction dcfcribcs the major innovations dcveloped in this research. NCM. tccl~niqiics \vert 

dcvclopcd in threc rclatcd problcm domains: 

1. ‘Ihc detection and mcasurcrncnt ofgiijy scalc forms in 2-11 images; 

2. Computational techniques for such measuremcnt; and, 

2. ‘I hc rcprcscntation of2-11 gray scalc information. 

The following three Scctions summariic tlic results in each of thesc probicin domain% The first of 
these Sections dcscribcs thc new rcprcscntation. In  particular it dcscribcs the set of symbols uscd in  
this rcprcscntation, thc mcaning of thcsc symbols, and how thcy arc intcrconncctcd. Somc of tlic 
now1 and important propcrtics of this rcprcscntation arc also dcscribcd. Thc second Scction 
describes thc measurements on which this rcprcsentation is bascd. Thc final Subscction dcscribcs 
new computational tcchniqucs which were dcvclopcd to reduce the timc rcquircd to compute these 
mcnsu rctnen ts. 

1.3.1 The Representation 

‘I‘his rcscarch prcduccd a representation for two dimcnsional gray-scalc sianals. The 
rcprcscntation is composed of a tree-like network of symbcls whic!i may cxist at discrctc locations in 
the t h r x  spacc (x . j :k ) .  7hc x and y aimcnsions of this spacc rcprcscnts spariai po:;ition, whilc thc k 
variable rclircnccs a spatial ficqucncy band. 

This rcprcscntation may bc used for 2-D object class prototypes as wcll as image data. A 
rcprcscntation computcd from imagc data may bc matched to a prototype dcspitc changes in size, 
orientation or position. ‘I’his matching may proceed from a fcw symbols which dcscribc global form 
to more dctailcd local form. In this proccss, thc matching process may be tcnninatcd if thc global 
form is a poor match. Also, whcn matching sterco pairs, thc corrcspondcncc bctwccn points in the 
two iinagcs may bc casily dctcrmincd by tracking through thc rcprcscntation. 

Thcrc arc four types of symbols in thc rcprescntation: 

0 M*: Pcak points (positivc maxima and ncgativc minima) in thc 3-space 

1,: Ridge points in thc 3-space 

0 M: Peak points at a givcn k (frcqucncy band) 

P: liidgc points at a givcn k. 

F ~ c h  point in the 3-spacc, (x,y,k). contains thc inncr product of a ncigliborhood of the irnagc 
ccntcrcd at ( x ~ )  and a circularly symmctric filtcr impulsc rcspoiisc of a radttis sclcctcd by k. Peak and 
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Figure 1-2: A Rhomboidal Form and its Reprcsentation 
(Reproduced from Chapter 7, figure 7-19) 

ridge points (M*'s and L's) in the 3-space mark thc best fit of the primitive ovcr a rangc of scales to a 
local set of image ncighborhoods. Pcak and ridgc points ( M's and P's )at a particular lcvcl (or 
band-pass imagc), k. mark the best fit of a particular fixed scale version of the primitivc to a local set 
of imagc ncighborhoods. 

M* points are particularly significant. Thcsc mark distinct visual landmarks or regions. 'Ihc lcvcl, 
k, of an M* symbol givcs an cstiinate of the size of the visual landmark. More detailed information 
about the shapc of the landmark is givcn by thc linkcd paths of L's (I/-paths) and M's (M-paths) that 
arc connected to the M*. 'I'hc filters adhcrc to smoothness constraints which provide a continuity to 
thc I<'s, to the M's. and bctwccn thc 1,'s and M's. 'I'hc continuity permits paths in thc 3-space to be 
formcd by connecting adjaccnt L's and adjaccnt M's. 

'I'hc shapc of a form is rcprcscntcd by thc network of I,-paths and M-paths which rcsult from it. If 
thc form increases in six,  the cntirc network moves in thc k direction in thc 3-space. but maintains its 
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connectivity and structure. Note. howcvcr, that sincc tlic components of thc nct\i orks cxist ;it 

discrcrc points in thc hpacc .  thc iiiution occurs as discrctc jumps of picccs oftlic net\\ ork. Similarly, 
if  Uic sliiipc rotatcs. its nctwork rotatcs, and if thc shapc inovcs. its nctwork moics. 'l'hc scalc, 
oricnt:ition. and position quasi-invariancc that is spokcn of i n  this disscrtation rcfcrs to thc nctwork. 
I ~ I C  t.;i/e, oricntation. and position infonnation is availablc from thc position (and oricntntion) of the 
nctwork in the 3-spxc. 'I'hc modifier "quasi-" is used bccausc thc individual symbols may only cxist 
at discrctc points. and inakc discrete jumps as thc form changes smoothl! in sizc, oricntation, or 
p osi tioii. 

1;igiirc 1-3, shows an cxnmplc of the usc of pcaks and ridges for reprcacnting the shnpc of a 
gray-scalc form. This figure. which appears in Chapter 7. shows a rhomboid shapc. Circlcs over this 
form illustratc thc position and radii of band-pass filtcrs WIIOSC positive ccntcr lobes hcst fit the 
rhomboid. Below tlic rhomboid is part of thc graph wdiicli is produced by dctccting and linking pcaks 
and ridgcs in thc SDOG transform. 'I'hc meaning of thcsc symbols is described in Chapter 7. 

1.3.2 Measurement Technique 

This rcscarch produccd two results which pertain to the problcm of sensing (or mcasuring) the 
prcscncc of gray scalc forms in two dimensional data: 

1. lksign crircria for band-pass filters required to dcscribc non-pcriodic data by Incans of 
peak and ridge dctcction. 

2. A rcvcrsihlc rrmsform (The DOLP Transform) that scparatcs imasc signals into spatial 
fi-cyucncy channels that mcct the critcria for describing non-periodic data with peak and 
rid_gc dctcction. 

The 1lOI.P transform provides an ordered scqucnce of band-pass filtcrcd vcrsions of thc input 
unagc. 'I'hc impulsc I-csponsc of each band-pass imagc is a finitc circularly synimctric function 
formed from the diffcrcncc of two low-pass filtcrs. Thc radii of tlic jmpulsc rcsponscs form an 
cxponcntial scqucncc of thc form: 

R,Sk 

where R, is an initial radius ( tjpically 4.0 ), S is a scalc factor (typically fi), and k is an indcx that 
ranges from 0 to K (K is 16 for a 256 by 256 image). 

One of the principal charactcristics of the 1X)L.P transform is that it is rcvcrsiblc. ?IC impulse 
responses may be thought of as a set of prirnitivc functions from which pictures may bc constructed. 
l 'his primitive looks likc 3 f u n y  disk on an invcrscly shaded background. 'Thc two diincnsional 
convolution of thc picture with cach impulse rcsponsc is cquivalcnt to a scqucncc of inncr products 
(scc Scction 3.1.3). 'Ihis rcsult facilitatcs an intuitive undcrstanding of thc filtering prtxcss. FAch 
sarnplc from the convolution indicatcs the proportion of signal cncrgy within thc ncighborhood 
ovcr-lappcd by thc irnpulsc rcsponsc which is idcntical to thc impulsc rcsponsc. I n  otlicr words it is a 
nicasurc of similarity bctwccn thc impulsc rcsponsc and thc itnagc signal ccntcrcd a t  that sample 
point. 
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Ikcausc thcsc primitive functions arc band-pass. rhcy arc scncitivc to pattcrns o m  a narrow r a n g  
ol'sizcs. 'Ihus for a tcxtured rcgion. the shapc of thc tcxtiirc clcmcnts is dcicribcd b y  a coiifigirration 
of' high t'rcqucncy (smallcr) impulse responscs, while thc shape of  the cntirc rcgion is dcscribcd by a 
scpnrarc configuration of lower frcqucncy (largcr) impulse responses. 

1.3.3 Computational Techniques 

There are two computational techniques which resulted from this research: 

1. The usc of re-sampling in computing the Difference of Low Pass transfonn, and 

2. A fast O(n) implementation of the trmsform (the Sampled 1)iffcrcncc of Gaussian 
Transfonn) that uses a no\ el technique: "Csscadc filtering with re-smpllng" 

A conscquence of the use of band-pass impulse responses is that the thc cost of the convolution 
can be ieduccd by computing only at sample points. The distance between re-sample points has a 
lower hound which is a proportional to the size of tlic impulse response. Thus as the impulse 
response grows in size, the number of points at which the convolution must bc computed decreases. 
I f  the convolution is done in the usual manner the increasc in size of thc impulse rcsponsc is exactly 
balanced by the dccreasc (due to Limpling) in the number of points at which the convolution is 
computed [Crowley 7831. In addition to reducing the complexity and storase requirements of the 
filtcring operation, re-sampling also contributes to the size invariance of the representation. 

The Sampled DOG Transform, described in Chaptcr 6,  is based on a prclperty of Gaussian 
hnctions. Whcrcas, with re-sampling, a DOLP transform of an NxN image requires O(N IogN) 
steps, the Sampled DOG Transform produces the same result in O(N) stcps. A step may be a 
multiply or an inner product4 

1.4 Organization of this Dissertation 

'This dissertation may be divided into the following sections: 

a Background Matcrial (Chapters 1 ,2  and 3); 

Measurcmcnt, dctcction and mathematical representation of nonpcriodic signals ( 
Chapters 4 and 5) ;  

0 Fast computation techniques for thc DOLP transform (Chapter 6); 

0 Converting the mathematical rcprcscntation to a symbolic representation which describes 
gray-scale shape hcirarchically by spatial frequency ( Chapter 7 ); 

4Thc symbol "O(.)". is pronounced ordcr and used to indicate that the number of stcps in the process undcr discussion is 
lcss Lhan or cqunl io (boundcd by) a lincar funct~on ofthc argument. 
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Examplcs of the rcprcscntation and its use for matching. incluJii iF dcmonstr,itions of thc 
in\:uktncc of  thc structurc of a dcscriprion to the size and oricntauon of thc pattcrn 
(Chapter S). 

Clirtptcr 2 dcscribcs related work by othcr rcscarchcrs in sensing and rcprcscnting fornis in 2-13 
grey scale images. Chapter tlircc provides a quick review of signal processing tcchniqucs and tcrms 
which wcrc ,rppcar j n  this disscrtation. 

I n  Chaptcr 4, a sct of critcria for designing band-pass filtcrs for detecting and dcscribing non- 
periodic signids is described. ’I‘he crircria dcscribcd in this Chapxr dcfincs ;t broad clx>s of filters 
which may be uscd for dctccting the prescncc of non-resonant signals of particular sizcs (durations). 

I n  Chaptcr 5, a rcwsiblc transform is defined which scparatcs a signal into a sct of short duration 
spatial frcqucncy channcls. ‘Ihc filtcrs uscd in this transform satisfy the critcria cstablishcd in 
Chaptcr 4. l h i s  transform cmploys a scqucncc of low-pass Ftltcrs which arc scale copies of a single 
function. I’he subtraction of adjacent low-pass filters g ixs  a scqucncc of band-pass filtcrs. These 
band-pass filters and the lowcst frcqucncy low-pass filtcr define ?he rcvcrsiblc D01,P transform. 
When an imagc has bccn convolicd with thcsc films. tlie band-pass i:nagcs may bc added together to 
rccovcr the original signal. ‘I’hc DOW transform is shown to rcquirc SN? multiplics and N 
l,og,(N/X,) + N storage cclls for an imagc with N sample points, a basc filter of So cocfficients, 
and a scalc ihctor bctwccn filtcrs of S .  Thc techniquc of computing the convolutions at rc-sample 
poin ts spaccd proportioiidlly to tiic scalc of the filters is thcn introduccd. The rc-samplcd DOLP 
transform is shown to rcquirc S X, N Log,(N/X,) + X ,  N multiplics and require =3N storage cclls. 

111 Cliaptcr 6 a fast version of this transform is defined which employs rc-samyliiig and Gaussian 
filtcrs to reduce the computational complcxity to 3 X, N multiplies. This fast traiisfonn cmploys 
rcpcatcd convolulion with a small filter, and yet givcs mcasurcmcnts which span thc range of 
ncigliborhood sizes from a pixcl to the size of the image. 

In Chapter 7. tcchniqucs are dcscribcd for dctccting pcaks and ridgcs within this thrcc- 
dimcnsional transform space. and connecting these to form thc reprcscntation. ‘I‘hc structurc of this 
trcc rcprcscnts a gray scalc shape indcpcndcnt of its six,  position or oricntation. 

Chapter 8 providcs cxamplcs of thc uschlncss of the rcprcscntation for matching as wcll as 
cxamplcs of thc six. rotation and position quasi-invariance of the rcprcscntation. This chaptcr 
dcscribcs thc matching (or corrcspondcncc) problcm in thc domains of stnictural pattern recognition 
and stcrco imagc intcrprctation. Examplcs arc lhcn prescntcd in which thc trcc of pcaks from thc 
tcapot imagcs arc matched dcspitc changes of size and imagc plane oricntation. A alignmcnt 
proccdurc and similarity mcasure is thcn prcscntcd for ridgc paths in the 3-space. 
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Chapter 2 
Backg round: Related Tee h n iques 

This chaptcr reikws existing techniques for detecting and rcprcscnting gray-scale forins in 2-11 
images. 'l'he first scction discusses detecting and representing forms by their boundarics or as 
regions. Both region sliapc and boundaries are cncodcd in thc rcprcscntation dcvclopcd in this 
research. 

I *  1 hc sccond section covers popular techniques for detecting thc prcscnce of unifonn regions using 
some form of lincar dctcction function followed by a nonlinear decisiun iulc. 'Illcsc tcchniques 
attempt to find edges which are thcn used to locate the boundaries of a region. 'Ihc tcchniqucs 
described in this section range from vcry local edgc detectors, such as liobcrts' gradient [Kobcrts 651, 
to detcctors which cover large areas, such as David Marr's Laplacian of Gaussians [Marr 79a]. 

The third scction describes representation techniques. The problem here is to develop a 
representation for gray-scalc forms or uniform regions which pcrmits a fast search, alignmcnt, and 
similarity ~ticasi~rc. Techniques in this section include rcprcscntations that are produccd by 
scgrncntation programs, Nlum's medial axis transform [Blum 671, and Marr's primal skctch. 

2.1 Boundaries vs. Regions 

At present there arc two popular approaches to image rcprcscntation: boundary rcprescntation 
and region rcprcsentation. Pionccring work with the boundary description approach was done by 
Roberts' [Roberts 651. The litcraturc is full of rcccnt work with this approach. Notablc cxamplcs are 
[McKcc 771 and [Pcrkiris 781. Estirnatcs of the boundary position arc usually obtained by convolving 
thc pictur'c with one or more small local edgc detector followcd by a non-lincar decision hnction 
such as Roberts' gradient, the Sobel operator [Duda 731, or thc Hucckcl operator ]Hueckcl 711, 
[Hucckcl 731. Sec [Crowley 7Sb] for a list of many popular small cdgc dctcctjon functions and their 
transfcr function. Some hrthcr cncoding of boundary points is usually niadc to yicld a 
rcprcscntation which may bc matched against stored models. McKce's papcr [McKcc 771 is a good 
cxamplc of this approach. 

Thc primary advantagc of most boundary dctcction schcmcs is that thc description may be 
computed by a small, fast opcrator. Howcvcr. a small opcrator can bc a disadvantage, sincc the 
boundarics that arc to bc dctcctcd can bc much largcr (in width) than tlic operator. Also, a small 
operators tend to bc scnsitivc to imagc noise, which is small and high frcqucncy. Also, such a 
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description is cxprcsscd a\ many s!mbols iihich stand for \cry local cvcnts. It is can bc inorc efficient 
to reprcwit thc imagc as fc\i cr s! tnbols which rcprescnr niorc globril (hrgcr) cvcnts. 

Iicgion dcscription is bascd o n  dctccting rcgions of uniform intcnsity o r  color. 'I'his step is oftcn 
r c f c i d  to as segnccntation. 1 hc usuJ approach is to computc a histograin of iinagc intcnsitics or 
histograms of color fcntitrcs which is(are) thcn scanned for wcll dcfincd w l k y s .  A thrcshold is sct at 
the \Aut in thc \,alley. 'I-liis tcchniquc can scparntc objcct from background niccly untlcr propcr 
ligh\iiq condi~ions. IieSions arc thcn rcprcsciitcd by a binary bit map, or by mcasuring il set of 
fcariircs :ihout thc binary shapc. 'Ihis approach was pionecrcd by Prcwitt [Prcwitt 661. and Itoscnfcld 
[l<oscnfi.ld 691. A good example of applying this approach to color featurcs is dcscribcd i n  

Ohlandcr's 'l'hcsis [Ohlandcr 751. 

- >  

Ncithcr of thcsc approachcs arc sufficient for an iinagc which contains surfacc texture or wcnk and 
blurry boundaries. With both approachcs thcrc arc problcms in how the imi~gc stnicrurc is mcasurcd 
and in how thc representation prcscnts thc infomation to later recognition proccsses. 

2.1 .I Measurement Problems 

Consider an image containing gradual intcnsity transitions. Such an image could bc said to have 
blurry edges. If a local edgc dctcctor is uscd it will respond weakly ovcr the cntirc Inrgc transition 
rcgions and thc response will bc so weak in some places that it will DC lost. lncrcasing thc gain will 
incrcasc the sensitivity to noise. Similarly a rcgion dctcction process will run into problcms dcfining 
hhcrc such a rcgion stops and starts. In such rcgions it is difficult to cvcn dcfinc vhhat is nicanr by an 
cdgc or a uniform region. 

In imagcs of real-world scencs, some boundaries between genuine objects arc vcry wcak. In a 
boundary dcscriptiori produced from local cdgc detectors, this usually results in missing boundaries 
and/or i !  failurc of boundarics to form a closed loop. 

In a threshold-based rcgion segmenter regions which should be distinct turn up joined. Also, 
Unlcss a rcgion has sharp boundaricd and its intcnsitics are distinct from those of thc background, 
the 3-D shapc of a rcgion will be vcry dcpcndcnt on thc thrcshold. 

Onc of the biggest trouble arcas for both of thcsc approachcs is imagc tcxturc. l'cxturc hcrc refers 
to rcgiors of an imagc containing many small forms which havc random gray lcvcl sliapcs. Oftcn in 
natural tcxturcs Lhcsc small gray lcvcl forms arc not uniform in intcnsity. Such tcxturcs may appcar as 
many small hills and vallcys in a terrain map. If thc six of thcsc "hills" is approximatcly uniform 
across thc objcct, thc way in which thc sizc varies in thc imagc may bc uscd to infer information 
about thc dcpth of thc objcct surfacc [Kcndcr 801. 

A texture composcd of randomly shaped nonuniform clemcnts will swamp a threshold-based 
rcgion scgmcntcr with many small randomly shapcd rcgions. 'I'hc shapc of any g i \m clcmcnt can 
dcpcnd on thc thrcshold. 'Ilic rcgion scgmcntcr will spend a largc amount of tirnc and mcinory 
rcprcscnting each clcmcnt. when what is nccdcd is thc shapc of thc whole tcxturcd rcgion. Roscnfcld 



(liosenfcld 691 1i:rs noted rhat successively hluriing such rc:ioiis u n t i l  tlic clcrricitts iiicr‘gc can hc 
irscd to scgimiit iidjiiccnt rcgioiis of different Lcxturcs. I’liis tcciiniquc is h s c d  011 thc s;mc principlc 
as the reprcscntatiun de\.clopcd in  this disscrhtion. 

With a natural tcxiurc. a local cdgc dctcctor will rcspond spor;idically o1.u a large arca with thc 
rcsult that hcrc is no clcar boundary. Howcvcr, local edge dctcctors have bccn used to dctcct 
tcxtured rcgions for rcgion scginen tcrs [Ohlandcr 751. 

2.1.2 Representation Problems 

A boundary dcscription attcinpts to draw a closcd boundary around rcgions which correspond to 
uniquc objccts. Fxcoding thc boundary with a chain code [Frccman 611, [McKcc 7-71, for example, 
provides a rcprcscntation which can bc inatdied to a prototypc to idcntify each closcd rcgion. There 
is a problcm if the boundary docs not close. In this case the interpretation program will not know 
which set of boundarics to attempt to identify. If thcre are many adjacent closcd boundarics, there 
can bc a problcin knowing which corresponds to a genuine object. and which arc artifiicts. Also the 
entire boundary must bc inatchcd to idcntify an objcct. That is, if half of the outline of a rcgion 
corresponds roughly to a prototypc, but the other half is grossly diffcrent, thc matching program may 
not diccovcl- thc problcm until it has attempted to match most of the boundary. I’lie main problcm is 
that in many situations edge detectors will report boundaries that do not corrcspond to an objcct’s 
actual shape. 

In a similar manner a rcgion segmenter may produce erroneous data becausc of mcasurcment 
problems, particularly when applied to images with weak or blurry boundaries. 

Finally, with both techniques the resulting representation is dependent on the specific size of the 
objccts in the imagc when what is desired is to rccognize a shapc indcpcndcnt of its size. 
Furtticrmorc, a good reprcscntation should make available both the global shapc of a form as well as 
local dctails. In this way a 2-D matching procedurc can begin by matching thc global form, and 
procccd to fincr dctail only if necessary. 

2.2 Edge Detection Techniques for Boundary Representation 

In this section we will review several measurement tcchniqucs which arc rclatcd to thc techniques 
dcscribcd in this dissertation. ‘lhe techniques described in tliis section havc in common the goal of 
dctccting cdgc scsmcnts for use as primitive symbols in a boundary representation of the forms in an 
imagc. As with thc rcprcscntation dcvelopcd in this dissertation, most of thcsc tcchniqucs arc based 
on somc linear incasurcmcnt of image intensity, and scck to provide a description of thc 2-13 shapes 
in an image. 
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2.2.1 Local Edge Detectors 

M a n y  local operators have bccn proposed for dctccting edacs clcmcnts. A survcy of such 
operators is includcd in [Crowky SO] along with the foimula and plots of their trmsfcr functions. 
‘l’hc car‘licst such opcratur is Kobcrts’ Grsdicnt [Roberts 6SJ. This operator consists of  ii pair of first 
diffcrencc tnasks oricntcd at +35 . Ihcsc macks are shown bclow in ligurc 2- l?  I.ct thc output of 
the con\wiution of thc two masks at point (x.).) in Uic image be dcfincd as c,(x,y) nnd c,(x,y). ’I’he 
cstimate of  Llie boundary at point x,y. dcnotcd c(x,y), is thcn forincd as thc S ~ L I X C  root of thc sum of 
the squarcs. as sho\\.n in the follo~;ing equation. 

0 -  

C(X.Y) = dcl(x.Y)2+c2(x.Y)L‘ (2.1) 

Since Roberts’ first defined this operator marly researchers have obscrvcd that equation (2.1) may 
be approxirnatcd by the mdximum of the absolute valucs or the sum of the absolute valucs as shown 
in equations (2.2) and equation (2.3). 

C(X,Y) = Max( IC&X,Y)l + IC,(X,Y)l) (2.2) 

0 1  
-1 0 

-1 0 
0 1  

Figure 2-1: Masks Used in Roberts’ Gradient 

Probably thc most popular local edge dctcctor has bccn the Sobel opcr,itor [Duila 731. Like 
Kobcrts’ gradient, the Sobel operator consist of two small masks that arc 90° orientations from each 
other. These masks are shown in figure 2-2. 

1 2 1  
0 0 0  

-1 - 2  -1 

-1 0 1 
- 2  0 2 
-1  0 1 

Figure 2-2: Masks Used in Sobel Operator 

As with liobcrts’ Gradient, the results of the convolution may be combincd by either equation 
(2.1), (2.2), or (2.3). 

The 1.aplacian operator, V2p(x,y), has ofteii hccn suggested as an ideal cdgc operator. The 
Inplacian, and its Fourier transform, are given in the following equations. 

51%yrcs 2-1 through 2-3 show b e  masks for local cdgc dctcctors. Ihcsc masks arc shown as an array of cocrficicnts which 
arc convolvcd with an image. 
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L_F( V2p(r;,y) } = -( u 2  + v2)9{p(x,y)} 
wlicrc u and \ arc the spatiA frcqucncy variables and 9{} is 
thc I-.ouncr 'I'ransform Opcrator. 

Prcwitt [Prcwitt 701 designcd two diffcrcnt two-dimensional diffcrcncc cquations which 
approximarc thc 1-aplacian operator. 'I'licsc masks arc shown in figure 2-3 bclow. 

0, -1 0 
-1 4 -1 
0 -1 0 

-1 -1 - 1  
- 1  8 - 1  
-1 - 1  - 1  

I;igure 2-3: Two Discretc Approximations To thc I i-iplacian from [Prcwitt 701 

As with thc Rohcrts' Gradient Edge Dctcctor, thcsc masks arc convolvcd wich an imagc. 'lhc result 
of thc convolutions arc then combincd using cquations 2.1, 2.2, or 2.3 to produce a map of cdgcs in 
an imagc. 

2.2.2 The Hueckel Edge and Bar Detector 

Hucckcl dcvclopcd a function for dctccting cdgcs and bars that partially compcnsatcs for thc fact 
that cdges arc not always wry local discontinuities in an imagc. Th: Hucckcl cdgc and bar dctcctor 
[Hucckcl 711 and [Hucckcl73] is based on a modcl of an edgc as a step function, F, within a circular 
neighborhood. ?his stcp function has a number of paramctcrs as shown in thc following equation. 

F(x,y,C.S,p,b.d) = h for Cx + Sy 5 p { b + d  f o r C x + S y > p  

Thc paramctcrs C, S .  and p dcscribc the direction of an cdge or linc. The paramctcrs b and d 
dcscribc the avcragc grcy level on either sidc of the edgc. l h c  Hucckcl opcrator approximatcs the 
pixel valucs within a circular ncighborhood,6 F(x,y), by finding thc paramctcrs for which F is a 
minimum distance from E as shown in thc following equation. 

'Thc Hucckcl operator solves this minimization problem by multiplying thc ncighborhood, Qx,y), 
and thc idcal stcp, F, by a sct of cight basis functions, Hi(x,y) for i = (0, 1,2. 3. .... 7}, as shown in the 
cquations bclow. 'J'hcsc basis functions, which arc scparablc into a product of angular and radial 
componcnts, arc' rcfcrrcd to as Hilbert functions. 'I'hc intcrcstcd rcadcr should scc [Hucckcl 711 for a 
discussion, definition, and drawings of the zcro crossings of thcsc basis fhctions. 

'Although Ilucckcl dcfincs thcsc functions using integrals they are evaluated aq a discrcte summation over a circular 
neigh borhood. 
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In thcsc cquntions. tlic s,'s arc variablcs and thc a,'s arc constants. Finding thc paramctcrs of F 
thcn bccomcs a inattcr of n1inimi7ing the following equation. 

7 

i = O  
z (a, - Si)2 

This minimimion produccs the parametcrs for thc closcst fit of an cdgc and an cstimatc of the 
likclihood that an edge is present. 

AI1 of thc tcchniqucs dcscribcd above detect and cncodc stiiall sharp dixontiniiitics in  imagc 
intensity. As wc discussed in section 2.1. such a rcprcscntation docs not capture '111 of the information 
in an image that is nccdcd for matching to an object modcl. Such a rcprcscntation is also inhcrcnlly 
incfficicnt bccausc it describes only very local detail and does not dcscribc tlic global shape of 
regions. 

2.2.3 Kelly's Use of Planning 

Onc of the first researchers who attempted to usc information from morc than the most local 
rcsolution for finding boundaries was Kelly IKcily 71 1. Kelly callcd his tccliniquc "planning". 
Planning is a problem-solving technique for rcducing the search spacc for a possible solution. 
Planning is thc usc of tlic solution to a simplified version of a problem as a guide to thc solution of 
thc original (morc complex) problcm [Minsky 631. Planning was first employed by Newcll, Shaw and 
Simon in the Gcncral Problem Solver [Newcll59]. 

Planning was applied to boundary detection by Kelly as part of his systcm for classifying imagcs of 
faccs [Kelly 711. In this form of planning, cdges arc first detected in a rcduccd rcsolution vcrsion of 
an image. Thcsc cdges are thcn used to guide thc dctcction of cdges in the original image. 

Kclly's sysrcm opcratcd on imagcs cornposcd of 250 by 330 pictures clcmcnts. A 28 by 40 plan was 
prcparcd by dividing the imagc into disjui~zl 8 by 8 scgmcnts and calculating thc riverrrgc intcnsity 
within cach scgmcnt. This opcration is cquivalcnt to a form of Iow-pass filtcring followcd by re- 
sampling. 'I'hc low-pass filter for this application is an 8 by 8 array of cocfficicnts of valuc 1/64. 'The 
rc-sample distancc is 8 picturc clcmcnts. Serious aliasing can oxcur whcn thc sample rate is the same 
sic.c as the window. This can bc sccn by deriving the transfer function of thc unifonn squarc low-pass 
window [Crowlcy 78aJ. (The transfer function is dcfincd in section 3.3 .) 



23 

2.2.4 Cones and Pyramids  

In this scction wc will dcscribe scvcral rccent rcscarch cfforts which employ ~niiltiplc-rcsol~ition 
versions of ;in image. 

2.2.3.1 Uhr's Recognition Cones 

Lrhr has invcstigatcd thc use of "recognition cones" for the low levcl proccsscs of a mncliinc vision 
systcm [Uhr 721, [Uhr  7S]. A rccogiiition conc is a multilayer array of micro-proccssors \vliich cxccutc 
tt?c samc instriictions in "lock-step" fashion. Each proccssor in thc lowcst laycr co\'crs and opcratcs 
on a disjoint rcgion of an imagc. Succcssivc layers of the cone scc tlic output of the proccssors 
directly bclow. With cach laycr. the size of the image is rcduced by avcraging disjoint rcgions so that 
the conc converges to a single processor at thc apex. Uhr has invcstigatcd the use of avcraging and 
diffcrcncing on such a processor structure. He also suggcsts that such a structure may be uscd to 
assign symbols to rcgions of the image. 

2.2.4.2 Hanson and Riseman's Preproccssing Cones 

Hanson and Riscman havc also investigated segmentation proccdurcs which may be iinplcmcntcd 
on a rccognition conc [Hanson and Itiseman 741 and [Hanson and Itiscinan 781. Howcvcr, thcy 
prcfcr the tcrm "prc-processing cone" rather than "rccognition conc" bccausc thc proccsscs 
pcrformcd arc pre-recognition. In their system, thc pre-proccssing cone scrves as the front cnd of a 
gcncral purpose color vision system. The systcm builds a smctiiral dcscription of a scene using 
multiple knowlcdgc sources and thrcshold bascd scgmcntation. 

Hanson and Kiseman have categorized thc operations which may be computed on a prc-processing 
conc into thc following classes: 

0 Data Ikduction: Opcrations such as averaging which pass information up to the next 
highcr level. 

0 Data Projcction: Operations in which image data and intcrprctations arc passed down to 
lowcr levels. 

0 Itcrativc (or Latcral): Opcrations which are bascd solely on the neighboring processors at 
the samc level. 

2.2.4.3 Pyramid Data Structures 

A rccognition or prc-processing cone is a form of parallel Singlc Instruction-Multiple Data 
(SIMI)) Processor. 'I'hc data structure which it contains is somctimcs rcfcrrcd to as a "pyramid data 
structurc". 'I'hc low-pass images on which thc DOIJ' transform is bascd can bc considcrcd as a form 
of pyramid data structiirc. Whilc somc rcscarchcrs lump togcthcr thc charactcristics of the proccssor 
and thc data structure it builds, others have made a distinction in ordcr to study thc propcrtics of the 
data structure. 
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'l'animoto has dclincd a pi ritrnid dritn structure 3s "ii scrics of digitizntinns of tlic s;mc imagc at 
increasingly highcr dcgrc.::; of qxitial rcsoluLion" rl'animoto 7S]. A strrndni.d rclaticmhip bctwccn a 
givcn lc\cl o f a  pyramid and Uic lcwl undcr it is that a local propcrLy (such as cclgc intcnsity, color, or 
intensity) at the pivcn lcvci is ohtained l ~ y  averaging the local propcrty ovcr sonic ncighborliood in 
Llic Icvcl undcr it. I n  virtually cvcry systcin these avcragcs are formcd over dis.joint rcgions. which 
can cause a randomncss due to aliasing [Crowley 78a] as notcd irbove in  the dcscription of Kclly's 
plan ni ng technique. 

Tanininto has suggcstcd that the scqucncc of rcduccd rccolution iniagcs need not be obtained by 
a i  m p n g  nor cven based on powcrs of 2. but can bc obtaincd by a spccially dcsigncd digiti/cr and 
computcr controlled optics capablc uf providing magnification of the image ovcr a continuous range. 

Ixvinc [I-chine and Leemet 761 has investigatcd a systcin in which a a pyramid datn structure is 
uxcd for bottom-up and top-down segmcntation. His algorithm constructs f i ~ c  pyramids from tlic 
original image: one for each of the following local properties: intcnsity , a tcxtiirc measure, hue, 
saturation. and edges. These pyramids contain outlines of scgmcnted regions which are then passed 
to an intermcdiatc level process for inccrpretation. 

2.2.5 Other Work with Multiple Resolution Representations 

Kclly is most frcquently cited in thc image processing literature fur pioneering the use of multiple 
rcsolution versions of an image. However, similar ideas appeared in other literaturc at about the 
saiiic time. 

'Ihe use of a reduced resolution "plan" for space planning ( i t .  arranging 2-D shapes in an area) is 
discussed in a 1970 paper by Eastman [Eastman 701. Fastrnan credits work conducted at SRI on 
trajcctory planning and on reconnaissance for thc idea [Nilsson 691 and [Rosen and Nilsson 691. 
F k m n  rcfcrrcd to this data structure as a "l-licrarchical Data Structure" but it has since come to be 
known as a quad trce [Klingcr and Dyer 761. [Horowitz 761. Quad trces rcprcscnt binary shapes in an 
image by recursivcly dividing the picture into a 2 x 2 set of sub pictures. If any subpicture is 
coinplctcly filled or complctcly empty, it is markcd as such and not divided hrthcr. I f  a subpicture is 
only partidly filled it is further divided. 'Ihis process continues until either all the subpicturcs are 
uniform or the individual pixels arc rcachcd. 'The rcsult is a trcc which can bc traced to dctcrminc if 
any point in the picturc is fillcd or cmpty. 'Ihis algorithm can bc very efficient in terms of thc storage 
rcquircd for pictures that have largc uniform regions. Howcvcr, thc description of a rcgion which 
this rcprcscntation givcs can vary drastically in its structure if the region is translated in position or 
rotated. 

Warntxk [Warnock 671 devised a similar algorithm for computing thc hiddcn surfaces in two- 
dimcnsional views of thrcc-dimcnsional polyhcdra. In Warnock's algorithm. a two dimcnsional 
picture or subpicturc is rccursivcly divided into four squarcs if it contains a boundary between two 
fxcs  of polyhedra or a boundary between 3 face and thc background. 

A pyramid data structurc has hccn used by to spccd up corrclation tcrnplatc matching of aerial 
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imazcrb w i n g  hicrarchical search [H.d ct. 11. 701. r l ' ~ ~ o - ~ t , i y  hicr,irchical tctnpl,itc m:irching Ius also 
been rcponcd for irnagc fc'iture detection [Koscnfcld and Vandctbrug 771. 

2.2.6 Marr's Laplacian of Gaussians 

Probably thc work most similar to that dcscribcd in this disscrtation is that of I h i d  hlarr. hlarr 
sought to understand thc infomiation processing problems inherent in  vision. He \PAS ititcrested in 
both thc mcchanisms 10 \ h a 1  stimuli in the human visual systcm and in the coniputational problems 
of iniplcmcnting such proccsscs in machincs. 

[Marr 79a] prcscnb a thcory of cdgc dctcction which rccognizcs that the information in visual 
stimuli occurs at many scalcs (or resolutions). 'Io dctcct thcsc stimuli at different scalcs he employs 
band-pass filtcrs which are formed from a Laplaciaii of Gaussian low-pass filtcrs (VIE( x.y) ). Marr 
forms thcsc filtcrs using a differcncc of Gaussian low-pass filtcrs whosc standard deviations have a 
ratio of 1.6. Hc USCS an infonnal argumcnt to show that such a ratio givcs an optimum narrow band 
width. (Ihc irnplemcntation dcscribcd in this dissertation cmploys a ratio of & arrivcd at by a very 
diffcrcnt line of reasoning.) 

A sct of such filters (4 in [Marr 79a] ) are convolved with an image. The results arc cncodcd by 
detecting the prcscnce of zero crossing segments and the dircctional dcrivativc perpcndicular to the 
zcro crossing at each scgment (callcd the amplitude of thc scgmcnt). This sct of zero crossing images 
is refcrrcd to as the "raw primal skctch". Marr spcculatcd that if filtcrs wcrc uscd at a sufficient 
numbcr of scalcs, thc raw primal sketch would bc rcversible. That is, the original image could be 
rccovcrcd from the raw primal sketch. 

Zcro crossing clements from several scales are collapsed into a singlc boundary cstimatc callcd the 
"primal skctch". This i$ done by comparing zcro crossing segments from adjnccnt spatial frcquency 
levcls, to test for similar dircctions and amplitudcs. Thc zcro crossing scgmcnt from thc highcst 
rcsolution raw primal sketch is cncodcd in tlic primal sketch. Closcd boundarics arc labclcd as blobs 
and assigncd attributes of Icngth. oricntation, and avcragc contrast. 'I'crminations arc assigned a 
position and oricntation. We shall have more to says about Marr's work in thc scction on 
rcprcscntation below. 

2.3 Representation Techniques 

2.3.1 Blum's Medial Axis Transform 

IYum dcvclopcd a rcprcscntation for binary shapes called thc "Mcdial Axis Transform" (MAT) 
(Blum 671. 'I'his rcprcscntation is intcrcsting bccausc it is objcct ccntcrcd; that is. componcnts of a 
shape ai% dcfincd iclativc to a central (or mcdial) axis. This region rcprcscntation bcars some 
similarity to thc rcprcscntation dcvclopcd in this disscrtation. 
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I’hc mcdial axis trimsfom produccs a form of skclcton for n binnry sh;ipe dcfincd o n  n continuous 
incdiuni. ’l’hc k1,Z‘I‘ m a y  bc dcfincd by the following proccss. Each point 011 thc boundary of a 
binary rcgion rransinits a circular wavcfrrrnt on both sidcs of the boundary. ‘I‘hcso w,ivcfronts 
propagate until thcy rcacli another boundary point o r  until they nicct a wa\ cfront travelin:: in cxactly 
thc oppositc dircction. Whcn two wave fronts niect travclin_c in opposi:c dimticins. thcy canccl cnch 
othcr, and thc point whcrc thcy mcct is marked as bclonging to thc mcdial axis. Such points 
corrcspond to thc ccntcr of circlcs which arc fit tangent to two or morc points on llic boundary of tlic 
shapc. 

‘l’hc collcction of mcdial axis points dcfincs a set of conncctcd spines (or  center axcs) dcscribing 
thc fonn of thc shnpc. Whcre a shapc contains n concavity, spines occur outsidc thc binary shapc as 
well. Similarly, spincs occur for thc spacc bctwccn shapes. (‘This is the ncgnriic shapc which occurs 
bctwccn two positivc shapcs.) Spine points can bc cncodcd with thc distancc IO thc boundary from 
which thcy propagatcd. ‘l’liis givcs a reversiblc representation of thc binary shape as thcsc distrinccs 
corrcspond to the radii of discs that must be placcd overlapping on the spinc to rcconstruct the binary 
shape. 

Unfortunatcly there arc several problems with the mcdial axis transform. For onc thing, the 
transform opcrates only on binary shapes which introduces all of the problcms attcndant to 
thrcsholding tccliniqucs. Also the transform is only defincd for a continuous mcdium. Propagating 
circular wavcfronts on a discrete grid is a difficult and costly proccss. Perhaps most troublesome is 
that thc structure of the rricdial axes are altered drastically by minor nicks and protrusions on the 
boundary of the shape. 

l’hcre is some similarity bctwecn the MAT and the reprcscntation dcscribcd in this disscrhtion. 
Thc path of thc spines for a simplc object rcscmble the paths of peaks and ridgcs from our 
rcprcscntation projcctcd onto the original picture. Our rcprcscntation also produccs a description of 
the ncgntive shapcs outside a gray scale form whcn there is a concavity and whcn two shapcs are 
nearby. However. nicks or protrusions narrower than half the width of the gray scale form do not 
affcct thc overall path of ridgcs and peaks. The biggest difference is that our rcprcscntation is 
computed for discrctc gray scale forms, while the MAT is defined for continuous binary forms. 

2.3.2 Marr’s Three Levels 

David Marr has developed a framework for visual information processing that includes 
rcprcscntations at thrcc lcvcls [Marr 781. Thc first such reprcscntation is thc primal sketch which is 
dcscribcd abovc. ‘Ihc primal sketch encodes information about the boundaries of forms in an image 
from diffcrcnt resolutions. 

‘I’hc second rcprcscntation is refcrrcd to as the 2 1/2-11 skctch [Marr 794. This is a form of dcpth 
map of surfaces as seen by the viewer. Various processes that interpret dcpth cues from such 
phcnomcna as texture, shading, and stereo pcrccption contribute information to form thc 2 1/2 13 
sketch. 
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Man- asscrts that a n  oIJjcct ccntcrcd rcprcscntntjon is also rcquircd for gcncrill pur-posc \ ision and 
r1i;tr riiis 3-1 1 rcprcscntcittiuii should iiiclildc shapc prirnitivcs from n1;rr:y rcsoliriions. I ~ ~ 1 r t 1 ~ r i i i o r c  he 
asscrts that Liiis rcpr~rcnt;tiioii should take advantagc of axcs of syniinctry which iirc iiiirinsic to the 
objcct. I le citcs thc gcncralizcd cylinder rcprcscnution [Agin and Ijinford 731, [Ncvatia m d  I3inford 
741 m d  thc Medial Axis 'I'ransfonn [ I < i u r n  671 as exarnplcs of rcprcscnt;rtions that h w c  these 
propcnics. 
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Chapter 3 
Signal Processing Background 

Iligiuil signal processing is an engineering discipline which, likc imagc undcrstanding, has bccn 
madc possible by the widespread use of digital computcrs since the early 1960s. It’s theoretical 
foundation is linear systems theory, a body of continuous rnathcmatics which is fundamental to 
clcctrical engineering. 

Since many persons intcrcstcd in imagc undcrstanding lack training in digital signal processing. 
this chnptcr provides some dcfinitions and intuitive explanations for techniques from digital signal 
processing which are ncccssary in later chapters. Most of the material in scctions 3.1, 3.2 and 3.4 is 
available in widely used references. The text [Oppcnhcim 751 is particularly rclcvant. A vcrq readable 
introduction to digital signal processing for non-electrical cnginecrs is [Hamming 771. l’he transfer 
function derivation given in section 3.2 is from this book. 

3.1 Convolution, Correlation, and Inner Products 

This section provides the formulae for the 2-D convolution and 2-D cross-correlation of a finite 
2-11 filter with a 2-D signal. ‘These formulae are shown to bc identical for filters which arc symmetric 
about both axcs, as is the case with the circular symmetric filters discussed in chapters 5 and 6. The 
2-11 cross-corrclation is then shown to be equivalent to a 2-11 scquence (or array) of inncr products. 
This cquivalcnce gives a heuristic for interpreting the results of thc cross-correlation. This hciiristic 
lcads to the use of peak and ridgc detection for converting the filtered signals into symbols, as 
described in chapter 7, 

This research has conccntratcd on the use of non-rccursivc finite impulsc rcsponsc (FIR) filters; 
we have avoided the design problcms involved in 2-L) rccursivc filters. It is impossible for a causal 
rccursivc filtcr to have zero or linear phase. Furthurmore, there is no known design proccdurc for 
gcncrating a stable 2-D rccursivc filter which ~ w ~ l d  satisfy thc constraints developed below. 

3.1.1 Convolution 

A 2-D finitc inipulsc rcsponsc digital filter may be dcfincd by spccifying its impulse response. For 
discussion, Ict u s  dcfinc a 2-11 discrctc impulse response: 

i3X.Y) for 1x1 5 xg and lYl 5 Yg 
The variables x and y arc, ofcourse, integcrs. 
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'I'hc filtering operation is usually cxprcsscd as a convolution, dcnotcd "*". I-et us also dcfinc a 2-1) 
discrctc input signal: 

The convolution of g(x,y) with p(x,y) is given by the formula: 

3.1.2 Correlation 

In this work we havc prcfcrred to cxprcss the filtering opcration as a cross-correlation. 'l'hc rcason 
will bc cxplaincd bclow. Wc shall dcnotc cross correlation with the symbol "*" for lack of a better 
symbol. 'l'hc formula for a 2-1) cross-correlation is: 

7'hc diffcrcncc bctwccn correlation and convolution is the prcsence of thc minus sign in the term 
p(x-k. y-9.  'I'hcsc minus signs have thc cffcct of rotating thc impulsc rcsponsc about both axcs. This 
rotation dcscribcs thc bchavior of a continuous linear filter, as implcmcntcd, for examplc. in a circuit. 
I f  thc impulsc rcsponsc is symrnctric about both axes, as in the case of the circularly symrnctric filters 
dcscribcd below, thcrc is no difference. 

3.1.3 Inner Products 

In this rcscarch we arc intcrcsted in cxprcssing an imagc as a configuration of primitivc signals. 
Thcsc primitives wcrc rcfcrrcd to as a family of "dctcction functions" in ,our carly work, [Crowlcy 
78~1. Wc havc sincc dcvclopcd a class of familics of dctcction fiinctions such that an imagc signal can 
bc cxprcsscd uniqucly as a wcightcd, displaccd sum of dctcction fiinctions. A mcthod for computing 
thc weights, which is rcvcrsiblc, has comc to bc known as the I l O I ~ P  transform, and is dcfincd in 
chaptcr 5. 

'I'hc wcight tclls how strongly thc primitive matches thc image signal at a particular point. 'his 
wcight may bc dctcrmincd by computing an inncr product of thc primitivc (which is an impulse 
rcsponsc) and thc signal within a finitc ncighborhood ccntcrcd at Uic samplc poinl. 'I'hc sizc of thc 
neighborhood is the samc as thc sizc of thc primitive. 

An inncr product at somc samplc point x,, yo is givcn by thc formula: 

This forrnula is idcritical with thc formula for cadi point in Uic cross-corrclation. 
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‘I’hc point hcrc is that thc filtering operation, or cross-corrclation is a scqucnce of inncr products. 

l’his notion of the filtering operation as a scquencc of inncr-products lcads to an important 
hcuristic for converting the filtcrcd signal into a nctkvork of symbols. ‘Ihosc points at xhich the 
corrclarion of a particular filtcr and the input signal arc at a 2-D loci11 positivc maximum or negative 
minimum arc the points at which that filter most strongly rcscmblcs the input signnl. If the inncr- 
product at that point is also larger than inner-products from filters which arc similar i n  sizc, then that 
filtcr a1 that point is thc best approximation of the imagc signal centercd i i t  that point. Such points 
form an important class of symbols in  our rcprcscntation. ’l‘hcy arc labcled M* and scrvc as 
landmarks in tlic rcprcsentation, as well as the root for subgraphs. 

In summary, tlic view of the filtcring opcration as a scqucnce of inner-products ]cads to thc USC of 
pcaks (and ridgcs) in the filtcrcd signals to construct tiic rcprcscntation of Uic imagc. This is in 
contrast to the more popular approach of using zero-crossings as pursucd by Marr in his rclatcd work 
[Marr 781. 

3.1 -4 Boundary Values 

The DOLP transform employs circularly symmetric low pass filters whosc radii range froin 4 pixcls 
to the sizc of the imagc. In each corrclation thcre is a strip along the border of thc filtcrcd image 
whosc width is the sainc as the filter’s, along which the filtcrcd signal is corruptcd bccausc die filter 
only partially ovcrlappcd thc image. These points could be discardcd, but this would lcad to an 
inability to dctect any object closer than its own width to the bordcr of thc imagc. Our solution was 
to provide a default border value, given by the mean of the image pixel values. This has thc desirable 
cffccts of allowing description of objects near the border of the image. and keeping the filtcrcd image 
sizes as powers of 2. It has the undesirable affect of causing a ripple along the border whenever thc 
pixcls at the border are not closc in value to the mean. 

3.2 The Transfer Function 

The transfer function is an important tool for the design and analysis of discrctc linear fiinctions. 
In this scction wc will define the transfer function for thc case of a two dimensional discrete linear 
fiinction. Wc will then show that any discrete 2-D hnction has a transfer function which is 
continuous and pcriodic in two dimcnsions. 7hc boundary of the region over which tlic transfer 
function is unique is called thc Nyquist Roundary. The shape and sizc of this boundary is dctcrmincd 
by thc pattcrn of sample points used in filtering. The Nyquist Boundary is the primary tool for 
sclccting the density of samplc poinrs for a filter or designing a filter for a givcn sampling dcnsity. 
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3.2.1 Eigenfunctions 

One of thc propcrtics which make linear systcms so mathcmatically tractablc is thc cxistcncc of a 
class of wcll bchavcd cigcnfiinctions (also known as charactcristic functions). 'Ihc cigcnfiinctions of a 
discrctc 2-11 lincar system arc thc sct of sampled 2-11 cxponcntials givcn in equation (3.1) 

(3.1) 

l'hc vsri;iblcs u and v arc contiiiiious and often rcfcrrcd to as spatial frcqucncics. 'I'hc cigcnfiinctions 
for a given discrctc 2-11 lincar systcm arc ~ ~ G S C  complcx cxponcntials for which 11 and v fall within a 
borrndcd rcgion in the ccntcr of the u.v plane. 'l'hc boundary of this rcgion is known as the Nyquist 
h i n d a r y .  Its shapc is dctcrmincd by thc pattern of samplc points uscd in the filtcr operation. We 
shall rcturn to thc Nyquist boundary in thc next section. 

e*j(xu+pv) - - Cos(xu+yv) k jSin(xu+yv) 

3.2.2 Derivation of the Transfer Function 

Whcn a lincar hnction is convolvcd with an eigcnfunction thc rcsult is thc same eigcnfunction 
shifted in spacc (or phase) and scalcd in amplitudc. l'he phasc shift, O(u,v), and the amplitude 
attenuation, A(ii,v), arc position invariant. Thcy arc a hnction of only thc spatial frcqucncics of the 
cigcn function. 

Wc can cxprcss this phasc shift and amplitude attenuation as a complcx function, H(u,v), known as 
thc transfer fiinction. Its relation to @(u,v) and A(u,v) is givcn by thc following cquations: 

A(u,v) = I H(u.v) I 

@(u,v) = ArcTan[lm(H(u,v))]/Re{H(u,v))l 

H(u,v) = A(u,v)@ '@(u,v) 

Wlicrc lm{.} givcs thc imaginary part of a complex hnction and Rc(.) givcs thc rcal part. 

Thc cffcct of convolving a discrete 2-D finitc impulse response filter, 

h(x,y) for 1x1 xh and lJ'l 5 'h 
with an cigcnfunction may be cxprcsscd as a multiplication with the transfcr function in thc spatial 
frcqucncy planc as shown in equation (3.2). 

Wc can casily dcrivc thc formula for computing the transfcr hnction from thc impulsc rcsponsc by 
factoring out thc cigcnfunction from both sidcs of equation (3.2). 'I'his formula is givcn in cquation 
(3.3). 

'h 'h 

)j(u,v) = >: >: h(kJ) eJ(k"+k) (3.3) 
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3.3 Two Dimensional Re-Sampling 

In tliis scction we cxaminc in morc dctail what the Nyquist Boundary tclls us about the pattcrn of 
saniplc points. In this discussion it is assumed that the input image and the impulsc response are 
givcn as discrcte 2-11 scqucnccs. We arc conccrncd with rcducing the numbcr of samplc points. Wc 
iisc thc term "re-sampling" to distinguish this from thc rclatcd problcni of smpling a continuous 
fiinction to producc a discrctc scqucncc. Sampling a continuous fiinction is amply trcatcd i n  many 
digital signal proccssing tcxts. We rccominciid [Oppcnhcini 751 which has comc to bc rccognizcd as 
thc classic tcxt book for digital signal proccssing. Iic-sampling a 1-1) scqucncc will bc discusscd first 
and thcn the rcsults cxtcndcd to 2-D. 

3.3.1 Re-Sampling a One Dimensional Filtered Sequence 

For a onc dirncnsional linear function, the eigcn-functions are the complcx cxponcntials, e'jjoX for 
which thc continuous frcqucncy variable, w ,  is within the bounded rcgion 1 w I 5 n/S,,, where S, is 
the distancc bctwccn samplcs, and must be an intcgcr. Complex cxponentials for which w is outside 
this rdngcd are aliascd by the sampling. That is. thcy appcar in the samplcd scqucncc as onc of the 
cornplcx cxponcntials from within thc interval. Complcx cxponentials from outsidc thc Nyquist 
boundary arc. in cffcct, rotated about thc interval boundary. 

3.3.2 Two-Dimensional Nyquist Boundary 

'Ihe cxtcnsion to two dimcnsions is straight-forward if thc samples are takcn at points along axes 
which arc aligncd with Uic original samplc axcs. That is, if cvcry Sxth point in thc x dircction on cvcry 
Syth row in thc y dircction arc chosen as samplc points, then the uansfcr function of thc sampled 
scqucncc will bc dcfincd within the rectangular boundary: 

I u I _< n / S x  and I v 15 n/Sy. 

In thc tcchniqiics dcvclopcd in chapter 5 we crnploy a type of sampling in which thc samplcs are 
along thc diagonals, 245". Wc rcfcr to this form of sampling as fi rcsampling, bccausc this is the 
minimum distancc bctwccn samplc points. l'hc fl rcsampling operation, Sfi ( . )  may bc dcfincd 
as: 

Sfi[p(x.y)] = p(x,y) for x mod 2 = y mod 2 { undcfincd othcrwise 

Whcn applicd to a cartcsian grid with axes at 0" and 90" it yields a ncw grid whcrc thc unit 
sampling distancc axcs arc at 245" as shown by thc circlcs in thc figurc 3-1 bclow. Whcn applicd to a 
grid wlicrc Uic axcs arc at 245" it produces a ncw sampling grid with a unit distancc of 2 and unit 
distancc axcs at 0" and 90" as shown by thc squares in figurc 3-1. 
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Figure 3-1: Examplc of S&p(x,y)] and SJp(x,y)] 

In thc frcquency domain. cach application of fi sampling introduces a new Nyquist boundary 
which is skcwcd by 45" from the prcvious Nyquist boundary, and just fits inside it, as shown in figure 
3-2. 

v 
Original Nyquist Boundary 

After Sqrt(2) Sampling 

U 

After Sqrt(2) Sampling Twice 

Figure 3-2: Nyquist 13oundarics for Succcssivc Application of fi Sampling 

Aliassing is minimizcd by dcsigning thc filtcrs so that thcrc is a largc attcnuation for all points 
outsidc of thc ncw Nyquist boundary. 
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3.4 Design Parameters for Digital Filters 

I n  this scction M’C will dcfinc some of the terms that arc commonly uscd in the design of finite 
impulse response digital filters. ‘Therc is nothing original in this scction. I t  is included so that when 
thcsc terms arc uscd in later sections and chapters thc readcr will know what thcy mcan. 

Digital filter design is an optimization problcm. Digital filtcrs arc gcnernlly designed by specifying 
a set of constraints on the transfer function and tlicn allowing a lincnr optimization program, such as 
the Parks-McClcllan algorithm [Parks 721 to find the cocfficicnts for the best solution. ‘I’hc 
constraints chat arc commonly uscd for dcsigning a low pass filter arc illustrated bclow in figure 3-3.  

I 

Figure 3-3: ‘Transfcr Function Constraints for a Low-Pass Filter 

I’hc symbols for thc constraints are: 

al: Thc pass band ripplc pcak amplitude 

Sz: I’hc stop band ripplc pcak amplitude 

wc: ’flc pass-band cut-off frcqucncy whcrc rcsponsc falls bclow l-t$. 

as: ‘I‘hc stop-band frcqucncy cdgc whcrc rcsponsc falls bclow 8 ,  
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IF: Thc transition width, or width of the transition rcgion, givcn by ws-wc 

w . ‘I’hc frcqucncy where response falls bclow 1/2 (-3dB). 3dB’ 

’Ihc usual goal is to find the shortcst filter which has a sufficicntly flat pass and stop band and a 
sufficicntly narrow transition width. 6, and 6, can bc tradcd off against each othcr. ‘I’hcir product 
can bc tradcd off against AF. Thc product of all threc can be tradcd off against thc numbcr of 
coc fficien ts. 
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Chapter 4 
Criteria f o r  t h e  Design of 

Band-Pass F~!ters  So-r Detecting 
Non-periodic Signals 

In this capter we devclop several ideas which are fundamcntal to the results described in later 
chapters. Scction 4.1 describes the concept of a family of dctcction fiinctions uhich arc scaled copies 
of a single prototype function. This concept leads to a rcversible transform based on thc diffcrcncc of 
sire scded copies of a low-pass filter, which IS described in the next chapter. Such a family of 
dctcction functions are convolved with a signal or image to separate the infomation into spatial 
frequency channels. This provides an ability to discriminate the size of a gray-scale form by dctccting 
the frequency at which the maximum response occurs. 'I'his transform also provides thc basis for the 
rcprcsentation described in chapters 7. 

Scction 4.2 cstablishcs a set of design critcria for band pass filters that arc to be used with peak 
(and ridge) dctcction to construct a scale invariant rcprescntation of non-periodic signals. These 
criteria nrc gcncral; there are many methods by which a band-pass filter may be dcsigncd to mcct 
thcm. Our early work with this criteria used filters which were dcsigncd by a quitc different 
technique than the difference of low-pass filters that is described in chapters 5 and 6 [Crowley 78a], 
[Crowley 78bJ. 

In section 4.3 we consider the problem of selecting the set of scale factors for a fainily of detection 
functions. Wc show that the criteria of size invariance constrains the filter radii to be mcmbcrs of an 
exponential sequence. Size invariance also dictates resampling at a rate proportional to Uie radius of 
each filter. Unless we iiitcrpolatc and then decimate, the resampling dislanccs must be members of 
thc sct of distances that occur bctwccn points on the sample grid on wI1ich thc picture (or signal) has 
bcen digitized. 'Ihc smallest base for such a scqucnce which occurs on the 2-11 Cartesian sample grid 
is dT. 

4.1 Family of Detection Functions 

In this section we define the tcnn "detection function" and thcn introduce thc concept of a 
paramcterizcd family of dctcction functions. Somc of Uie possible approachcs for designing a family 
of dctcction fiinctions arc then cxarnined. 
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4.1.1 Detection Functions 

The term "dctcction fiinction" was coined carly in this rcscarch. A detection fiinction is a lincar 
function (impulsc rcsponsc) followcd by some non-lincar decision rulc. Most of thc cdgc dctcctors 
dcscribcd in scction 3.2 arc cxamplcs of dctcction functions. 

l'hc tcchniqucs devclopcd below extend the conccpt of a detection hnction beyond thc dctcction 
of local sharp transitions in gray level. 

The linear function part of a dctcction fiinction is typically dcsigned as a matchcd filtcr for the 
pattcrn which it is to dctcct. Scc[Wozcncraft 651 for a discussion of matchcd filter dcsign. 'I'he 
obvious cxainplc arc thc plctliora of cdgc dctcctors in  ttic litcraturc, but thcrc arc othcr cxamplcs 
such as thc GM systcrn for IC chip alignmcnt in which corners arc dctectcd. I n  somc systems, such as 
the GM systcrn, the image domain can be suficicntly constraincd and thc problcm structured so that 
a ~pecialixd detection fiinction is quite reliable. However for general purpose vision, whcrc there 
arc few constraints on imagc quality or content thcrc are scrious problcms. For cxamplc, what 
pattcrn should be dctccted? We haw alrcady discussed in section 2.1 somc of the problems with 
dctccting cdgcs and intcrprcting tlicm as boundaries. Anothcr problcm is that pattcrns can occur over 
a rangc of ncighborhood sizes. If tlic pattern is blurred or noisy or the contrast is low, a largcr 
ncighborhood must be examined. But then it becomes easy to miss the edges of small pattcrns. 
'I'cxturcd rcgions arc particularly troublcsoinc bccausc it may be dcsirablc to dctcct information at 
many ncighborhood sizes. In the following sections wc shall dcscribc a solution that crnploys a sct of 
functions whosc sizcs rangc from vcry local to global. 

4.1.2 A Family of Detection Functions Which Provide Spatial Frequency Channels 

This rcscarch began as an effort to demonstratc the following idca [Crowley 78bJ: 

A robust (in the scnsc of able to handle blurry or textured images) and efficient (in the 
scnsc of rcprcsenting global shape of an objcct in a fcw symbols) structural description of 
an imagc can bc formed by filtcring the image into a sct of spatial frcqucncy channels and 
thcn rcprcscnting pcak points and ridge points with symbols. 

A principle on which much of this work is based is that a class of band pass filters can be dcfined 
such that cach filtcr is sensitive to signals of a particular rangc of widths. Furthcnnorc the width of a 
signal can bc dctcrmincd, within somc tolcrancc, by dctcrmining which filtcr givcs tlic largcst pcak 
rcsponsc. In scction 4.2 wc dcvclop a sct of constraints for designing dctcction functions for this 
purpose. 

Investigating thc dcsign of thc spatial frcqucncy channels Icd to the conccpt of a paramctcrized 
"family of dctcction functions". A family of dctcction fhctions is dcfincd by a closcd form 
cxprcssion which includes onc or more indcpcndcnt paramctcrs. 'I'hc indcpcndcnt parameters 
dctcrminc thc cocfficicnts of thc lincar part of a particular dcicction function. Initial cxpcrimcnts 
wcrc conductcd with a family of detection functions fbrmcd by thc product of a circularly symmetric 
low-pass window and a 1-11 cosinc [Crowlcy 78al. ' I l c  indcpcndcnt paramctcrs were thc frcqucncy 
and oricntation of thc cosinc. 
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Idcally wc would likc to convolvc thc imagc with a continuum of filters such that if a tcst pattern 
(Sity a solid disc) of a particular size is the input signal, one filtcr from thc conrinuum will have a peak 
rcsponsc which is larger than all of the others. Furthcnnore, i t  should be possiblc to dctcrminc the 
siyc of the tcst pattcrn (within some tolcrancc) from the identity of the filtcr with the largcst pcak 
rcsponsc. 

A numbcr of cxpcriments were rcportcd in thc proposal for this disscrtation i n  which band-pass 
dctection functions were convolkcd with uniform intensity circles and squares of diffcrcnt sizcs and 
with u n i f o r m  intcnsity bars of diffcrcnt widths and orientations. I’hcsc experiments dcmoiistratcd 
that the s i x  of thc circles and squarcs. and thc width and oricntation of thc bars could bc dctcrmined 
by observing which dctcction function produccd the largcst pcak in the convolution. We also 
obscrvcd that ccrtain structural elcmcnts such as cdgcs and corncrs rcsultcd in casily dctcctcd 
patterns of peaks and/or ridgcs whcn convolved with each of the dctcction functions smallcr than the 
object. l’hus it is possible to dctcct tlicsc structural clcmcnts at many neighborhood sizcs and 
sampling dcnsitics. Also it was noted that a configuration of tcst patterns fonns a shapc which is 
indcpcndcnt of the tcst patterns (a textured shape). The size and structural fcaturcs of this textured 
shape arc apparent in thc convolution with dctection tinctions which are larger then thc individual 
tcst patterns. 

4.1.3 The Goal of Size Invariance 

‘The thrcc dimcnsional shape of an object is intrinsic to the object. l’hc two dimcnsional image of 
an object should dcpcnd only on the objects 3-D shape, thc viewing angle. and the lighting 
conditions. A description of the 2-11 gray scale shape of an objcct should not dcpcnd on thc size at 
which the object is imaged. 

Fnrly in this rcscarch wc dccidcd to pursue a rcprcscntation for 2-D form that has thc property of 
bcing indcpcndcnt of the scalc at which thc object is imagcd. That is. supposc an objcct is in thc ficld 
of view of a television camera, and a rcprcscntation is constantly bcjng constructed of how the objcct 
appcars in a sampled, digitized imagc from the camcra. If thc object is moved toward the camera, the 
rcprcscntation should shift in s i x  but rctain its structurc. Also. as additional in fortnation about the 
objcct’s surfacc tcxturc and cdgcs bccomcs available it should be appcndcd to thc rcprcscntation, but 
this should not altcr the part of thc rcprcscntation that denotes the global shape of thc object. In this 
rcscarch we pursucd thc goal of producing a six invariant rcprcscntation using dctcction functions 
that arc sixc scalcd copies of thc samc function. 
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4.2 Linear Functions for Describing Non-Periodic Signals with Peak 
and Ridge Detection 

In this section we dcvclop a set of constraints for the space domain cocfficicnts and thc frcqucncy 
domain (transfcr function) for thc dcsign of a set of 2-11 lincar functions. 'I'hcsc funcrions arc to be 
used with peak and ridgc dctcction to construct a rcprcscntation for tlic non-pcriodic signals which 
occur in imagcs. We are not able to provide a rigorous proof that all of thcsc constraints are 
ncccssary. Wc only make thc claim that tlicsc constraints arc sufficient. 

Thc following subsccrion will dcvclop thc reason why the dctcction functions arc constraincd to 
be: 

1. Zero Phase 

2. Finite Impulse Rcsponse, 

3. Circularly Symmetric, and 

4. Band Pass Filters. 

We will then dcvclop tlie more complex criteria that the functions: 

1. Must have 3 pcaks (5  alternations) in the coefficients, and 

2. Must have a pass band which rises monotonically to a singlc peak. 

4.2.1 Zero Phase 

'I'he transfcr hnction of the lincar function must be zero or linear phasc. A non-zcro phase will 
shift the position of the rcsponsc. If the phasc is lincar thc shift is thc samc for all frcqucncics. If the 
phase is non-lincar, the shift will vary with spatial frcqucncy. The position of thc signal is important 
10 the structurc of thc rcprcscntation. Wc cannot permit unprcdictablc shifts in the rcportcd position 
of a signal bccausc of a slight unccrtainty in its width (frcqucncy content). 

4.2.2 Finite Impulse Response 

Ihc  impulsc rcsponsc must be finite. The rcason is that infinite impulsc rcsponsc filtcrs can only 
be implcmcntcd by rccursivc filtcrs. 'Ihcrc is no dcsign proccss for a 2-11 rccursivc liltcr that will 
guarantee a zero or lincar phasc. There arc also problctns with dcsigning 2-11 rccursivc filtcrs which 
arc stablc. Wc have limitcd our inquiry to finitc iinpulsc rcsponsc filtcrs to avoid thcsc problcms. 
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4.2.3 Circular  Symmetr ic  

Thc impulsc response must bc circularly symmetric. This is bccausc the rcprescntation should be 
as invariant to orientation as possible. Wc cannot allow thc dctected six and position of a pcak to be 
al'fcctcd by thc oricntation of a signal. 

4.2.4 Band Pass 

l l i c  impulsc rcsponsc cocfficicnts must sum to zcro. This will assure that if thc function is 
convalvcd with a uniform signal, tlic rcsponsc will bc zero. Another way to say this is that thc 1 X  
rcsponsc must be zero. 

l'hc transfer function must also have a high frequency stop band. This will allow the convolution 
to be computed at rc-sample points without aliasing. 'me net cffcct of these two constraints is that 
the hnction will bc a band pass filter. 

4.2.5 Constraining Alternation (Peaks)  in t h e  Space Domain Coeff ic ients  

In  this scction wc will show that the linear function must have 3 peaks ( 5  alternations) in its 
cocfficicnts. This constraint is necessary when the dctcction functions arc to be uscd with pcak and 
ridge dctcction (dctccting local positivc maxima and negative minima). Without this constriiint, other 
constraints such as tlic need for a narrow pass-band and sharp transition band would drivc tlic design 
to a function which had many ripples (altcrnations) in its impulsc rcsponse. 'io see why this is a 
problcm, consider thc casc whcrc a dctcction function is convolvcd with a bar which is sinallcr than 
half the width of thc dctcction fiinction. FAch pcak in thc detection function cocffcicnts will result in 
a pcak in the convolution output. Since thc prcscncc and shapc of thc bar is to be cncodcd from the 
pcaks and ridges in thc convolution, thc result will appear to bc many bars. 

We can dcterminc thc srnallcst numbcr of pcaks which the dctcction functions can havc by 
cnumcrating tlic possibilitics and cxamining thc function which rcsults from each. For convcnicnce 
this discussion will consider 1-11 functions. 'fhc results must apply to 2-11 circularly symmetric 
functions. 'l'hc results will only apply to a circularly symmctric function if the 1-11 function is 
symmetric, i.c. if g(x) = g(-x). 'Ilius thc 1-11 functions discussed bclow arc constraincd to be 
symmctric. Also, wc arc only intcrcstcd in finitc zero-phasc functions for the rcasons cxplnincd 
above. 

1,ct us dcfinc the tern1 "altcrnation" to rcfcr to a change in sign in the first diffcrcncc, d[g(x)] of thc 
function, whcrc first diffcrcncc of a discrctc function g(x) is dcfincd by: 

dIs(x)l A g(x) - g(x-1) 
I,ct us niakc thc arbitrary dcfinition that whcn thc first diffcrcncc is zcro, its sign is thc same as the 
point to thc right. With this definition functions which havc a constant intcrval can bc considcrcd in 
this discussion. Also, to kcep things tidy, Ict us dcfinc the boundaries of thc support for a finite 
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discrete function to be altcrnations. Thus all finite I-D functions automaticilly ha1.c a t  least two 
altcrnations. 

0 

Figure 4-1: The Only Possible Symmetric 1-D Function with ‘Two Altcrnations 

Two Altcrnations: (sce figure 4-1 above.) In order to be symmetric such a function must be 
constant. I t  is thus a low pass function. 

A2 
0 P 

A2 

‘p 

Figure 4-2: Two Possiblc Symmctric 1-D functions with 3 Altcrnations 

Thrcc Altcrnations: The third altcrnation must bc in thc ccntcr for the function to bc symmetric. 
‘I’hcrc arc two cases (scc figure 4-2 ): ‘Ihc cocfficicnts can bc all of thc same sign, or of diffcrcnt signs. 
If thc cocfficicnts arc all of thc samc sign, tlicn thc filter will havc a non-zcro I>c rcsponsc ( sum of 
thc cocfficicnts) and will not bc band-pass. If thc cocfficicnts arc of both signs and sum to zcro, thcn 
t11c function can bc band pass. Howcvcr, if it is band-pass, thc ncgativc sidc-lobcs will be 
monotonically dccrcasing. This rcsults in sharp discontinuitics at thc boundarics. ‘I’licsc 
discontinuitics cause largc ripplcs in thc high-frcqucncy rcsponsc which makcs thc function 
iinsuitablc for usc with rc-sampling. 
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A 3  

A ,  

Figurc 4-3: A Symmetric 1-D Band-Pass Function with 4 Altcrnations 

Four Alternations: If thc Function is finite, then two alternations arc at the support boundarics. 
Thc remaining two alternations must be placcd symmetrically for the function to bc symmetric. Since 
there can be no alternation at the origin, in order to be symmetric the function must be constant 
bctwccn thc two inncr alternations. In ordcr for our hnction to be band-pass, its cocfficicnts must 
sum to zero. The function shown in Figurc 4-3 is such a function. This particular function is the 
diffcrencc of two constant windows. For 2-D images, convolution wit!: this fiinction can be 
implcmcntcd as a difference of square uniform windows, for which thcrc is a fast convolution 
algorithm [Price 761. However, the sharp transitions cause large ripples in tlx stop band which can 
ciiusc aliasing whcn uscd with re-sampling. 

A 2 A 4  

Figure 4-4: A Symmctric 1-13 Band-Pass Function with 5 Altcrnations 

Fivc Altcrnations: (SCC figiirc 4-4) Fivc altcrnations is thc minimum which a symmetric band pass 
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function with a well behaved stop-band can havc. This is one of thc constraints M.hich is uscd in the 
dctcction function design. Note that thc cocfficicnts must sum to r.cro in ordcr for tile function to 
halc a rcro IIC response. Note also that thc cocfficicnts must tapcr to Lcro at thc boundarics in ordcr 
for thc stop-band ripples to bc small. 

4.2.6 Monotonic Pass Band with a Single Peak in the Transfer Function 

‘Ihc constraint of five alternations in the dctcction function cocfficicnts scvcrcly limits the 3)rm of 
tlic transfcr function. In particular, it limits the flatness of the pass band and thc width of the 
transition rcgion. 

‘l’hc ideal situation would be to havc a family of filtcrs in which the pcak frcqucncics givc a 
continuum. Howcvcr, this would rcquirc an infinite set of convolutions, aiid so wc arc forccd to 
choosc a finite sct of filters, with thc pcaks staggered throughout thc frequency domain. ’Ihis is, in 
cffcct. sampling in frcqucncy. For dctcction fiinctions which arc sizc scalcd copics of a closcd form 
cxpression, thc pcak frcqucncy for a givcn family of dctcction functions may bc dctcrinincd by thc 
radius of tlic function. For rcasons cxplaincd below, we end up constraining thc filtcr radii to be 
mcmbcrs of an cxponcntial sequence: 

R E { R,, K,S, R,S2, ... R,SK} 

This gives an a sequence of pass bands whose center frequencies are an exponential scqucncc of the 
form L0,s-k. 

Ix t  us dcfinc a 3 space, (x,y,k), such that each point contains the valuc of thc inncr product of the 
filtcr of radius R,Sk with the imagc ncighborliood ccntcrcd at x,y. Furthcimorc, Ict us specify that 
for cach incrcmcnt in k, the points in thc imagc arc rcsampled so that thc minimum distance bctwccn 
samples will incrcasc by a scalc factor, S .  A rcprcscntation can bc constructcd by dctccting pcak and 
ridgc points in this thrcc space and linking thcm togcthcr to form a graph. In  ordcr for thc structure 
of this graph to bc invariant to thc sizc of a grcy-scalc form we must constrain the transfcr function of 
tlic filters to risc monotonically to a pcak and thcn fall monotonically as spatial frcqucncy increases. 
I‘o SCC why this is so, considcr tlic following situation. 

Suppose wc havc a tcst pattcrn which is a uniform intensity squarc. It will rcsult in a distinct 
intcr-connection of pcak and ridgc points. An cxamplc of such a graph is shown as figurc 7-21 in 
chaptcr 7. A uniform intensity rcctanglc with an aspcct ratio bctwccn 2 and 112 will rcsult in a peak 
at thc top of this graph whosc valuc is significantly largcr than any othcr pcak in thc graph. ‘I’his pcak 
is labclcd as an M* and forms thc root of thc graph which dcscribcs thc squarc. It should be possible 
to dctcrminc thc sizc of thc squarc from thc Icvcl, k, at which this root pcak occurs. 

If tlic tcst pattcrn is gradually incrcascd in sizc thc graph which rcprcscnts it must move upward (in 
thc k dirncnsion). T h i s  movcrncnt must bc monotonic with sizc in ordcr for thc s i x  invarinncc of the 
dcscription to hold. As a sufficicnt condition for this movcmcnt in thc k dircction to bc monotonic 
wc makc thc following constraint on thc transfcr function of thc dctcction filnctions. 
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Transfer Function Constraint 

The transfer function must risc monotonically from a rcsponsc of zero at I X  to a pcnk rcsponsc at 
some frcqucncy. I t  must thcn fall monotonically until it has cntcrcd thc stop band. Within thc stop 
band it is permitted to ripple with a mngnitudc lcss than or equal to some value 6 .  

This constraint is illustratcd by figure 4-5. 

Tr 0 -7Y 
Figure 4-5: Monotonic Pass Band with Single Peak 

4.3 Selecting the Sequence of Radii and Re-Sample Distances 

In  this scction wc will addrcss thc problem of choosing the scqucncc of radii which the family of 
dctcctions functions should havc. Wc also addrcss thc problem of choosing the sct of re-sampling 
disbnccs. ‘Ihc two problcms arc intimatcly rclatcd bccausc the rcprcscntation can only bc quasi-size 
invariant if the rc-sample distancc is thc samc fraction of thc filtcr radius for all of tlic filters. 

4.3.1 Filter Radius 

Scaling Ihc sizc of a gray scalc form is a multiplicaiivc opcration. l l ia t  is if a form is scalcd in size 
by somc factor. F, all of its dimcnsions arc multiplicd by F. ‘l’hc ideal situation would bc to havc a 
scqucncc of radii and rc-sampling distanccs which includcs all possiblc scaling factors. ‘I’his is 
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impossible, bccause the set of such factors that can occur is infinitc. It is thc set of rcal numbers, 
which cvcn over a closcd intcrval is infinite. Thus wc must choose a scqucncc which givcs a 
rcasonablc approximation. 

Supposc Lhcre arc two instances of a form such that the sccond is a copy of thc first scalcd i n  s i x  
by F. For s i x  invariancc, wc rcquirc that thc rcprcscntation of both fonns be composcd of thc same 
intcrconncction of symbols, albcit from diffcrcnt s i x  dctcction functions. Each structural coinponcnt 
o f  thc fur111 nlust be shiricd in dic s i x  dimension (k in our carlicr discu~sion) by the saiiic ;rinount. 
Also thc sampling distancc (mcasuicd in tcrms of pixcls in thc original image) must be scnlcd by the 
samc amount as thc fltcr radius. That is, a configuration of pcak and ridgc points from tlic filters of 
i-adiiis 8 must corrcspond to a configuration of pcak and ridgc points at radius 8F in thc sccond 
imagc. Similarly, a configuration from radius 4 in the first imagc must match a configuration at 4F in 
thc sccond. 

If wc employed a non-cxponcntial scqucnce such as the fibonacci scqucncc, s,+, = S , + S ~ - ~ ,  or the 
sct of intcgcrs, thc number of detection finctions betwccn radius 8 and radius 8F would bc diffcrcnt 
from thc nunibcr of functions bctwccn radius 4 and radius 4F. A s  a conseq~~cncc, thc rcprcscntation 
of the scalcd form would not contain thc same configuration of symbols as the original. An 
cxponcntial scqucncc allows us to approximatc thc scalc changc. F, by somc factor of thc form Sk, 
whcrc S is thc base scalc factor, and k is an index. Scaling by Sk thcn shifts all configurations of peak 
and ridges by k levcls in the rcprcscntation, thus preserving thc intcrconncction of thc symbols in the 
rcprcscntation. I t  is also nccessary to have re-samplcd thc imagc by thc sanic factor, Sk, so tliat the 
dcnsity of symbols is the same. 

4.3.2 Re-Sampling Distances 

?hc accuracy of thc size invariance is dctcrmincd by how closely the change in scalc, F, can be 
approximatcd by Sk. If not constrained by sampling, the value of S would providc a trade off 
bctwccn thc accuracy of the size invariance and the cost in tcrms of computation and storage. 
Howcvcr. S is constraincd by thc requircmcnt that the samplc distance bc a fixcd proportion of the 
filtcr radius. ’l’hcre is only a small finite sct of rc-sampling distanccs tliat can bc uscd without 
intcrpolating thc imagc sainplc points. If  wc are to avoid thc grcat incrcasc in proccssing cost which 
would comc from intcrpolation wc must use one of thc naturally occuring samplc distanccs as the 
scalc factor, S. ‘I’hc sct of distanccs to ncighboring points for a cartcsian grid is shown in figurc 4-6. 
F x h  numbcr in this figurc is the cartcsian distancc to thc point on the lowcr lcft of thc figure. 

5 d 7  
4 d T  fi 

3 f i  5 d5i 
2 d T  diT 2 6  m 

47 6 m vi7 6 
0 1 2 3 4 5 

Figure 4-6: ‘I’hc Sct of Naturally Occurring Sample Distanccs 
For a Cartcsian Wane 
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1.ct us dcfinc the set of distanccs between points on any grid 3s the set of "natural rc-sample 
distanccs". Within this sct wc can choose subscts which are mcmbcrs of cxponcntial scqucnccs, i t .  
have the form Sk. I n  fact, cach natural rc-sample distance provides the basc, S, for such a subset. 

In thc following chapters w c  will dcfinc a proccss in which thc imagc is rcpcatcdly filtcrcd and 
then rc-sampled at some basc distance. S .  The smallcst such S which naturdlly O C C L I ~ S  on a cartcsian 
grid (grcatcr than 1. of course) is the value fi. 'I'his is the basc value which is uscd for scaling both 
thc rc-sampling distance and Ihc filter size. 

In summary for reasons of size invariance a family of  detection fiinctions whosc r n d'. 11 are an 
cxponcntinl scqucncc must bc used to filter the imagc. Thc sct of rc-sample distanccs niust also bc 
from the samc cxponcntial scqucncc, although smaller by a constant fraction. A great savings in 
computational cost is possible if the basc number of the cxponcntial scqucncc is a natural re-sample 
distance. 'Ihus the expcrimcntal implcmcntation is constructcd using the smallcst such resample 
distancc for a Cartesian grid, fi. 
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Chapter 5 
A Reversible DOLP Transform 

LVhich Resolves Non-Periodic Data 
into Short-term Frequency Components 

This chapter introduccs the Difference of Low Pass (IIOLP) transform which is dcsigncd to 
scparatc a signal into short-tcrm frcqucncy components. This transform was dcviscd to be uscd with 
pcak detection to rcprcscnt non-pcriodic 2-L) signals as a first step in stcreo matching o r  dctcrmining 
objcct idcntity. ‘I‘hc DOLP transform is rcvcrsible and thus preservcs the information in a signal. 

Thc D0I.P transform is dcfined in thc first scction of this chapter so that thc reader is aware of the 
motivation for the problems addrcsscd in later scctions. After the transform has been dcfincd and its 
rcvcrsibility dcmonstratcd, the form of thc band-pass impulsc response that rcsults at many sizes will 
bc described. ‘I‘hc computational rcquircmcnts of the DO1 .P transform will thcn be cxamincd. ‘I’he 
DOIP transform is shown to require O(N ) multiplies for an N point signal of one or two dimensions 
and produccs O( N I.og(N) ) rcsult data points. I t  is thcn showii that thc 1101A’ transform can be 
coinputcd using rcsampling with ;I reduction to O(N I,og(N) ) multiplies and O(N) rcsult data points. 
This is followcd by a discussion of tlic dcgradations in frcqucncy and position rcsolution that rcsult 
from such rcsampling. Chaptcr 6 will prescnt thc samplcd Diffcrcncc of Gaussian (DOG) transform, 
a two dimcnsional implcmcntation of the DOLP transform that exploits a propcrty of Gaussian 
functions to producc a form of samplcd DOLP transform in O(n) computations. 

2 

Not at ion: 

‘I’he sct of symbols which arc dcfincd bclow arc uscd cxtcnsivcly in thc next two chaptcrs. Filtcrs 
havc an indcx variablc, k .  ‘lhc filtcr’s radius is dctcrmincd by the product of thc smallcst radius, R,, 
multiplicd by a scalc factor. S ,  raiscd to thc k* powcr. Thus thc radius of thc k* filtcr Itk is givcn by 

R, = R, Sk 
],ow-pass and band-pass signals also havc this subscript, k, which dcnotcs thc filtcr with which the 
signal has bccn convolvcd. l’hc k* low-pass signal and band-pass signal are somctinics rcfcrrcd to as 
being from ”lcvcl” k. 

‘l’hc I)OI,P transform dcfinition appfics to signals and filtcrs of any dimcnsionality. The space 
variablcs, (x,y). for signals and filtcrs arc ommittcd in somc scctions to simplify notation. ‘h i s  
simplification also illustratcs thc point that this transform is not spccific to signals of a particular 
dimcnsionality . 
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Let us start with thc definitions: 

&x,y): Thc input signal defincd for 0 < x 5 N ,  0 < y 5 Af . In all the cxamplcs bclow N = M. 

gk(x,jg: A finitc low-pass filter of radius R,, which has becn normalized so that thc sum of its 
cocflicicnts is 1.0. For a 1-11 filter, radius is the half width. 

Ito: ‘fhc radius of the smallcst filtcr with a uscful frcqucncy rcponse, g,(x,y). 

S: A Scaling Factor: typically fi or 2. 

Lk(x,j’):  low-pass signal at lcvel k. 

G.Bk(x,y): band-pass signal at level k. 

bk(x,y): The band-pass impulse rcsponse (filter) of radius R,. 

Xk: The number of cocfficicnts in the k’ band-pass filter. 

K: The level at which the size of bkix,y) exceeds the size of &x,y). (XK 2 N2 for two dimensions) 

Size Scaling: 

Thc 1101 .P transform is bascd on a sct of filters which are size scalcd copics of a discrctc function. 
For purposcs of the following discussion. assumc that the low-pass filter is dcfincd by a continuous 
function that has infinite duration and approaches zero asymptotically. Furthur-more, assume that 
this function is sampled ovcr a fixcd interval of its range. Thus thc radius of cach scalcd copy, R,, 
actually dcfincs thc numbcr of discrctc samplcs which are obtained ovcr the finitc interval. This 
pcrmiu us to discuss thc scale of a filtcr in terms of thc filters’ radius. 

5.1 The DOLP Transform 

This section dcfincs thc IIOIP transform. Thc IlOI,P transform scparatcs a signal into a sct of 
band-pass componcnts with cxponcntially spaccd ccntcr frcqucncics. ’I’hcsc band-pass coinponcnts 
may bc formcd by convolving thc signal with a sct of band-pass filtcrs which arc sizc scalcd copics of 
a singlc prototypc filtcr. Thcsc filtcrs arc all formcd by subtracting a low-pass filtcr from a copy of 
itsclf which is smallcr in s i x  by a factor of S. 

‘Ihc opcrations of convolution and subtraction arc commutative. nccausc cach band-pass filtcr is a 
diffcrcncc of two low-pass filtcrs, thcre arc two obvious cquvalcnt methods for computing a W L P  
transform: 

1. (‘l‘hc IXrcct Mclhod) Form thc sct of band-pass filtcrs by subtracting cadi pair of low- 
pass filtcrs, and Uicn convolvc cach of thcsc band-pass filtcrs with thc signal. ‘Ihis mcthod 
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is illustrated in figure 5-1 bclow. 
convolved with the largest low-pass filter. 

If rcvcrsibility is dcsircd thc signal must also bc 

2. (The Ilifferencc Method) Convolve the signal with each Iow-pasF filter, and then subtract 
each low-pass filtered signal from the low-pa% signal formcd from the ncxt lnrgcr low- 
pass filter. This tcchniquc is illustratcd in figure 5-2. 

e 
e 
e 

Figure 5-1: Dircct Mcthod for Computing a DOLP'Transform 

Thc dircct mctliod is thc simplest to dcscribc. For tlic DOI-P transform as dcscribcd in this scction 
it is also thc most cfficicnt to computc. as it avoids thc subtraction step rcquircd by thc diffcrcncc 
mcthod. With thc diffcrcncc mcthod, howcvcr, it is casicr to illustratc tlic rcvcrsibility of tlic DOLP 
transform. Furthurmorc, in thc ncxt scction wc dcscribc a fast algorithm for computing the 
convolution with thc scquencc of low-pass signals. 'l'hc following is a dcfinition "by construction" of 
thc DOIJ' transform. F o r  cach Icvcl. wc dcfinc thc band-pass filtcr. dcscribc thc dircct mcdiod, and 
thcn dcfinc Ihc diffcrcncc mctliod. Rcvcrsibility is shown at cach lcvcl using thc low-pass signals. 
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Figure 5-2: Diffcrcncc Mcthod for Computing a DOLP Transform 

Level 0 

'I'hc impulsc rcsponsc (cocfficicnt array) for thc lcvcl0 low pass filtcr is go by definition. l h c  lcvel 
0 band pass filtcr, bo, has an impulse rcsponse of 

l l ic lcvcl 0 band-pass signal, %o, also known as thc high-pass rcsiduc, is computcd by the 
convolu tion7 

a0=p* bo 

With thc diffcrcncc method, thc lcvcl0 low-pass signal, Lo, is computcd by 

71n this and all subscqucnt convolutions wc assume that some boundary valuc is supplicd so that cvcry J!. and % will 
h a w  thc same duration asp. k k 
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The Icvcl 0 band-pass signal. a,, is then formed by the subtraction 

9jo k p -  e, = p - ( p  * go)= (1 - go) * p 

Note that y may be recovered from 9, and Lo by 

P = 3 0  + I,, = P - ( P *  s o  1 + ( P *  s o )  

Some readers may note that for two dimensional signals, the operation producing thc high pass 
residue is known as unsharp masking, and is sometimcs uscd for edge detection. 

Level 1 

The level 1 low-pass signal. L, .  is obtained by convolving low-pass filter g, with p. 'Ihe low-pass 
filter g, is defined as a copy of filter go scaled larger in size by a factor of S .  

The impulse response for the level 1 band-pass filter, b,, is 

b, = s o  - 8 1  

In the dircct method, the level 1 band pass signal, gl, is formed by the convolution 

g l = p * b  I 

'I'hc difference method requires computing the level 1 low-pass signal, L,. 

L, P *  g, 

The level 1 band-pass signal may then be formed by subtracting tlic lcvcl 1 low-pass signal from 
the level 0 low-pass signal. 

9, Lo - L, 

Note that the original signal may still bc rccovercd by 

p = 9l0 + 9, + L ,  

= P- (P * s 3  + (P * 80)- (P * Q + (P SJ 

Levels 2 Through K 

'l'hc low-pass filter at any levcl, k, is a copy of thc level 0 low pass filter, go, scaled larger by a factor 
of fik. A s  with level 1. the band-pass filter for l e id  k is the difference of two low-pass filters 

bk = g k - 1  - g k  

Thus for any Icvcl. k. thc band-pass signal, ak, may be computcd by 

9 , = p + b  k 
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With tlic diffcrcncc mcthod, low-pass and band-pass signals at levcl k may bc formcd by 

e,=/,%?, 

As with leiel 1, for any K thc original signal may be rccovcrcd by 
K 

p = L K + C  gk 
k=O 

(5.3) 

At somc lcvcl (valuc of k )  thc size of thc lowpass filter will cxcccd thc s i x  of the finite signal. 
lkgond this valuc of k thc band-pass signals contain no iicw in formation about thc signal. This Icvcl, 
K,  is thu5 choscn as the lcvcl at which the transform is halted. ’I‘hus thc 1101,P transform produces: 

%Eo: Thc high pass residue. 

Sk  for I <, k 5 K: l h c  band-pass signals 

and 

LK:  A low-pass residue. 

licvcrsihility proves that no information is lost by the DOLP transform. 

5.2 The DOLP Transform Parameters 

Implcmcntation of this transform rcquircs choosing: 

g(x,j’): l’hc low-pass filter and its paramcters 

R , :  l’hc radius for thc smallcst filtcr, go(x,y); and 

S: Thc scalc factor. 

‘T‘lic low-pass filter g(x,y) and its initial radius R, must bc choscn with rcgard to how wcll the 
band-pass filters, b, gk-, - gk mcct thc rcquircmcnts for dcscribing non-pcriodic signals, dcscribcd 
in chaptcr 4. If rc-sampling is uscd in thc 1101J’ transform, thc low pass filtcr and its paramctcrs 
must also bc choscn so that a minimum of aliasing rcsults from tlic rc-sampling. ‘I‘his gcncrally 
involvcs trading off transition wid111 (AI;) and stop band ripplc (6) against proccssing timc. 

‘ I l c  scalc frlctor, S, gwcrns thc bandwidth of bk(x,y) and thc frcqucncy rcsolution of thc 
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transform. Sincc maximizing thc frcqucncy resolution also minimixs the dc@-adations to thc s i x  
in\xinncc (scc scction 4.3), the choicc of S govcrns the tradc-off bctwccn dcgradatioiis to six 
in\,ariancc and the cost in tcrms of processing steps and mctnory. H o w c l u ,  if rc-sampling is used, S 
must bc one of thc naturally occuring rc-sample distanccs on the original samplc grid, as was 
described i n  section 4.3. 

5.3 Complexity of t h e  DOLP Transform 

I n  this scction wc examine thc computational complcxity of computing a DOI.1' transform with 
thc dircct mcthod. This analysis shows that the dircct mcthod rcquircs 2 N' multiplics and adds to 
producc the N J-ogs(N/Xo) + N satnplcs in thc 1101-P transform. 

'l'hc IIOLP transfoim is based on a sct of size scalcd copics of a low-pass filter, gk(x) (or in the 2-D 
casc gk(x,y) ). 'I'hc scaling relationship between the filters is dcfincd by an cxponcntinl rclationship 
for the radii, R,. 

R, = R, Sk (5.4) 

Rk = R,l (5.5) 

whcrc R, is the radius of thc smallcst low-pass filter. This rclationship may also be cxprcssed 
rccursivcly as: 

'The band-pass filters, bk(x) or bk(x,y) , arc dcfincd by thc diffcrcncc of two low pass filters. 

b,(x) = S,-~(X) - g,(x) for k E (0, I, 2, ..., K} 
where ghl(x) = 1 

Thus the radius for cach band-pass filtcr'is givcn by equation (5.4) or equation (5.5). 

5.3.1 Number of Coefficients for Each Filter 

As thc first stcp of complcxity analysis, lct LIS cxaminc thc numbcr of cocfficicnts in thc band-pass 
filters uscd in a 1-D 1lOI.P transform and in a 2-D DOLP transform. 

5.3.1.1 One r)imcnsional 1)OLP Transform 

I.ct S,  bc thc scaic factor uscd in a 1-D DOLP transform. A typical valuc for SI would be 2. The 
numbcr of cocfficicnts, X,, for thc k* bandpass filter is givcn by: 

X, = 2 R ,  + 1 ( 5  -6) 

J3y substituting equation (5.4) into equation (5.6) wc gct thc cxponcntial rclationship: 
X, = 2 R , S 1  k + 1 

This scqucncc can be solvcd to arrive at the rclationship: 
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x, = ( X ,  - 1)s: + 1 

For all k such that S i  > X, we can simplify the mathematics by replacing equation (5.8) with the 
approximation: 

x,- x,s: (5 .9)  

5.3.1.2 ’I‘No Diriicnsional DOLI’ Transform 

Let us dcnotc the scale factor for a two dimensional DOI,P transform by S,. When resampling is 
used a typical value is S, = fi (Sce section 4.3). 

As with  thc 1-11 filtcrs, tlic 2-11 filtcrs arc dcfincd to havc Ihc relationship bctwccn radii givcn by 
cquations (5.4) arid (5.5). 

‘I’lie 2-D band-pass filtcr, bk(x,y). is dcfined to have non-zero cocfficicnts over the disc: 

x2 + y2 5 Kf 
Ihis disc is bounded by a squarc of sides 2 R, + 1. ‘ h e  number of non-zero cocfficicnts, X,, may be 
approximatcd by 

2 X, = n R, 

Plugging equation (5.4) into equation (5.10) gives: 
x =nR,S2 2 2k 
k 

(5.10) 

(5.11) 

This can bc solvcd to yield: 

(5.12) 2k Xk = x, s, 

Thus for cach incremcnt in k, thc number of cocfficicnts of thc filter increases by a factor of S ,  for 
a onc dimensional filtcr or a factor of Si  for a two dimcnsional filter. 

5.3.2 Computational Complexity 

This analysis of computational cornplcxity and mcmory rcquircincnts applics to both thc 1-11 and 
2-11 11OIzP transforms. In thc 1-d case, let: 

S = S, and X, = 2 KO + 1 

For thc 2 - 0  case let: 
2 2 S = S ,  and X, = nR,. 

Assumc that wc havc a signal with N sarnplcs, (I-D or 2-11) and that onc convolution inncr- 
product stcp is to bc computcd for thc filtcr ccntcrcd ovcr cach of thc N samplcs. ’I’his assumcs that a 
dcfirult boundary valuc is supplicd wlicn the filtcr cocfficicnts fall ovcr thc cdgc of thc signal. Thus 
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cach con\olution produccs N sample valucs as its result. Also, nss~irne that the smallest low p x s  filter 
wjith a reasonablc stop band has X, cocfficicnts. 

The first filter. kvhicli produces the Ic\cl 0 or high pass rcsiduc has X, coefficients. Thus there arc 
N inner product steps. with each requiring Xo multiplies, for a total of X,N niultiplics. 

For each lcvcl, k, f rom 0 through K, the filtcr has: X,Sk cocfficimts. Thus thc total number of 
niuiliplics. dciiotcd C (for cosi), is given by: 

C = X,N(1 + S + S2 +...+ SK) 

=X,N( 2 sk> 
k = O  

= X, N( SK+'  - l ) / ( S -  1) 

For the typical values of S, = 2 and S, = fi, S will have a value of 2. 

For S = 2, we can make the approximation: 

s - 1  
Thus our cost becomes: 

C zz X, N SK+'  (5.13) 

The largcst filter in this sequence has an index, K, chosen such that it is the smallest integer for 
which: 

XoSK 2 N 

Plugging this into our cost formula for S =2 gives: 

C - S N 2  

Since there arc K + 1  filters and each filter produces N sainplc values, the total memory 
rcqiiirc~ncnt, M, is: 

M = (K + l ) N  

Since X, Sk zz N then the number of Icvels, K, is: 

K zz Log&N/X0) 

Thus our total memory cost is: 
M = N I,ogS(N/XO) + N (5.14) 
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5.4 The Form of the Band-Pass Filters 

Section 5.1.1 dcscribcd forming band-pass sign:ils by subtraction of two low-pass signals. Rccausc 
convolution and subtraction arc both linear opcrations, they arc associativc. Thus in thc casc of the 
hand-pass images: 

Thus  the I)OIzi’ transform may be computed as cithcr a diffcrcnce of low pass images as dcscribcd 
abwc,  o r  by prccomputing thc cocfficients of cach band-pass illtcr and thcn con\olving c x h  band- 
pass filtcr with the signal. In fact, the latter process saws the subtraction stcp, and so is less 
cxpcnsice. Howevcr in chapter 6 wc dcscribc a fast version of the 1101.P rransfonn in which the 
compuhtional coinplcxity is rcduccd by using cach  lo^ pass signal Lk to produce thc next low pass 
signal L + 

In  chaptcr 7 a description technique which uses peak dctcction will be dcscribcd. ‘I’hc use of peak 
dctcction for dcscribing band-pass signals requires a constraint on the snioothncss of thc band-pass 
impulsc rcsponsc (as dcscribed in scction 4.2) as well as on its transfcr function. I n  this scction we 
show how the low-pass filtcr cmploycd by the DOLP transform must bc constraincd LO produce a 
band-pass filtcr which mccts tlic constraints descrihcd in scction 4.2. 

‘I’his discussion is illustratcd with onc dimensional filters: b(x) and g(x). For two dinicnsions, the 
filrcrs sliould bc circularly symmctric, so that rcsponsc is not dcpcndcnt on oricntation. ‘I’hc variable 
x may rhcn bc rcplaccd hy a radial distance to the ccntcr, r, at any oricntation. Thc transfcr fiinctions 
o f  tlic filters are denoted as: 

5.4.1 Space Domain Constraints 

l’lic sinoothncss of thc band-pass irnpulsc rcsponsc is obtained by constraining thc low-pass 
impulsc rcsponsc to thrcc altcrnations. or changes in sign of its first diffcrcncc. ’l‘hc rcasons for this 
constraint arc dcscribcd in scction 4.2.5. ‘I’hcsc altcrnations should occur only at thc boundarics of 
thc low-pass iinpulsc rcsponsc and at its ccntcr as shown in the following figure. 

l‘hc band-pass impulsc rcsponse, 

‘k + I(x) Sk(’) - gk + 

which has a radius of R,+ = likS = Ii ,Sk+’,  will thcn havc 5 altcrnations as shown bclow. Two 
of thesc arc at rhc outcr cdgcs, x = R k S ,  labclcd A, and As T w o  altcrnations, A, and A4 will bc at 
approximatcly x = K k ,  whcrc thc first diffcrcnce 
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P I P  

Figure 5-3: Permissabk Altcrnations in TBW-pass Filter 

gk(xy )  - gk(.yI - I )  
first bccotncs largcr than 

Sk + I(’$ - gk + - I )  
and of course, onc at the center, A3: where x=O. 

2 
A 

Figure 5-4: Permissable Altcrnations in 13and-pass Filter 

5.4.2 Transfer Function Constraints 

‘I’hc s i x  invariancc of thc final dcscription rcquircs that as a gray scalc form (or signal) incrcascs its 
size, thc position of thc signals in thc transform movc up through thc lcvcls smoothly. This rcquircs 
that the pass rcgion of thc trnnsfcr function of thc band-pass filtcr havc a singlc pcak, and be 
monotonic on citlicr sidc of tliat pcak. 
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Both low-pass filtcrs arc normalized so that thcy havc a gain of 1.0 at‘ DC (o=O). Since 
subtraction and thc transfcr hnction arc both lincar operations, thcy are associative. That is: 

7{h} - 7 ( g }  = 3{h - 8) 

Thus thc diffcrcncc of such normalizcd filtcrs will havc a DC rcsponsc of 0. ‘I’his will guarantee 
that thcrc is no rcpctnsc by a filter whcn it covcrs a region which is cntircly uniforin. 130th low-pass 
filters S I I O L I I ~  hakc a singlc peak at I X  and nionotoiiically falling pass and transirion rea' ~ions, as 
shoivn bclow in figurc 5-5. 

-7r 0 Tr 
Figure 5-5: Transfer Function G(w) 

This will guarantcc that thc low-frcqucncy sidc of the band-pass filtcr transfcr-function pass band 
is monotonically increasing. Thc pcak frcqucncy of thc pass band, w,,  will occur soincwhcrc before 
thc ncgativc minimum of thc first ripplc of thc largcr low-pass filtcr’s transfcr function. It occurs at 
this minimum for largc valucs of S ( S > 2 ) and at lowcr frcqucncics for smallcr S. Sincc this should 
bc tlic first altcrnation in cithcr low-pass transfcr function (aftcr thc TIC altcrnation) thcrc should be 
no problem maintaining monotonically incrcasing rcsponsc on thc low frcqucncy sidc of the pcak 
frcqucnc y. 

A local pcak will occur in B,+,(w) for cach interval in which 

a ~ ~ + , ( w )  > a qo) 
aw aw 

This is thc sourcc of thc pcak rcsponsc of 1 3 k + 1 ( ~ )  at w,.  Howcvcr such a pcak must not be 
pcnnittcd any whcrc clsc in thc pass or transition rcgions of Ilk+ , (w).  Othcrwisc, thc sire invariance 
of thc dcscription will bc corruptcd as a rcsult of the filtcr having morc than onc pcak rcsponsc as the 
s i x  of an objcct incrcascs. ‘Thc rcgions whcrc this could happcn arc whcrc thc ripplcs in G,, , (w) go 
through a zcro crossing from positive to ncgativc. ‘I‘hus wc must guarcntcc cithcr: 
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1 

w 
0 

b'igurc 5-6: Iliffcrencc of IJow-I)ass Transfer Functions 

0 That thc second zero crossing from positive to ncgative at G k + l ( ~ )  OCCUJS outside thc 
transition rcgion of I),, l(o) or. 

That thc dcrii'atiw a C,, l ( ~ ) / a ~  ncar this zcro crossing is smallcr than a G,(w)/ a m  at 
tlic same w .  

For S 5 2. the first criterion is met for niost low-PASS filters h t  nxct  rlic space domain criteria. 
For largcr ialucs of S ,  if thc first criterion is not met. the second mdy be achieved by i~djusting the 
stop bmd ripple magnitude, 8 .  

5.5 The Re-Sampled DOLP Transform 

J n  this section wc describe the re-sampled Ix)I,P transform. In this version of the I)OI,P 
transform the convolution "inner product stcps" arc computed at a set of re-samplc points.' 'lhe 
distance bctwccn thcsc re-sample points is a fixed fraction of tlic filter irnpulsc rcsponse. 

In this section wc show that such re-sampling cancels the growth i n  computxional cost that occurs 
in the 1)Ol~P transform as a rcsult of thc exponential growth of thc nuinbcr of filtcr cocfficicnts as k 
incrcascs. 'I'his occurs bccausc the distancc bctwecn samples grows by the samc scalc factor as the 
impulsc rcsponsc s i x  'I'hc rcsult is a form of DO1.P transform which may be computed in O( N 
Log,(N) ) multiplies. Wc also show that the storage cost is rcduccd by rc-sampling to O(N) (For 
S,= fi, M =  3N). 

"lhis is cquivalcni to rcsampling thc filtcrcd imagc that rcsulis from each convolution. 
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5.5.1 Re-Sampling 

Thc hmilg of band-pass fiinctions employed in thc 1301.P transfoim 1i;n.c a hish firqucncy stop 
band. For cach incrcmcnt in dic filtcr indcx, k, thc low frcqucncy cdgc of thc stop band rnovcs lower 
in fi-cqucricy by a factor S, for a 1-1) signal or S, for a 2-L) signal. 

Ikcausc each filtcr has a high-frequency stop band it is possible to savc a significant a m o u n t  of 
storiigc i~nd  proccssing cost by computing each convolution at a sct of rcsamplc points. ‘lliat is, when 
compii ring thc convolution 

%,(tl , i l l)  I = I g X . ) ; )  * p(n,rrl)  

the inncr product stcp of the convolution nccd only bc cornputcd for thc filtcr ccntcrcd ovcr the 
points ~11oiig ckcry othcr diagonal as shown by thc boxcs in figurc 5-7 uhich is a rcproduciion of 
fipirc 3-1 of chaptcr 3. A two diincnsional fonn of thc Nyquigt sampling thcrcom can bc uscd to 
s h o ~  thar virtually no inforniation is lost; ‘Thc value of thc convolution at thc omittcd samplc points 
can bc rccovcrcd by interpolation. 

Figure 5-7: Exainplc of Sfi[p(x,y)] and S2[p(x,y)] 
From Figurc 3-1 of Chapter 3 

In addition to thc savings i n  computational cost and storagc. thc re-sampling uscd i n  thc I>OI,P 
transform is fundnmcntal to Ihc quasi-sizc invariance of thc rcprcscntdtion for iniagcs bascd on the 
Sainplcd DOIP transform dcscribcd in chapter 7. 

5.5.2 Complexity of the Sampled DOLP Transform 

In this subscction wc dcscribc thc rc-sampling in thc sampled 1X)J.P transform, and derive its 
computational cost and mcrnory requirements. 

As bcforc. assumc that w e  havc a onc or two dimcnsional signal composcd of N samplcs, and that 
dcfault boundary valuc is providcd for thc ciisc whcn the fiitcr cocfficicnts fall ovcr thc cdgc of thc 
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signal. Also. assu~nc that tlic smallcst band-pass filtcr has X, cocfficicnts and that the filter sizcs are 
relatcd by a scaling factor, S, by: 

As in section 5.4. this analysis of computational complcxity and mcmory rcquircmcnts applics to 
both thc 1-11 and 2-11 lJOl.1’ transforms. I n  tiic 1-d case, Ict: 

S = S, and X, = 2 R ,  + 1 

For thc 2-13 casc let: 
2 s = sf and S, = m ~ , .  

& 

The filtcr for k = 0, b,(x) or b,(x,y), is a hi$h-pass filtcr. Con\~olution with this filtcr c;111 not bc 
rcsamplcd. ‘I‘his filtcr has X, cocfficicnts and so rcquircs X,N niultiplics ilnd procluccs N rcsult 
samplc points. 

‘l‘hc liltcr for k = 1 is a band-pass filtcr. Its pass band is containcd in thc original PJyquist boundary 
of the signal, arid so its convolution v 3 h  the imagc also cannot bc resamplcd without causing 
distortion duc to aliasing. ‘I‘his filtcr has SX, cocfficicnts so its convolution rcquircs SX,N multiplies 
and produccs N rcsult sample points. 

l’hc filter for k = 2  is a scaled copy of thc filtcr for k=l. Its pass-band I? within it ncw Nyquist 
boundary scaled lower in frcqucncy by a factor of S, or S,. ‘Jhe convolution of this filtcr with the 
iinagc can bc rcsamplcd at points scparated by a distancc of S, or S2. Note that in ~ I C  2-11 case, 
rc-sampling at a distxcc of S, rcduccs the numhcr of samplcs b} ?u factor of S = Ss. l’hcrc 3rc thus 
N/S points ‘it ~ h i c h  thc con;olution inncr product stcps must bc cornputcd. Siicc this filter has 
S ~ X ,  cocfiicicnts, tjic convolution rcquircs SX,N inultiplics and produccs N/S sainplc values. 

As dcscribcd in section 4.3, Ilic smallcst nxurally occuriiig rcsamplc distance for a 2-11 cartcsian 
grid is fi. Unlcss thc signal is intcrpolatcd bcforc thc convolution. S; is constraincd to be onc of 
the naturally cxcuring rcsarnplc dismccs. Thus in thc absence of intcrpolation. thc smallcst possible 
S, fitr a 2-11 Sampled 1)Ol.P is fi. For S, = d?, th is  rcsarnpling consists of computing the 
convolution inncr products with tlic filtcr ccntercd at points along cvcry othcr diagonal as shown b y  
thc squarcs in figure 5-5. 

Similarly, t l~c film for k = 3 has S3X, cocfficicnts and is a copy of tlic filter for k = 1 scalcd lowcr 
in frcqucncy by a factor of S; or Si. Thus the convolution with Lliis filtcr may be computcd at 

rcquircs S3X, N/S = S’X,N multiplics. ‘i’hc rcsult rcquircs N/SZ storagc clcmcnts. 

7 

rcsainplc points which arc scpararcd by a distancc of S, 2 ’  or S;. This yiclds rcsarnplcd convolution 

For thc 2-11 cartcsian grid, with S, = d, this rc-sampling amounts to computing an inner 
product con\.olution stcp at cvcry othcr column of cvcry othcr row. 

In gcncral, for cach filter, k. thc incrcasc i n  thc number of cocfficicnts from scaling is cxnctly offset 
by thc incrcasc in distancc bctwccn sample points [Crowlcy 78nl. ‘I’hc computational cost is thus the 
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s m c  for cvcry bmd-pass filter for k E {1,2,3. ..., K}. Giwn that there arc K = J.ogs(N/X,) lurid-pass 
filters that rcquirc SN, mtiltiplics. and onc high pass l c \d ,  k =O. that rcquircs SON niultiplics, thc 
tot;il cost. C. of the Sarnplcd Il0I.P transform is: 

C = S >io N I-og, (N/X,) + X,N 

The numbcr of samplc points prodt~ccd b y  cach convolution dccrcascs by a factor of S for cach 
incrcinciit of k from k = l  to k = K .  'l'hus the smragc rcquircmcnt, M, for thc Sampled 1lOI.P 
trailsforin is: 

M = N ( 1 + 1 + i/s + 11s' + 1/s3 + ... + 11s") 

(1 - 
= N ( 1 +  ) Storagc clcrncnts. 

(1 - S'l) 

Note that for S = 2, 

1 - 0  M - N + N -  
1 - 1/2 

z N ( 1 - t - 2 )  - 3 N storagc clcmcnts. 

5.5.3 The Effects of Re-sampling on the Representation 

As dcscribcd in scction 3.3, thc distoriion from rc-sampling (and subscquent loss of information in 
thc description) may bc rninimizcd by minimizing thc signal cncrgy outsidc of thc nyquist boundary 
dcfincd b y  I u, v I 5 n/S,, whcrc u and v arc rhc spatial frcqucncy variablcs and S, is thc distance in 
pixels bctwccn the ncw sainplc points. This analysis tells what information could bc rccovcrcd by 
intcrpo1:ition. Howcwr, a pcak dctcction algorithm will be cmploycd to dcscribc thc transform. 
I<c-sampling introduccs an unccrtainty in thc location of pcak. That is, whcn a pcak is dctcctcd in a 
rc-sampled signal it may actually haw occurrcd anywhcrc in the intcrval boundcd by ( x+SR. y+SR). 
I f  thc snrnplc intcrval is a constant fraction of thc si7c of thc impulse rcsponsc at cach Icvcl thcn the 
unccrnintp of a si_rn;il's position will always bc thc sarnc fiaction of its s ix .  h40rc accuratc position 
information may bc obtaincd from thc dcscription of the objcct's boundarics. which is at iowcr lcvcls 
in thc transform. 

Jdclrlly wc would likc thc configuration of pcaks that dcscribcs a signal to bc invariant to the 
signal's position. llowcvcr. as a pcak movcs from onc samplc to thc next, thcrc is a point at which 
two adjaccnt samplcs will havc thc samc pcak valuc as shown hcrc in 5-8. 

l'hc frcqucncy of Occurcncc of such double pcaks is dcpcndcnt on thc numbcr of bits uscd to 
rcprcscnt cach samplc and on thc signal arnplitudc. 1)oubIc pcaks occur most frcqucntly whcn the 
signal ainplitudc is small. 

'Iliis randonincss is also prcscnt in thc rclativc position of pcaks at adjaccnt lcvcls as shown in 
figure 5-9. 
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Double Peak /Peak 

Peak Makes Discrete Jumps as Object Moves to Right 

Figurc 5-8: Location of Pcak Sample as Signal Movcs to tlic Right 

Figure 5-9: Unccrtainty of Position of Pcaks at Adjaccnt 1,evels 

A pcak could occur with cqual likclihood at any of thc positions dircctly undcr the higher lcvcl 
pcak. ’I’hirs any matching rulc for graphs of peaks from this transform must accept a pcak at any of 
thc thrcc positions as a match. 

5.5.4 Sampling in Frequency 

J‘ach lcvcl of thc IXIIJP transform rcprcscnts an cnscmblc of samplcs at a particular spatial 
frcqiicncy r ang .  ‘I’hc ccntcr frcqucncics of thc band-pass levcls arc at discrctc. cxponcntinlly spaccd 
intcrvals. ‘ I  hc problcm of choosing thc stcp siic for thc ccntcr frcqucncies is discusscd in scction 4.3. 

As with spatial sampling, his frcqucncy sampling dcfincs thc rcsolution in frcqucncy of thc DOLP 
transform. ‘I’his traiislatcs into the cliangcs in Uic s ix  of signals that the tiansform can rcsolve. ‘I’he 
intcrval bctwccn ccntcr frcqucncics is givcn by thc scalc paramctcr, S .  ‘I‘his paramctcr also dcfines the 
band width of  Uic individual filters. ‘I’hc smallcr S is, thc bcttcr thc rcsolution in sizc (frcqucncy). 

A roughly unifonn rcgion with a background of a diffcrcnt intcnsity results i n  a local maximum in 
thc thrcc spacc, (x,y,k),  dcfincd by thc transform. ’I’hc lcvcl at which this pcak occurs gives an 
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estimate of thc s i x  of thc rcgion. Pcak detcction bct\r.ccn I c \ ~ l s  produce? an uncertninty in 3 signal’s 
si/c M hich is anAgous to the uncertaint!. in  tlic si_~nal’s position. l ’ h x  is. ;is a signal’s: s i x  incrcases, 
die lcvcl a t  ~ h i c l i  the largest pcak occurs wi i l  makc discrete jumps. In this casc, the sizc uiicertainly is 
boundtd b y  thc scalc factor, S .  That is, a peak at levcl X. places the signal duriirion soniewhcre 
between 

‘I‘hc rcsult may be compcnsatcd for in a matchinf rulc h y  pcimitting a stretching or contraction of 
one of’ t ~ i c  signals a factor lirriitcci by s”’ and s”’ . . lh? particular strc~cliing m a y  bc detcIiiiincd 
for a gi\,cn signsl by  obscrving thc d i s ~ ~ i c c  bctwec.cn landmarks in tiic description such 21s t \ w  peaks 
at some Ic\cl. Such 1;indm:trks for two dimensional p:itterns arc discusscd in chapters 7 and 8. 
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Chapter 6 
The Saimpled 

Ridference of Gaussian Transform 

An Xfficicnt I )01, t' I'ransforni 
llascd 011 Gaussian Jiltcrs and KeSanipling 

This chaptcr dcvclops an algorithm for computing thc two dimcnsional form o f  thc 1>@I_P 
trnnsforni in  O(N) stcps (\chcrc t i  is thc numbcr of picturc points). 'I'his a1Sc;rithin cmploys a propcity 
of' Gaussian low-pass filters to obtain a drastic rcduction in thc nuinbcr of computations nccdcd to 
compiitc thc scqucncc of low-pass imagcs. 'I'his propcrty is: when a Gaussian is convolved with itself 
thc rcsult is thc sanic Gaussian scalcd larger in stmdard dcviation by a factor of fi. 

'llic prcvious chaptcr defined a class of revcrsiblc transforms refcrrcd to as the 1X)l P transform. 
It dcscribcd how thc 2-11 11OLl' transform could be spcedcd up from O(N') multiplies to O(N Log 
N) iiiii!tiplicb, itnd its mcmory rcquircmcnts rccluccd from O( N Log N ) ccils tu 3 3  cclls by using 
fi rcsampling. 'lhis subclass of the UOLI' transfnim is rcfcrrcd to as thc Samplcd 11OLP 
transform. 

I t  is also possiblc to spccd up thc DOIP transfonn by using an algorithm rcfcrrcd to as "Cascade 
Convolution with Expansion" 'I'his algorithm cxploits the Gaussian auto-convolution scaling 
propcrty and an operation rcfcrrcd to as fi cxpansion. 'I'hc cxpansion" operator is a mapping 
of a function from a Cancsian sample grid to a fi sample gid. Cascadcd convolution with 
cxpansion rcduccs thc computrrtional cost o f a  1mI .I' transform from o(N') multip~ics to O(N log N) 
inultiplics. Ilccausc this algorithm is bascd on propcrtics of thc Gaussian f'unction the I>OI,P 
transfomm which it produccs is rcfcrrcd to as thc Diffcrcncc of Gaussiaii (1)OG) transform. 
Combining reampling and cascadcd convolution with cxpansion gives a foim of l)OI,P transform 
which m a y  bc coniputcd in O(N) multiplies. This transform is rcfcrrcd to as thc Samplcd Ilirfcrcncc 
ofGaussian (SDOG) transform. 

Chaptcr 7 shows how to construct a structural dcscription of thc contcnts o f  a grcy-scalc image by 
dctccting and linking pcaks and ridgcs in thc SDOG transform of the image. 

'I'hc Sampled Diffcrcncc of Gauyqian (SIJOG) Transform is dcfincd in this chaptcr. I h c  Gaussian 
function and its usc as a finitc irnpulsc rcsponsc low-pass filtcr arc cxamincd. 'I'hc computational 
complcxity of thc SIIOG transform is analyzcd and shown to bc O(N). T w o  approximations for 
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~c,iling the standard deviation of a finitc Gaus4an filtcr by df i n  srmdard dc\,iaiion ;ire i n  troduccd: 
'I'hc iisc of rhc auto-convolurion of a finitc Gaussian, and the usc of an "cujxindcd" Gaussian. 

Section 6.1 describes Gaussian functions and filtcrs and prows rhe tlic scaling property. Scction 6.2 
dcscribcs cascadcd  con^ olution with expansion. I t  then examines the elfccts of thc cxpnnsion 
opcraiion on a low-pass filter. Section 6.3 defines the Sarnplcd 11OG transform by construction, and 
shows that this transform rcquircs 3X,N inultiplics and produces 3 N  samples for an  N sample 
picture. Section 6.4 dcscribes an  cxpcrimcnt that givcs thc accuracy of the scaling obtaincd by 
multiplc convolution with a G;russian kcrncl. Section 6.5 prcscnts thc iinpulsc rcsponscs fur the level 
0 and 1 band-pass filtcrs, and the transfer functions of the lcvel 1 and 2 band-pass filtcrs. 

6.1 Gaussian Functions 

Even with re-sampling. the IIOLP transform of an imagc is a wry costly process in terms of the 
nuinbcr of computations that arc rcquircd. It is possiblc to rcducc thc coniputatioiial cornplcxity by 
scxral  orders of magnitude by cxploiting the propcrtics of Gaussian filtcrs. In this section. the 
Gaussian function and its propcrtics arc rcvicwcd and thc construction of 1-D and 2-11 low-pass and 
band-pass fiitcrs using Gaussian functions is dcscribed. 

The Gaussian fiinction is most commonly known in its onc dimensional form 

2 2  1 e-(t-p> 12 u g(t;p*.) A - 
0 6  

where: y 6 l'hc mean and 
u A 'Ihc standard dcviation 

Thc term 1 / 0 6  scales thc infinite Gaussian so that it has unit area. 

For thc discussion that follows, the mcan will always occur at the origin (t=O). and so will be 
omittcd from thc notation. I n  somc of tlic discusion valucs such as D. which dctcnninc thc spccific 
function, arc used as variablcs. In thcsc C ~ S C S  thcsc valucs arc included within the parcntlwsis to 
simplify thc notation. 'I'hcy are scparatcd from the indcpcndcnt parametcrs of the function, such as x 
and w ,  by a semicolon. 

Thc standard deviation, O ,  is the squarc root of the sccond central moincnt of tlic Gaussian 
hnction, and thus defincs its width. The zero mean Gaussian 

1 ' -t2/202 g(t:u) = -e 
U G  

has a Fourier transform 
2 2  -u w I 2  G ( @ ; ~ )  = e 
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6.1.1 Scaling by Auto-Convolution 

'l'hc scaling property is easily dcduccd from the fonnula of a Gaussian fiinction. I t  hac bccn 
observed by sutisticians, and is used in Communications thcury and Linear Sysreins thcory to 
describe the cficct of rcpcatcd convolution. In this section i t  is cniplayed to dcscrihc thc effects of a 
finitc impulsc rcsponsc Gaussian filtcr as a kernel for cascaded filtering. l'his scaling property is only 
strictly true for thc infinite Gaussian function. 1;or a linitc Gaussian low-pas5 filtcr this scaling 
property Is o n l y  an approximation. 'I'he accuracy of this approximation is cx,imined in scction 6.3.4 
and 6.4. 

'I'hc fast algoritliin dcscribcd in this chapter is bascd on thc following property of Gaussian 
functions: 

C;aussi;in Scaling Property: 

A Gaussiiin function convol\cd bit11 itsclf yiclds a Gaussian function whosc standard 
deviation (width) is fi lrirgcr t l i m  tlic original function. 

'I'hc convolution: 

inay also bc expressed as thc product of Fourier transforms 
2 2  2 2  2 2  e-a w 12  = e-a e-a w 12 

whosc inverse Fouricr transform is 

'1'0 get back to standard form thcii rcquircs the substitution 

'l'hus thc stiindard deviation, and hcncc thc function width, havc bccn cxpandcd by a factor of 
&. 0 

Notc also that thc amplitudc has bccn multiplied by a factor of l / d .  Auto-convolution 
prcscrvcs thc unit arcs normalization. 



68 

6 .1 .2  Disc rete G a u s s i a n  Filter 

'1'11~ Gaussian function may be iiscd as a low-pass digital filter. When used its ;I filter the ~iiriancc 
a2 is replaced by thc ratio of a shapc parxncter, a. to thc support radius squared, It2. 'J-his gives a 
family of frnitc functions with different standard deviations for a particular radius. /Idjusting thc 
parninctcr a pcrmits a tradc-off bctwccn stop-band ripple. 6, an transition widdi. AI-., for thc filter. 
An cxpcrimcnt to determine the effect of a on this trade-off is dcscribcd in appendix A. 

'l'he Gaussian is convcrtc'd to discrcte form by 

K2 
1. hkiking thc substitution a' = -, and 

2. Snmpling tlic continuous function at 211+1 points given by the discrete \ariablc x, 1x1 5 
2ff 

K. 

Implicit in this form is a multiplication by a 2R-i- 1 point uniform window (or aperture or support) 

IicctZK+,(x) 4 1 for 1x1 5 R { 0 otherwise. 

This givc5 a space domain formula. 
2 2  -ax /R g(x;a,~t) = iicctZK+l(X) e 

whosc transfer function is 

* G / , 1 G e - R 2 w 2 / 4 a .  
Sin(w(?R+ 1)/2) 

Sin( w 12)  
G(w;ff,K) = 

Where the first term in thc convolution is thc Fourier transform of the support 

Sin(o(2R+ 1)/2)) 
Sin( w / 2 )  

3{RcctzR + I(x) l  = 

6.1.3 Two Dimensional Digital G a u s s i a n  Filter 

Ccncralizing the Gaussian low-pass digital filter to two dimensions can bc accomplished by 
3 7  2 substituting thc radial formula, x'+y-, for thc distance variablc x . In addition, Ihc h i t c  support 

must also bc gcncralizcd to two dimensions. which prcscnts a choice. l'hc two dimensional support 
may bc thc squarc 

s(x.y:It) 1 for 1x1 5 11, lyl 5 R 

which is scparablc and has a transfer function [Oppcnhcim 751 

{ oothcrwise 

Sin(u(21t + 1)/2) Sin(v(2li +1)/2) 
Sin( u/2) Sin(v/2) 

S(u,v;li) = 

Or it may bc the disc 
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u hich is circul3rIy syinmctric and has a transfcr fiinction [Papoulis 681 

2-77 R J I (12 m) 
C(ii,\;R) = 

V v 2 ’  

whcrc J I( ) is dic first ordcr lkssel function. 

’f‘he Gaussian is thc onlv two-dimcnsional function which is both circulnr!y syinmctric and 
sc 1x1 rii I31 c i I 1 LO ( ) n c-di m e n sic n a 1 ~0171 po ne 11 t s. l’h is pro pcr t p can be u sed to spccd 11 p t n o- d i 111 c n sional 
filtering with a Gaussian by replacing convoliition ivith a (ZR -I- 1 jx-(312 i- 1) filter by two convolutions 
v-ith 21< + 1 point oiic-diiiicnsional filtcrs ( onc for cacli dimcnsion). ‘I‘liis rcquircs 41<+2 
i~iLilLir~~ic~itioiis for cadi picturc point instead of 412 2 +4K + 1 ~niiltiplications. Howcvcr, this savings 
can o i i l y  bc obmincd by dcfiiiing rhc Gaussian o \ w  a scpnrablc support. such as s(x,y;R). 9 

Unfortunatcly, thc square support focuses the stop-band ripplc of the filter along the u and v axes. 
’l’liih gives a non-circularly symmetric transfcr function and a larger worst casc stop-band ripple than 
for thc circular support. ‘I‘he stop-band ripplc must bc minirni7.cd if the filtcr is to bc uscd with 
rc-s:impling in ordcr to minimizc thc maximum aliasing error. 

For thc cxpcrimcnts dcscribcd in this dissertation, circular symmetry and thc bcst possiblc stop- 
band pcrfonnancc wcrc judgcd to bc morc important than thc computational savings. IHowcvcr, in a 
rcal systcm, it m a y  be worthwhile to acccpt some dcgradation in ordcr to gain a significant savings in 
proccssing spccd. 

The implcincntation dcscribcd in this chapter and uscd for cxpcrimcnts in constructing a 
rcprcscntation is bascd on the Gaussian filtcr with circular support: 

Whose Transfcr hnction is 

In thc cxamplcs given in this disscrtation, the pararnetcrs 1t=4.0 and a = 4.0 wcrc used for the 
Gaiissian filtcr. ‘l’licsc valucs wcrc obtaincd by an cxpcrimcntal proccdurc dcscribcd bclow in 
Appendix A. 

To control thc filtcr gain. thc filtcr cocfficicnts arc normalizcd so that thcy sum to 1.0. ‘ h i s  is done 
by summing thc cocfficicnts and thcn dividing cach cocfficicnt by the sum. 

9Although any unifonn rcctanglc is a scparablc supporl. Ihc uniform squarc has thc lcast cfrcct on thc circular syrnmctry of 
thc filtcr. Scction 4.2 dccribcs thc nccd for circular syiiimctry in Lhc filtcrs uscd in a D01,l’ transform 
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.OO 148 8 
.003150 .006669 BO8564 ,006669 .003150 

.003150 .010996 .023278 .029890 .023278 .010996 .003150 

.006669 .023478 .049250 .063276 .049280 .023478 .006669 
.001488 .008564 .029890 .063276 .08 1248 .063276 .029890 .008564 .001488 

.006669 .023478 .049280 .063276 .049280 .023478 .006669 

.003150 ,010996 .023278 .029890 .023278 .010996 .003150 
.003150 .006669 .008564 .006669 .003150 

.001488 
Figure 6-1: Normalizcd Impulsc Rcsponsc g,(x.y) for R =4, a =4.0 

\ 
Figure 6-2: Transfer Function G,(u,v) for R=4, a = 4  

In figure 6-2 and all othcr transfcr hnction plots, the transfcr hnction was cvaluatcd over a 64x64 
floating point array reprcscnting thc Nyquist region -n 5 u,v < n. Bccausc the filtcrs have zero 
phase, rhc imaginary part of thc function is idcntically zero. Thus only thc real part is plotted. The 
valucs wcrc scalcd so that thc maximum would cxtcnd full scalc on the plot. I-incar intcrpolation was 
uscd to obtain thc value bctwccn samplc points. The rangc from 0 to maximum rcsponsc (1.0 for 
low-pass filtcrs, ~ 0 . 2 5  for band-pass filters) is rcprcscnted by 4096 incremcnts at 2045 dots/inch. 
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6.2 Cascaded Convolution with Expansion and Resampling 

111 this scction M’C introduce a fast algorithm for computing the 2-D Sainplcd D01.1’ trnnsfonn 
\vi l l i  Gaussian low-pass filters. This algorithm, rcfcrrcd to as “Cascaded Convolution with 
Saiiipling”, is bascd on thc convol~ition scaling property of Gaussian filters. thc fi cxpansion 
operation and resampling. In this algorithm, the image is filtcrcd, re-snmplcd at fi, and then 
filtered again with a filter that has bcen expanded out to the sainplc grid of the re-samplcd image. 

In chapter 5 it was shown that a I)OIP transform could be computed by 2 methods: 

1. Con1 olution of the imagc signal M ith a scqucncc of six-scaled low-pass filters followcd 
by ii subtraction of cach low-pass signal from thc ncxt. i. e. 

‘k = g, * P 

2. Convolution with an cxponcntially six-scaled set of band-pass filters which arc formcd 
by subtracting size scalcd low-pass filters. i. e. 

‘I’his fast algorithm is bascd on thc first of these two approachcs. That is the compuhtion cost is 
rcduccd by computing each k, from kk-l. As is shown bclow this computation may bc donc by 
convolving thc filtcr go with L ,_ k timcs, or by a sin& convolution with a vcrsion of thc filtcr go 
which has been expanded by P‘ 2 k-1 timcs. That is, 

Although this cxpandcd filtcr covers an arca which is fik larger than go, it has X, cocficicnts just as 
go docs. 7’hus a sct of low-pass signals with an cxponcntial scrics of impulsc rcsponsc sizes can be 
formed with cost which is thc samc for cach low-pass signal. 

This section is mainly concerned with thc cffccts of thc fi cxpansion opcrator. A form of 1301,P 
transform bascd on cascadcd convolution with cxpansion is first introduced to isolatc the cffccts of 
cascadcd convolution and expansion from those of rcsampling. ’I’hc cffccts of thc expansion 
operation arc thcn cxamincd. 

‘I’hc impulse rcsponsc of the lcvcl 0 low-pass signal, Lo, is g,(x.y) by dcfinition. At lcvcl 1 the 
dcsircd impulse rcsponsc is gl(x,y) as dcscribcd ‘in scclion 5.1. ‘Ihc Gaussian scaling property, 
dcscribcd in section 6.1, shows that if go(x,y) is a Gaussian filtcr, the lcvcl 1 low-pass filtcr impulse 
rcponsc can bc approximated by 

&&X’Y) = go(x9Y) $;- go(x,Y). 

In a Sampled 1101.P transform, for cach lcvcl above level 1, both thc impulsc rcsponsc and the 
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irnil  ~ a i i ~ p l c  dict;ince. s~ , ,  arc to tx scaled i l l  size 1 ~ y  a n  aciditional factor of d7. ~I’iiis scction 
dc5criht.s Iio\lv this SCCjuCi1CC of  lo\v-pm sigiialc can be formed liy rcpcatcdly rc-sxnpliiig ;ind thcn 
con\.ol\ ing wirli thc s;imc filter cxpiindctl out  to the propcr s:imple grid. l‘hc mo[i\.ation for this 
algorirhni is a grcat reduction in computiitional cotripiexity in acquiring the scqucncc of sampled 
iou-pasb signals nccdcd to form a Sampled 1101 .P transform and its description. 

6.2.1 Cascaded Filtering and the V T  Expansion Operation 

’ I  hc cost o f  computing thc l>Ol~I’ transform without resampling can bc rcduccd from O(N2) 
inultipiications to O(N log N )  by using the Gaussian scaling property and the fi cxpansion 
opcrntion (dcfincd below). 

1 x 1  LIS consider the usc of the Gi1~ssiaii scaling property for forming a DOJ-P transform without 
die usc of \/z cxpansion or rcsanpling. In diis version ofthe UOIP transform the low pass image at 
lctcl k is fonncd by ? ( k - l )  convolutions UC thc low pass image at level k-1 with tlic kcrncl low pass 
filtcr go.  ‘I’hus thc lcvcl 1 low-pass filtcr impulse response, gl, is approximatcd by 

61 = 60 go 

62 = s o  * 60 * g o  * g o  

and the lcvcl 2 low-pass fitter, g,. is approximated by 
I 

For each additional level, thc number of convolutions with go doubles. 

6.2.2 Cascaded Convolution with Expansion 

’I’hc cxponcntial growth that rcsults from cascadcd filtering can bc averted by cxpanding cach 
low-pass filtcr onto a sample grid which is a fi larger before thc convolution to produce the next 
low-pass levcl. This cxpansion operation scales thc low-pass filtcr impulsc rcsponsc largcr in 
standard dcvialion by fi. but it also introduccs rcflcctions of the low-p.ass transfer function in the 
corners of thc Nyquist plane, -n < u, v 5 n. The kcrncl filter can bc formed so that these 
rcflcctions fall over thc stop rcgion of the kcrncl filter and arc thus greatly attenuated, as shown in 
scction 6.2.4 bclow. 

Cascaded convolution with cxpansion can bc uscd to computc a DO1 .P transform that is not 
rcsamplcd in O(N log N) multiplies. This complcxity may bc arrived at by the following rcasoning. 
‘l‘hc df  cxpansion operation docs not change thc numbcr of coefficients in thc filtcr. Thus cach 
low-pass image may be formcd from the previous low pass iinagc with the samc cost in multiplics. 
’I‘hc cost of cach convolution is Avo N multiplics ivhcrc X ,  is thc numbcr of coefficients in thc kcrnel 
filtcr and N is thc numbcr of samples in thc imagc. Sincc thc impulsc response scalc grows 
cxponcntially, thcrc arc O(1,og N )  low-pass images. Hcncc Ihc cost of cascadcd convolution with 
cxpansion is O( N I ,og N ) inultiplics. ‘I‘his cxpaiision opcralion iind its effect on thc transfcr 
function of a Gaussian low-pass filter is cxamincd in  (he following Subscctions. 
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6.2.3 fi Expansion and Resampling 

I n  h i s  section wc consider the cxpansion operation in  thc context of the use of  cascadcd 
convolution and resampling. 'fhe fi expansion operator is a convcnicnt way o f  scaling a Gaussian 
lo\~.-]~ass filter by a factor of UT. Whcn irnag,cs arc rcsamplcd, cxpanding the filter onto the samc 
snmplc grid automatically gives the expansion opcration. 

'l'hc fi cxpansion opcration maps each row from a liltcr on a cartcsinn satnplc grid into cvcry 
other diagoiwl. 'l'his mapping takes each cocfficicnt from point (x,)) of a filter g(x.y) and plxcs  it at 
point (x-p,x+y)  of a filtcr g,(x,.y2). I'oints of g,(xT),) ~ h i c h  receive no cocfficicnt undcr this 
miipping arc declared to bc undcfincd. 

I x t  us dcfinc this m,rpping as the function E,,y[.]. Since 

x 2 = x - y  
Y l = x + Y  

wc gct 

-x + y  x = u  
2 

and 

So that this hnction may be defined by 

E,&(x,y)] A g2(x,,y2) = 6((-x2+y2)/2, (x,+y2)/2) For xz Mod 2 = y2 Mod 2 { Undefined otherwise 

Where A Mod B is the remainder of A/B. This mapping is illustrated by figure 6-3. This figure 
shows the corrcpondcnce bctwccn points in the mapping. 'Ihc dashes ( ' I - " )  illustratc thc points which 
arc not dcfincd in the new filter. 

'I'hc algorithm for cascadcd filtering with sampling involves repeatedly re-sampling. h c h  rc- 
sampling enlarges thc actual smallest distance between samplcs by fi and altcrnatcs the direction of 
that smallcst distance bctwccn 245' and 0°,900. For each convolution thc distance between filter 
cocfficicnts must bc cxpandcd by df as many timcs as the imagc has been re-sampled. For this, a 
more gcncral cxpansion operator is needed: 
to the samc grid as an imagc which has been 

I{.}. 'Ibis inorc general opcrator cxpands the filter 

Whcn I is odd. thc filtcr is mappcd onto a grid whosc axcs arc + 4 5 O ,  and whose srnallcst distance 
bctwccn samples is 2'12. 'I'hc points on this grid are those at which 

Mod 2(1+ 1 - Mod $I+ 1)/2 = 0 
1 - 1  

F o r  cvcn I ,  thc cxpandcd film will be mappcd onto a grid whose axcs arc at 0' and 90". 'l'hc distance 
between samplcs along these axcs will also be 2'12. 'I'hc mapping l'filmay bc dcfincd as: 
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. (&I)  .(2,2) .(2,1) 

.(O,O) . (LO) .(2,0) 
40,- 1).(1,- 1).(2,-1) 

maps into 

.(2.1) 
.(1,1) - .(2,0) 

.(O,I) - 41.0) - .(2,-1) 
.(O,O) - .(l,-1) 
a- 1) 

Figure 6-3: Examplc of mapping given by E&.] 

For cvcn I :  

Undcfincd othcrwise 

For odd I: 

Undcfincd Otherwise 

For a circularly symmctric filtcr this mapping is equivalent to applying thc following procedure 
rccursivcly I timcs: 

Efi I{ .} P roc ed u re: 

For cadi point (x,y) at which thc filtcr g,-,(x,y) is dcfincd. dcfinc a ncw point in gl(x,y) 
at (x-y, x +  y) and copy thc valuc from g,,(x,y) into thc point. 

'I'his is tlic proccdurc which was uscd for tlic cxpcrimcntal implcmcntation. 

6.2.4 Frequency Domain Effects of 6 Expansion 

'I'lic 6 expansion opcrator has a wcll dcfincd cffcct on thc transfcr function of its argumcnt. As 
with fi sampling a ncw Nyquist boundary is crcatcd which is a 45" rotation and a \/z shrinking of 
thc old boundary. lnsidc this ncw Nyquist boundary is a copy of thc old transfcr function scalcd 
down in  si^ by a fiictor o f  fi. Outsidc this ncw Nyquist boundary is a rcflcction of thc scalcd 
transfcr function. 'I'his is illustratcd by figurc 6-4 bclow. which shows tlic 3dIj contour of a low-pass 
filtcr bcforc and after the cxpansion opcration. Figurcs 6-5 and 6-6 show actual plots of a Gaussian 
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low-pass filtcr (R=4 .  cu=4). bcforc and after thc cxpansion opcmtion. Noic tlic 4 lobcs in thc 
corners of figurc 6-6. 'l'hcsc arc the rcflcctions of thc pass rcgion. If tlicsc wcre to show UP in the 
composite tiltcr thcy could cause a large stop-band response, which would add aliasing to the 
transform bccausc of rc-sampling. 

3dB Contour V I  -x 
Figurc 6-4: Effcct on l'ransfcr Function of E f i  Expansion 

Opcrator 

Ffii.1 scalcs the s i x  of thc transfcr function by fi so that it fits into thc ncw sinallcr Nyquist 
boundary. That is 

3{~fi[go(x,Y)l1 = 7kl(X,Y)I 

within n 5 I u + v I 5 n (Thc ncw Nyquist boundary) 

Ikcausc thc cxpansion opcration introduccs a rcflcction about tlic ncw Nyquist boundary, thcrc is 
rcason to bc conccrncd about dic stop-band crror in troduccd by this tcchniquc. 'l'hc stop-band crror 
is not 3 scrious problcm for thc paramctcr valtics R=4,  a=4. 'I'hc rcflcctcd cncrgy from cxpansion 
falls into thc stop-band of thc prcviotis filtcr. That is, outsidc of the ncw Nyquist boundary, 

%,(x.Y) * go(xly)I 

will bc very small (i.c. < -60 dUIo for K =4, a =4) and thus the product 

W ~ ~ , ( K Y ) I I  o 3{g , (x~)  * g,(x.y)l 

~ ~ -~ 

"Rcsponsc is < 95 dB in thc area of h c  corner whcrc h e  rcflcctcd nodes arc present 



76 

\ 
Figure 6-5: Filtcr G,(u,v) for I< = 4.0, a = 4.0 Ikforc df Expansion 

\ 
Figure 6-6: Filtcr G,(u,v) Aftcr fi Expansion 

will bc vcry vcry small outside thc ncw Nyquist boundary. ‘I’hus thc impulsc rcsponsc at low-pass 
lcvcl 2, L,, which is dcsircd to bc g(x,y; cr2=2a,) that is, go(x,y) with its standard deviation scalcd 
largcr by a factor of 2. is actually approxirnatcd by 
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g(x.y; u2=2u,) = Sfi[P?,(X,Y) * S,(X.Y)I * Efi[So(X,Y)l 

Where S f i (  ) is the fi rcsainplinS operation which was defined in scction 3.3 as 
,.. 

~ ( x J )  for x mod 2 = y mod 2 
iindcfincd orhcrwise 

Figure 6-7 is a plot of thc transfcr function of tlic lciel 2 low-pass filtcr. As can bc sccn the 
rrsponsc in Lhc cornc~s is so sniall that it docs not rcgistcr in this plot. 

\ 
Figure 6-7: Filter G2(ii,v) for I i  = 4.0, a = 4.0 

gJx,u) = S&,(X,Y) * Eocx>Y)l F&,(X,Y)I 

A logarithmic plot of thc amplitudc of G,(u.v) is shown in figure 6-8. This plot spans -120 db in 
amplitude. The scalc on the lcft marks off drops of -10 db. Notc that thc rcsponsc in thc corner 
rcgion is well bclow -100 dB. 

6.3 The Sampled DOG Transform 

In this scction H’C dcfinc thc Samplcd I>OG transform by construction and cxaininc the 
computational complcxity and mcmory rcquircmcnts. Unlikc thc similar scctions in chaptcr 5 on the 
DOId’ transform and thc Samplcd D0I.Y transform, in this scction we arc conccrncd with only the 
two-dimensional version of this transform. Also, bccausc wc usc thc Gaussian scaling propcrty and 
rcsampling, wc arc conccrncd only with a scalc factor of‘, S2 = fi. 

As in thc similar scctions in chaptcr 5,  thc numbcr of filtcr cocffcicnts for thc lcvcl 0 band-pass 
filtcr, X,, is rclatcd to thc radius by: 

2 X, = n R, 
Also, ;is bcforc, Lhc 2-1) imagc signal is assumcd to havc N samplcs. Thc convolutions arc computcd 
for thc filtcr ccntcrcd ovcr cach sample point, with a dcfault boundary valuc supplied as nccdcd. 
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Figure 6-8: Plot of 20 I2ogI0[G2(u,v)] \ 
Scalc (shown at Icft) spans -120 dB. 
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6.3.1 Construction of a Sampled DOG Transform 

The sampled DOG transform may be expressed by the data flon~ graph shown hclow as figurc 6-9. 
‘l’lic number of points ( for an N point image) produced by tach stcp arc givcn i n  square brackcts to 
the right of‘ each band-pass level. 

A s  with the I>OJ_P and Sampled IIOLP transforms, tlic high-pass residue. a,, is formed by 
co:i\dving g o  will1 the image, p. to form L o  and then subtracting the con~~oltition output at each 
point f I r ~ n i  thc sriinplc under thc ccntcr of the filter as it is computcd. That is, tlic low-pass lcvcl 0 
signiil is given by: 

.Eo = go * P 

a0 = p - L o  

and thc lcwl 0 band-pass signal is givcn by: 

’l‘hc I c d  0 impulse rcsponse is: 

b, = 1 - g o  

Note that when filters of diffcrcnt sizes arc subtractcd, it is implied that thcir centers arc aligncd, 
and that undcfined cocficients are trcatcd as having thc valuc zero. ‘Jl-~c filtcr, bo,  defined above is 
tlic samc as that givcn in figure 6.12 below. 

Computing So rcquircs Xo N multiplies and produces N sample points. 

‘l~iie low-pass levcl 1 signal is then formcd by convolving go with the low-pass lcvcl0 signal. ‘lhus 

L, = go * e, 

and 

g, = g o  Af g o  

During thc convolution, thc Icvcl 1 band-pass signal 93, is formed by subtracting each sample 
point o re ,  from thc corrcsponding point of Lo. 

= Lo - L, 

and 

This operation also requires X, N multiplies and produces N sample points. 

Since the level 1 low-pass filter transfer function has a pass and transition band that has bcen 
dcsigncd to bc inside a fi shrinking of thc Nyquist boundary, it can bc rc-samplcd at 6. ’lhus, 
on ly  the samplcs along every other diagonal arc storcd. Thc rcsult is a low-pass signal, Sfi{L,} 
which has N/2 sample points. 
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e e 

Yigurc 6-9: Data Flow Graph for Samplcd DOG Transform 
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This 5amplcd lo~-priss leiel 1 signal is then convolved with an cxpmded \criion of go to produce 
e,. ’Jhus: 

e,  = Sfif e, 1 * q,@?ol 

Ilurin;. this con! olution. thc le\cl 2 band-pass filtcr is formed by subtractin: cadi low-piicr sample, 
e ,  from the snmpled vcrsion of L,.  - 

‘l’hus the Ic\el 2 band-pass filtcr is given by: 

b, = S&gJ - g,. 

Since S f i  {Le,} has N/2 samplcs, this operation requires X0N/2 multiplics and procluces N/2 
samplcs. 

l‘hc Sampled DOG process continucs in this inanrier until the K~ level. ‘l’hus thc lcvcl 2 low-pass 
sign‘tl, L, is again sampled at a distance of fi. corresponding to a s m p l c  for every other colirmn of 
every uthcr row of the original picture, p.‘I’his is a total of N/4 sample points. ‘I‘his reaampled 
low-pass signal js convolvcd with a rwicc cxpandcd low-pass filter: 

fy.2,) = E f i ? k o >  = ~ f i { E f i k , l l  

L3 = J q g , }  * SfiCL,} 

to f m n  thc lcvel 3 low-pass signal, 

and 

Sincc S f i { J - , }  has N/4 samplcs, producing thc lcvcl 3 band-pass signal rcquircs X0N/4 
multiplics and produces N/4 samplc points. 

In  summary. for lcvcls 2 through K wc can statc thc following rccursivc formulae: 

J-, = FQp-l)kol * sr/T(Lk-Il 
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6.3.2 Computational Complexity and Memory Requirements 

Prodircing cach band-pass level. k, for the k-I* low-pass lcvcl requires X, N/2"' multiplies. and 
produccs N/2k" samples. 'Thus thc cost, CSLIOG, of computing a Samplcd IIOG transform of an 
i m a y  sisnal with N samples is: 

z 3 X, N multiplies 
CsIIoL; = X, ( N  + N + N/2 + N/4 + N/8 + ...) 

71ic total number of band-pass samplcs produced, M, is: 
M = N + N + N/2 + N/4 + N/8 + ... 
= 3N samples 

6.3.3 Comparison of Complexity with Filtering Using FFT 

The Sampled DOG 'Transform is bascd on a filtering algorithm Mhich \+'e have namcd "Cascade 
Coin olution wi!h Sampling". Any sainplcd Il0I.P transform could Atcmari\ clp bc computed using 
the Fast 1-ourier Transform ( I T I ' )  algorithm. A Sampled 1101-P Transform of an N point signal 
( I -D or 2-11) could be computed using the FIT algorithm by the following steps: 

1. Prccompute the cocfficicnts of thc lcvel 0 band-pass filter (high-pass rcsiduc) and the 
Icvcl I bmd-pass filtcr. Evaluate thc transfer functions of thesc two filters over N equally 
spaccd points in the nyquist interval. Sincc the lcvcl 2 through K band-pass filtcrs are 
si1.c scaled copies of the lcvcl 1 filtcr, their transfer functions can be obtained from the 
level 1 band-pass transfer-fiinction by resampling, as described below. 'The cost of 
computing thcsc transfcr functions will not bc includcd in this complexity analysis. 

2. Cornputc the Discrete Fourier Transform (DFI') of thc signal using thc F F I '  algorithm. 
'I'iiis requires N ~ o g ,  N multiplies for an N point 1-11 signal o r  [M  IN^, MI? mu~tip~ics  
for an N = hf x M 2-11 signal. Notc that for this step alonc is more cxpcnsivc for: 

Log2 N > 3 X ,  in thc 1-D case, and 

[ I .ogz M l2 > 3 x , in the 2 - ~  case 

3. For band-pass lcvcls 0 and 1, multiply thc DFT of thc signal by thc transfcr function of 
cach filtcr. F k h  product costs N multiplics. For band-pass lcvcls k = 2 through k = K, 
both the transfer functions and tiic 1)FI' of Uic signal must be re-smplcd to N/2k-1 
evenly spaced points. F k h  rc-samplcd transfer function is thcn multiplicd by the 
corresponding re-samplcd DI-T, for a cost of N/2k-' multiplics at each Icvcl. 'I'hc total 
cost of thew multiplics is then: 
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N + N + N[1/2 + 1/3 + 1/8 + ...I = 3N multiplics 

= 2N I.og,(N) + Log2( N/2 + N/4 + N/8 + ...) - 2 k N/2k 
k = l  

’Ihe final scrics tcnn at Lhc cnd coii\~crgcs to approximately 2N. The middle scrics, as we 
have sccn before converges to N. so that the cost of the invcrsc FFf’s is approximatcly: 

3N I-og2(N) - 2N multiplies 

Thus  the total cost of using thc FET algorithm is: 

CFlTT N I . o ~ ~ ( N )  + 3N + 3N I.og2(N) - 2N 
= 4 N  Ir)g2(N) + N Multiplics 

Iiccall that the Sainplcd DOG transform rcquircs approximatcly: 

CS,,, = 3 X, N multiplics 

‘l‘hus thc Samplcd DOG algorithm costs lcss whenever: 

3 X ,  < 4 Log2(N) + 1 

For thc I-D casc, Xo has a typical valuc of 9. Thus thc Sainplcd DOG lransform is clicapcr 
whcncver: 

N > 26.5 = 90.5 

For Circularly Syinmctric filters in the 2-1) casc. X, is typically 49. Also thc cost of a FIT for an N 
= M x M signal is [ M l-og2 MI’ multiplics, so diat the Sarnplcd DOG ’I’ransfonn is chcapcr in tcrms 
of inultiplics whencvcr: 

4 [ I X ~ , ( M ) ] ~  +1> 3 ( 4 9 )  
or 
[ l . ~ g , ( M ) ] ~  > 36.5 
or 
I,og2(M) > 6.04 
or 
M > z6.O4 = 65.86 
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6.3.4 The Size of Cascasded Filter Impulse Response 

As discusscd dxnq thc sampled 1)OG transform cmploys crlscadcd con\mliirion \+it11 sampling to 
produce a sct of low-pass images M Iiosc Gaussian iinpulsc rcspoiiscs arc .scaled largcr i n  standard 
dcviation 131, a fhctor of V? from c x h  Ic\.el to ~Iic next. I n  chaprcr 5 this scaling wxi  discussed in 
tcnns of  thc filter radius. Uascadcd filrcring produces a sct of impulsc rcsponscs whose radii grow 
fastcr tiian a factor of v'T. 

'l'hc h c l  0 Ioiy"s filter ir defined occr a disc of IxJius I to  =4. When con\wl\cd \+it11 itself to 
prodiicc thc lcvcl 1 lo~v-pass filtcr it produces a n  iinpiilsc rcsponsc \vliich is non-zcro o\ cr  ;I d i x  of 
radius 2R ,. At thc s;me time, tlic standard 
dcviation of this impulsc response has only gro~vn by fi. 

'I'his is 3 property of thc convoultion opcration. 

'l'hc con\foliition of two functions which arc normalized to sum to onc prodLiccs a fimction whosc 
v:iltrcs also w i n  to one. 'I'hus the nutoconvolution of the Gaussian prcscrws its normali/ation to unit 
sum. Sincc the auio-convolution has its uni t  sum spread out ovcr a largcr ~irca. thc cocfficiciit valucs 
arc slightly sinallcr than the same cocficicnts for a unit-sum Gaussian filtcr which is computcd by 
scaling thc It paramctcr by fi." Thc auto-convolvcd Gaussian filtcr has a larger tail and is thus a 
closcr approximation to thc infinite 2-13 Gaussian function. 

'fhc lcvcl 1 low-pass imagc is satnplcd at df and so tlic low-pass filtcr must bc cxpandcd to the 
sainc sample grid by thc Efi{} opcrator dcfincd above. From a filter defincd ovcr a disc of radius 
R,. the cspmsion operator E f i { }  produces n filter whose fiirthcst cocfficicnt from the origin is at 
V5Rc. 'I'hat is, for a riidius 4 filtcr. the cocfticicnt from (4.0) is mappcd into thc point at (4,4). 
When rhis filtcr is convolvcd with thc lcvcl 1 low-pass filter, thc rcsult is a liltcr whosc radius is R, -t 
Rod. 

Each additional cxpansion of the filtcr will cnlargc it in radius by a factor of fi and will add its 
silt to that of thc cumulative impulsc rcsponsc. Thus tlic radius of thc cumulati~c itnpitlsc rcsponsc, 
It,, for tlic lcvcl k low-pass filter is givcn by thc following fonnula: 

k 

.. 
n=O 

'Ihis support radius grows much fastcr than thc support radius 

for a siniplc scaling of thc function. This fastcr growth in support radius is advantageous; ii provides 
a low-pass impulse rcsponsc at cach lcvcl which is a closcr iipproximatio~~ to thc infinite Gaussian 
function. 'I'hus at each lcvcl thc error in thc auto-coiivolulion scaling that rcsults from Ihc finite 
duration of  ~ h c  Gaussian filtcr is rcduccd. 

"Note thal the two furictions do havc the simc standard dcviation. 
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6.4 Verification of Scaling Approximation 

nccaiise the discrete two dinicnsion;il Gaussian filtcr defined in scction 6.1 is defined over a finitc 
window. the scaling relalion dcscribcd in scction 6.1.1 is only approximate for g,(x,y). Dcscribcd 
bclow are thrcc measures for thc accuracy of Lhis scaling for thc approximation: 

g ( K = 4 f i , a = 4 . 0 )  = g( lZ=4, (~=4)  f g(R=4,a=4) 

6.4.1 Diagonal Method in Space  Domain: 

‘l‘hc easiest mcasiirc of thc accuracy of scaling by auto-convolution is to compare thc cocfficicnts of 
g,jx.y) along rhc axis x =  y to the coefficients of g,(x,y) + go(x,y) rtlong thc x axis. I’licsc sxnplc 
points havc the same ralio o f  dist;ince from thc ccntcr to total radius, and thus wil; havc the satnc 
\aItic if thc filtcr is csacrly cxpaiided by d? and i s  circularly symmetric. Thcsc dnu ;iIc shown in 
mhlc 6-1 bclow. ’I’hc coefficients of g,(x,y) arc gcncratcd normalixd to a dc rcsponsc of 1.0. ‘rhcir 
auto-con\olution also has a dc rcsjionse of 1.0. l’hc cffccts of this normalimion were rcmovcd by 
dividing c x h  cocficicnt by the cocfficicnt at 0,0, and this could be a source of small inaccuracy. 

X 1 2 3 
8 0.7788 0.3678 0.1054 
g * g  0.7768 0.3607 0.0952 
%mor 0.25% 1.9% 9.6% 

‘I’ablc 6-1: Comparison of I’iltcr Cocfficicnts 

It should be noted that the auto-convolution, g,(x,y) * g,(x.y). has a finitc support that is a disc 
with a radius of =2R, as opposcd to g,(x,y) which is dcfincd over a disc of radius dI<. Yct both 
tiltcrs arc nonnalizcd so that thcir sum is 1.0. For this reason tlic autoconvolutioti should bc cxpcctcd 
to taper slightly fastcr than the scaled filtcr. l’hc auto-convolvcd filter will actually bc a closcr 
approximation to a Gaussian function. 

6.4.2 Diagonal Method in Frequency Domain: 

‘I’his mcthod involvcs comparing valucs in thc rcal part of thc transfcr hnction G(u, v: K = 4 ,  
a = 4) along the diagonal axis u = v to valucs of 3( g(R =4,a = 4) * g( I< =4.a =4)} along the axis 
v = O .  ’ h e  distancc to thc origin is u f i  for thc points from thc first uansfcr function and u for the 
sccond. ‘I‘hc valucs arc shown for distanccs of u = n n / 3 2  whcrc n rangcs from 1 to 16. 

‘I‘hc maximum crror shown by this mcthod is 0.01 1 and it occurs at n = 9 and 10 or frcqucncics of 
u = 977132 and u = 1 0 ~ / 3 2 .  As kith thc diagonal mcthod in thc space domain this comparison may 
bc scnsitivc to any circular non-symmetry in thc filtcr. A larger sourcc of crror would bc the 
diffcrcncc i n  normali~ation that occurs bccausc of Ihc larger support for thc auto-convolvcd filter. 
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G(u,v) 0.982 0.931 0.852 0.750 0.636 0.518 0.314 0.302 
G(u,\) -). G(u,Y) 0.982 0.932 0.852 0.752 0.639 0.533 0.412 0.312 

crror 0.000 0.001 0.000 0.002 0.003 0.005 0.008 0.010 
%error 0.00 0.10 0.00 0.26 0.46 0.95 1.94 3.20 

I 1  9 10 11 12 13 14 15 16 
G(u,v) 0.115 0.146 0.095 0.060 0.037 0.023 0.016 0.012 

G(u,\)  -?. G(u,v) 0.226 0.157 0.104 0.066 0.040 0.023 0.013 0.007 
crror 0.011 0.011 0.009 0.006 0.003 0.001 0.003 0.005 
'%error 4.86 7.00 8.65 9.09 7.50 4.34 23.07 71.42 

'I'ahlc 6-2: Iliagonal Comparison Of 'Transfer Function Samplcs 

6.4.3 Expansion Method: 

Vic third tcchniquc for mcasuring thc accuracy of thc approximation was to form thc two filters 
g,(x.y) * g,(x.y) and Efi{g,(x,y)}, subtract thc cxpandcd filter from thc auto-convolved filtcr, and 
then compute the transfer function of this diffcrcncc. A plot .of this difference is shown bclow as 
figure 6-10. This plot is dominated by the reflection of the centcr lobc from the cxpandcd filter, 
which is not  prescnt in  the auto convolvcd filter. The idea behind this method is that within the 
diamond shripcd rcgion. I u + v I n thc cxpandcd filtcr should be identical to a scaling in s ix  of 
thc original filtcr." 'l'hc transfcr tiinciion to thc third decimal place shows a numbcr of circular 
ripples within the region wherc the two filtcrs should be thc same. 'l'hc largest ripplc has a pcak of 
-0.012 which occurs ovcr an arc of constant radius, spanning u,v = -9~132,  -3n-132 to -3~132,  
-9n/32. 

Table 6-3 bclow shows thc error valucs along thc diagonal u =  v for u = m / 3 2  for n E {1,2,3, ..., 16}. 

The crrors shown by this mcthod arc of the same magnitude, but not identical to those found by 
thc diagonal frcqucncy domain mcthod. In both mcasurcs involving transfer fiinctions thc crror in 
thc approximation was found to bc at  most 0.012 ( ou t  of 1.000) and this maximum error tcndcd to be 
at or near u2+v2 = 8n/32, which is also thc pcak frcqucncy. ol, of thc band-pass filter at band-pass 
level 1. 

Thc conclusion formcd from thcsc cxpcrimcnts was that the scaling approximation was accurate 
enough for thc finite filtcrs formed using R = 4, a = 4.0, to pcrmit its use in dcvcloping a 
dcscription tcchniquc based on thc Samplcd DOG transform. 

"Oulsidc this rcgion thc reflcction of thc ccntcr lobc in Ihc auto-convolvcd filtcr will dominate the diffcrcncc as wen in 
figurc 6-10. 
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Figure 6-10: Transfer Function of Efi{g,(x,y)} - g,(x,y) f go(x,y) 

n 1 2 3 4 5 6 7 8 
T{Ffi{$} - ( g  * g)) 0.000 0.001 0.002 0.005 0.008 0.011 0.012 0.010 

I 1  9 10 11 12 13 14 15 16 
3(F.fi{g) - ( g  f 8)) 0.005 0.001 -0.005 -0.007 -0.007 -0.004 -0.001 0.000 

lable 6-3: Valucs Along Line u = v in Transfer Function of Efi{g) - 
( s * g )  

6.5 The Band-Pass Filters 

‘h i s  chapter comcs to a closc by showing the impulsc rcsponscs and transfer hnctions for the 
smaller filters. Givcn bclow arc thc cocfficicnts for the band-pass filtcrs at lcvcls 0 and 1, and plots of 
thc transfcr functions of thc Icvcl 1 and lcvcl2 band-pass filtcrs. 

6.5.1 Size of Positive Center Radius 

l’hc scalc or s i x  of fonns to which cach filter in a samplcd DOG transform is scnsitivc dcpcnds on 
thc s i x  of thc positivc ccntcr lobc of thc impulsc rcsponsc. We havc obscrvcd by cxninining the 
cocfficicnts of die impulsc rcsponscs that for thc Sampled DOG transform bascd on a Gaussian low 
pass filtcr with a radius, KO = 4.0, and a shapc paramctcr of a = 4.0, thc radius of thc zcro crossing 
ofthis positivc ccnlcr lobe. R,,, at a Icvcl, k. may bc prcdictcd by thc following formula. 
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’Ihis formula is bascd on thc obscrixtions g i w i  in table 6-4 bclow. T11c radii of thc positive center 
lobes in this tliblc were mcasurcd by finding the distancc from the ccntcr point to tlic furthcst ( and 
sm;illcst ) positive coefficient. Thc filtcrs tend to be most scnsitivc t o  objects %hose width is 
? I < , +  -t 1.  Note that ;is thc radics incrcascs thcrc arc more cocfficicnts near the m u  crossing, and 
thus thc xcut’acy tu v.hich thc mu-crossing radius cim bc dctcrminccl incrcascs. 

Level Jiadiirs of Centcr Lobe 
1 ~ = 2.23606 
2 = 3.1622 
3 = 4.4721 
4 = 6.4031 

‘I‘ablc 6-4: Radii of Center Jdobes 
As mcasurcd by Distancc to Furthest Positive Coefficient 

6.5.2 Relative Size of Filters and Their Transfer Functions 

Sincc tlic filters arc circulaily symnctric, it is possible to visuali;lc cach filtcr impulsc rcsponsc and 
transfer function from the valucs along a line which passes through the centcr of the filter or its 
transfcr fiinctiun. Figurc 6-11 shous plots of the cocfficicnt values along the N axis of the band-pass 
filters for I c \~ lb  1 through 4. Note that the s i a  of cach filter increase5 by a factor of fi from the 
prc\ious filrcr and that the maximum rcsponsc (at the center) decreases by a factor of 2 from the 
previous filter. 

‘I‘hc following figurc shows the transfer functions for the band-pass filtcrs from lcvcls 1 through 4. 
The transfer function values from the u axis ( v = 0 ) from 0 5  u ,< n are shown. I h c  spatial 
frcqiiency values arc shown as intcgcrs from 0 to 32 because the transfer function was evaluated over 
a 64 x 64 grid. (Note that u = 2nf = 2nk/64). 

6.5.3 Filter at Band-Pass  Level 0 

We start with figure 6-13 which shows the filter which gives the high pass residue, G$o. This filter is 
the lowpass filtcr go(x,y) with its center coefficient subtracted from 1 and all other cocficicnts 
subtractcd from zero. 
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0.04 

-30 c 

Figure 6-11: Cocfficients Along X Axis for Filtcrs from Levcls 1 ‘Through 4 

6.5.4 Filter at Band-Pass Level 1 

Ncxt is figurc 6-14 which givcs the cmficicnts for thc band-pass filtcr at lcvcl 1. I h c  formula for 
this filtcr is: 

b ,kY)  g,(x.y) - ( g,(x.y) * g*(x,Y) ) 
’Jhc \~alucs for this filtcr arc shown in two scctions so that thcy fit on a pagc. Thc first scction is 
columns -8 to 0, and thc sccond is columns 1 to 8. 

Figurc 6-15 shows thc transfer hnction. I$(u,v) for thc lcvcl 1 band-pass filtcr. l h c  pcak rcsponse 
is 0.250 at = n/4. 

Figure 6-16 shows a logarithmic plot of 131(u,v). This plot spans -40 dR. ‘J‘hc scalc at thc lcft marks 
ofT drops of -10 dlj i n  rcsponsc. ’I’his rclativcly largc ripple is not a concern bccausc thc lcvcl 1 
band-pass imagc is not rcsamplcd. 
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Spatial Frequency, k ( u  = 3.14 159 k/32) 

Figure 6-12: U Axis OfTransfcr Functions for Band-Pass Filtcrs from 
Lcvcls 1 Through 4. u = 2nk/64 

-.001488 
-.003150 -.006669 -.008564 -.006669 -.003150 . 

-.003150 -.010996 -.023278 -.029890 -.023278 -.010996 -.003150 
-.006669 -.023478 -.049280 -.063276 -.039280 -.023478 -.006669 

-.006669 -.023478 -.049280 -.Ob3276 -.049750 -.023478 -.006669 
-.0@3150 -.010996 -.023278 -.029590 -.023278 -.010996 -.003150 

-.O031 50 -.006669 -.008564 -.006669 -.003150 
-.001488 

-.001488 -.008564 -.029890 -.Oh3276 .91752 -.Oh3276 -.029890 -.008564 -.001488 

Figure 6-13: Filtcr for High Pass Rcsiduc, a,, 
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-.000002 
-.000009 -.OOOOi’O -.000025 

-.Oi)OOlO -.000051 -.000131 -.000226 -.000271 
-.000020 -.O00111 -.000367 -.000798 -.001257 -.001460 

-.000010 -.000111 -.fl90S0S -.001461 -.002973 -.0015 12 -.005172 
-.000051 -.000367 -.OO1461 -.003949 -.001609 -.OO?S43 -.004560 

-.000009 -.000131 -.000736 -.002978 -.003609 -.OOj967, .001252 .003904 
-.000020 -.000226 -.0012.57 -.001512 -.004S49 .OU12S2 .017072 .026734 

-.00000? -.000025 -.000771 -.001460 - 003684 -.004560 .004904 .(I26733 .039788 
-.000020 -.000226 -.001257 -.004SI 2 -.004849 .0012S2 .(I17072 .026734 
-.000009 -.000131 -.00070S -.0(12978 -.004609 -.003962 .001282 .004904 

-.OOOO5 1 -.000367 -.0013hl -.003939 -.003609 -.004849 -.(I04560 
-.000010 -.000111 -.000508 -.001461 -.007378 -.Oil4512 -.005172 

-.@00020 -.@00111 -.000367 -.00079Y -.001257 -.C01460 
-.000010 -.0001)51 -.000131 -.000226 -.000271 

-.000009 -.000020 -.000025 
-.000002 

-.000020 - .000009 
-.O00226 -.000131 -.OOOO51 -.000010 
-.001257 -.000798 -.000367 -.000111 -.000020 
-.003S 12 -.Oil2978 -.0014G i -.000508 -.000111 -.000010 
-.001849 -.OW609 -.003949 -.001461 -.000367 -.000051 
.00! 2S2 -.003‘167 -.@04609 -.002978 -.000798 -.000131 -.000009 
.U17072 .00i?82 -.ON849 -.OMS12 -.001257 -.000226 -.ON020 
.026734 .004904 -.004560 -.003684 -.(I01460 -.O0027 1 -.000025 -.000002 
.017072 .001282 -.004849 -.004512 -.001257 -.000226 -.000020 
.001282 -.003962 -.004609 -.002978 -.000798 -.000131 -.OUOO09 

-.004849 -.OM09 -.003949 -.001461 -.000367 -.000051 
-.003512 -.002978 -.001461 -.000508 -.000111 -.000010 
-.001257 -.000798 -.000367 -.000111 -.000020 
-.000226 -.000131 -.000051 -.000010 
-.001)020 -.000009 

Figure 6-14: Impulsc Response of Jrvcl 1 I3and-Pass Filter 
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Figure 6-15: Bl(u,v), ‘Thc Trnnsfcr Function 
\ 

of thc Levcl 1 band-pass Filter 
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Figure 6-16: 20 l ~ ~ g ~ ~ [ B ~ ( u , v ) ] ,  'I'hc Transfer Function \ 
of thc Lcvel 1 Band-Pass Filter Plottcd in dB 

Scale, shown at lcft in increments of -10 db, spans -40 dB 
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6.5.5 Filter at Band-Pass  Level 2 

The impulse rc\ponsc of thc filter at band-pass level 2 rcquircs a 32 column by 32 row tablc to 
C I I U I I ~ C ' I ~ ~ C .  liathci' thdn f i l l  two pdgcs with these coefficients h c  show Its trdiisfc'r fiincuon i n  figure 
6- 17 bclon. 1 tic fornmill,i for this filter is 

bI(h!9 = S o ( X 3 )  * go(x.Y) - E&30(x,Y)l * go(X,Y) + go(x,Y)l 

Figiirc 6-18 shows a plot of I$(LI,v) in dR, with a scalc spanning -80 dB. 

\ Figure 6-17: D2(u,v), Thc 'I'ransfcr Function uf thc I.cvcl 2 band-pass Filtcr 
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Figure 6-18: 20 I~oglO[I3,(u,v)], The Transfer Function \ 
of the I m ~ c l  2 band-pass Filtcr Plotted in dB 

Scalc, shown at lcft marks incrcmcnts of -10 dl) to -80 dB 
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Chapter 7 
A Symbolic Representation Based 

on the Sam-pled 
Difference of Gaussian Transform 

The previous two chapters dcscribcd tccliniqucs wJliich could be cansidcrcd within tlic domain of 
di_citnl sigrtl prtmssing. In order to dcmonstratc tlic uschlncss of thcsc tcchniqucs. i t  is ncccssary to 
show that thc filtercd imagc signals can bc uscd to construct a stnictural rcprcscnt;ition of an imagc. 
'l'his chaptcr will describe such a tcchniquc. 'Thcsc algorithms wcrc dcvelopcd to dcmonstratc the 
usefulncss of thc samplcd DOG transform. and to cxplore and dciclop the principles for using thc 
trmsform to form a structural rcprcscntation of gray scale images for objcct recognition and stereo 
matching. 

'l'hc algorithms dcscribcd below wcrc dcsigncd to be local. As with the nmsform itself, they can 
bc implcmcntcd in parallel. liathcr than try to dcvclop a singlc monolithic prtxcss that would 
construct rhc dcscription, thc proccss was brokcn down into a series of siagcs, and a nunibcr of 
competing idcx  were cvalunted for each stage. 

'I'hc proccss was brokcn into thc following stagcs: 

1. Idcntify and link ridgc points (P-nodes) and local pcaks (M-nodcs) at cach band-pass 
lcvcl; 

2. Rcmovc small loops and fix short brokcn conncctions in the P-paths at cach lcvcl; 

3. Conncct togcthcr pcaks at adjaccnt lcvcls (M-paths); 

4. Usc 2-D ridgc points (P-nodcs) as candidates to find 3-11 ridgc points (1.-nodcs) in the 
thrcc dimcnsions (x,y,k); 

'J'hc rcsuli of this proccss is a trcc-like graph which contains four classcs of symbols: 

0 P: Points which arc on a ridgc at  a Icvcl. 

0 M: Points which arc local maxima at a level. 

0 la:  Points which arc o n  a ridgc across lcvcls (i.c. in the lhrcc spacc (x,y,k) ). 

0 M*: Points which arc local maxima in tlic thrcc space. 
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Eiwy uniform (or approximatcly uniform) rcgion will haw one or morc M*’s as a root in its 
dcscription. ’Ikcsc arc conncctcd to paths of L’S (I*-Paths) which dcscribc dic fcncr:rl form of the 
rcgion. and paths of M’s (M-Paths) M,hich branch into dic concavities and conicxitics. ‘I‘hc shape of 
thc boundarics are dcscribcd in rnultiplc rcsolutions by thc paths of 1’’s (I~-Padis). If a boundary is 
biurrq. rhcn rhc highest rc~olutjon (lowcst lc\.cl) I-’-Paths are lost, but thc bound;iry is still dcscribcd 
by thc lower rcsolution P-Paths. 

13cforc Iaiinching into a discussion of hob the balucs from rhc Samplcd Diffcrcncc of Gaussian 
(SDOG) transform map bc mappcd into symbols. a word about onc of the terms uscd below. ‘ 1 % ~  
SIIOG transform produccs \ ~ ~ l u c s  a t  discrctc points in a finite space (x.y.k). Facti point i n  this space 
has thc potcntial lo contain a slmhol. Whcn a symbol is assigncd to a point, a ccrtairi aniount of 
addition:il s t m  inFonnation is cncodcd at thc point. ’1‘0 avoid confusion bctjvecn the words point 
and pointcr, cach point in die space (x,y.k) will bc rcfcrrcd tu as a sample, \vhcn speaking of only thc 
band-p;iss valuir, or as a “nodc” \vhcn dcscribing thc various labels, flags a n d  pointcrs assigncd at a 
samplc point. 

7.0.1 Information Stored at Each Node 

I n  the implcincntation that is dcscribcd in this chaptcr, nodcs wcrc subdividcd into the ficlds 
shown in table 

Filxr Value 
Direction 
I<,ll,S,*,L,M,P 
P Pointers 
Label, U, D 

UP ( to k + 1 level) pointcrs 

Pointcrs to SAME level 
IIOWN (to k-1 Icvel) 

8 bits 
8 bits 
1 bit flags 

8 onc bit pointers 
6 bit Symbol ID, 
Pointcr bits Straight up and down 
For L and M paths 
(8 flits, 1 for cach ncighbor) 
For I. and M paths 
For I ,  and M paths 

’l’abic 7-1: Fields of a 64 Bit Node 

‘I’hc first 8 bit sub-ficld holds thc valuc from thc Samplcd DOG trancforin. ‘I’hc dircction sub-ficld 
con:ains thc rcsult of a dircc:ionality mcasurc that was cmploycd in carly vcrsions of the 
rcprcscntation. This number is bctwccn 0 and 179 dcgrccs. Ncxt arc scvcn 1-bit flags whose 
incaniiigs arc discusscd in h c  scctions 7.2, 7.4. and 7.5. ‘I’hc ncxt sublicld contuins thc 8 pointcr bits 
for connccting 1’ nodcs. I?icti poiiitcr corrcsponds to onc of tlic adjiicciit 8 ncighbors. ‘I’hc ncighbor to 
thc right is pointcd to by thc pointcr at bit 0. Ncighbor nurnbcrs incrcasc i n  a counlcr-clockwise 
dircction. ( A number of thc algoridims bclow do modulo 8 arithmctic on thc P pointcrs.) ‘Ilic ncxt 



subfield is n 6 bit s!,mbol 11) that is assigned bawd on thc configuration of ridges around the node. 
'I'hcre arc thcn two I-bit ficlds which act as pointcrs for the 1- and M paths. The U ficld can be set to 
point to the neighbor dircctly above if that ncighbor cxists. ' lhc 11 bit can be set to point to the 
ncighbor directly below (at thc k - l s L  Ievcl). 'I'hc "UP" ficld contains the pointcrs for tlie I. and M 
paths tiwt c m  point t o  the 6 ncighbors at the k + 1st Icvel. 'l'hc "SAME" ficld contains pointcrs for L 
paths that can point to any of the adjacent 8 ncighbors at thc kth lcvel. The "DOWN" subfield points 
to tlic 8 neighbors below (at the k-1st Ic\cl) for rcprcscnting I- and M paths. 

7.0.2 Meaning and Purpose of Peaks and Ridges 

Scction 3.1 showcd that a 2-1) sampled correlation is cquiualcnt to a 2-D sequence of inncr 
products bctwccn thc filter and the ncighborhoods ccntcrcd at thc sample points. A n  inncr product 
has its 1ar:cst possiblc valuc whcn the two functions are idcntical. I t  is also a good measure of how 
similar two functions arc. For cxamplc. in communications theory an inner product is used to tell 
how much of thc cncrgy in a rcccivcd signal is dcscribcd by a basis function [Wozcncraft 651. Thus a 
local pc,ik in a band-pass imagc indicatcs a local point whcre the image signal inost rcscmbles the 
impulsc rcsponsc of thc band-pass filter. 

It is posiblc for a two dinicnsional signal to maintain a largc amplitude along a line or a curved 
parh such r1i:it all of thc ncighboring values arc smaller. When this happens in thc band-pass images 
from ;I 1101.P or SLIOG transform it means that thc impulsc rcsponsc of the band-pass filters are a 
bcst fit to the gray-scale form in the image at a scqucncc of points. Such a sequcncc of points is 
called a ridgc. A ridgc could bc looscly defificd as a 1-13 sequence of points in a 2-11 signal along 
which the function valuc is larger than any ncighboring points. 

130th ridgcs and pcaks occur in each of tlic band-pass signals produced by a 1101,P transform. 'This 
cliqmx shows that the appcarancc of an objcct in an image can be rcprcscntcd by encoding the ridges 
and pcaks from all of thc band-pass images from a SDOG transform. 1'0 the cxtcnt to which the 
band-pass signal can be reconstructed from knowlcdgc of the position and magnitude of thc peaks 
and ridsc paths, this encoding is approximately reversible. This chapter also shows that the concepts 
of pcak points and ridge paths can be cxtcndcd to tlic diird (or k) dimcnsion, that is between 
h;ind-pass Icvcls. l'hcsc pcak points and ridgc paths i n  thc (x,y.k) space provide sufficient 
in forination to uniquely represent dcscriptions of the 2-13 appcaranccs of objccts. Chaptcr 8 shows 
how this a rcprcscntation can bc used to efficiently match 2-11 appcaranccs, dcspitc changes in size, 
2-11 orientation, or position of the object rclativc to thc camera. 
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7.1 Phenomena in Each Band-Pass Image 

This section describes the inanncr in which peaks and ridgcs occur in each band-pass image of a 
SiIOG transform. Section 7.4 describes peaks and ridgcs in the 3 - 0  spacc (x.y.k). The phcnomcna 
dcscribcd i n  thcse scctions arc illustrated with filter output from uniform intcnsity rcctanglcs. These 
arrificial shnpcs have simple dcscriptions and yet illustrate the principks on which this rcprcscntation 
is based. Examplcs of the descriptions of the images of real objects arc prcscntcd in later scctions and 
in thc ncxt chapter. 

7.1.1 The SDOG Band-Pass Impulse Response 

I n  thc f d l o w i n g  discussions, it is hclpfiil to recall the form of thc impulsc response of the band- 
pzss filtcrs implcinentcd by the sampled DOG transform. ‘I’hc zero crossing and the ccntcr row o f  
this impulse response arc illustrated below in figure 7-1. ‘I’hc impulsc response is circularly 
symmetric. l‘hc cocfficicnt along any linc passing through the origin will rcscmble the cross-scccion 
shown 011 the right in figure 7-1. ‘l‘hc impulse rcsponsc consists of a positivc ccntcr lobe. surrounded 
by a negative side lobe. The sum of the coefficicnts is iwo.  The response at any point may be 
thought of as the sum of the weighted points under the ccntcr lobe minus the sum of the weighted 
points rindcr the cutsidc side lobe. 

0.039 

Zero Crossings Impulse Response 

(Center Row) 

Figure 7-1: Impulsc Response of Band-Pass Filter 
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7.1.2 Edges of Large Regions 

Let us start by considering the rcsponsc of thc band-pass filters at the boundary of a much larger 
uniform rcgion. Consider a square whosc side Icngrh is iiiuch largcr tiian the diarnctcr of thc 
band-pass filtcr. and whose picturc clcmcnts arc of a larger valuc than tlic surrounding background. 
I r t  us examine thc response of thc filtcr along a linc which is perpendicular to the sidc of thc square 
and passes through the ccntcr. This rcsponse is illustrated in figure 7-2. 

10 
2o -F 

Path Across Square 
Response 
(Level 1 )  

r 

Figure 7-2: Rcsponse Across Center of a Square 

Whcn the filtcr support is totally in thc uniform background rcgion the rcsponsc is zcro. As the 
filter’s ncgativc sidc lobc bcgins to ovcrlap with the squarc, the inncr-product bccomcs ncgativc. As 
the cdgc of the positivc center lobc reachcs thc cdgc of thc squarc, thc inncr-product rcachcs a 
ncgativc minima. ‘I’hc rcsponsc climbs through x r o  as thc positivc ccntcr lobc ovcrlaps with more of 
the square. Just bcforc thc positivc ccntcr lobc complctcly overlaps the squarc, the rcsponsc will 
rcach a positivc maximum and bcgin to drop. ‘Ihc drop continucs untii die filtcr is complctcly within 
thc squarc and thc rcsponsc has tiipcrcd to mu. ‘I’hus thc cdgcs of thc squarc rcsult in a pair of pcaks 
of oppositc sign, on cithcr sidc of thc cdgc. ‘I’hc distance of the pcaks from thc cdgc can dcpcnd on 
how sharp the cdgc is, and will occur at approximately 2/3 thc filtcr radius on cilhcr sidc of the cdge. 
Ii’thc cdgcs arc blurrcd at rlic resolution dcscribcd by thc filtcr, thc amplitudc of thc pcaks will be 
decrcascd, thc width will bc incrcascd, and Ihc pcaks will tcnd to bc a littlc further apart. 

Thc fact tliat a ncgativc rcsponsc occurs outside of the square is intcrcsting. Any approximatcly 
uniform rcgion will havc a ncgativc ridge surrounding it. Artists rcfcr to a similar phcnomcnon in the 
human visual system as “ncgativc shape”. 
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7.1.3 Convex Protrusions: The Corner 

l ‘ h c  filters tend to respond to concavc and convcx protrusions by producing a pcak. Wlicn linked 
bcrwecn levels. thcsc peaks him an M-path which dcscribcs the shape of thc protrusion. As an 
cxampk of  a convcx protrusion, consider thc uniform square dcscribcd in the prcvious section. 
Conyidcr the rcsponsc along a line which is parallel to and about half the filtcr radius below the 
uppcr cdgc of the square as shown in figure 7-3. 

30 
40 f 

Path Across Square -30 Response 
(Level 1) -40 

Figure 7-3: Response at Corner of a Square 

As bcforc, thc filter rcsponsc is initially zero. As the ncgativc sidelobe mows ovcr thc corner of 
die square. thc rcsponsc will go ncgativc until a minimuin is rcachcd. ‘ihc ainplitudc o f  this ncgativc 
pcak will bc smallcr than for thc ncgativc cdgc at thc ccntcr of thc squarc. This is bccausc lcss of the 
ncgatikc sidc lobc is overlapping with thc square. As thc positive ccii~cr lobc comes ovcr the square, 
thc rcsponsc will rise through zero to a positivc maximum. l’hc amplitiidc of this pcak will be 
approximately twicc thc aniplitudc of thc positive peak at. the ccntcr of thc square. Again, this is 
bccnusc lcss of thc ncgativc sidc lobc ovcrlnps with the squarc. ‘1’0 thc right of the positivc maximum, 
thc rcsponsc will dccrcasc to about 1i:rlf of its inaxirnum valuc. ‘I’hcsc points arc along the positive 
ridgc that is insidc thc boundary of the square. ‘I’hc rcsponsc is symmctric about the middle of the 
square. 

J’caks, such as thc one described above, will occiir whcncvcr thcre is a protrusion. I’rotrusions 
which have sharp straight cdgcs appear Uic samc over a rangc of scales. For such protrusions the 
hcight of thc pcaks at scvcral adjnccnt band-pass Icvcls will be approximatcly the samc. If the 
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protrusion docs not havc sharp straight edges, thcn thcrc will exist lc\.cls at which the peak is hi-gcr 
than the peak at  adjaccnt lcwls. An cxamplc of such a shape would be a square in \vhich the coriicrs 
are rounded. 

7.1.4 Across a Long Thin Rectangle 

I x t  us consider the rcsponsc of a filter along a line crossing a rectanglc ( o r  bar) whose width is 
approximatcly thc s m e  as the radius of the filter's positivc ccntcr lobc. This situarivii is illustrated in 
figure 7-4. 

Path Across Rectangle 

30 

20 

10 

0 

-1 0 

-20 

Response 
(Level 1 )  

Figure 7-4: Rcsponsc of Filtcr Across a llcctanglc 

As with thc first square cxamplc, thc rcsponsc starts out as m o .  and falls to a ncgativc peak as the 
sidc lobc ovcrlaps with the rcctanglc. Howcvcr, sincc thc sidc lobc passcs bcyond thc rcctanglc as the 
ccntcr lobc comcs over thc bar, thc positivc rcsponsc will rise faster and reach a pcak which is 
approximatcly twicc that of thc positivc cdsc of thc square. l 'hc rcsponsc is symmctric about the 
ccntcr of thc rcctanglc. What is important about tliis cxaniplc is that thc rcsponsc of the film whose 
positivc inncr lobc is thc same width as thc rcctanglc will bc largcr than thc 1-csponsc for fil&crs which 
arc largcr or srnallcr. Such a ridgc results in a path of 1,-nodcs; that is, a ridgc between birnd-pass 
lcvcls. 'I'hc indcx of thc lcvcl at which thc L path occurs givcs an cstimatc of thc width of the 
rcctanglc. 
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7.1.5 A t  the Ends of the Rectangle 

Let us now consider the rcsponsc of the same filter along the long axis of the same rcctanglc. This 
is illustrdtcd by figure 7-5. 

30 3 
*O i 10 

0 

-1 0 

Path Across Rectangle 

-20 1 
Response (level 1) 

Figure 7-5: Iicsponsc of Filtcr Along a Kectangle 

Thc ncgativc minimum that occurs as thc filter cumcs ovcr thc cnd of thc rcctanglc will bc smaller 
than the thc ncgativc minimum bcsidc thc rcctanglc, bccausc lcss of thc ncgativc sidc lobc will be 
ovcr lapping with thc rcctanglc. As thc positivc ccntcr lobc c o m a  ovcr thc cnd of thc rcctanglc, the 
rcsponsc will risc to a positive maximum which is cvcn larger than for thc ccntcr of the rcctangle. 
'I'his is bccausc at thc cnd of' thc rcctanglc. only about a quartcr of Ihc ncgativc sidc lobc ovcrlaps 
with thc rcctanglc. whcrcas in thc ccnlcr almost half of thc negative sidc lobc cn~rlnps. Thus at the 
cnds of a rcctanglc, a Itxal pcak OCCLITS. For thc film whosc ccntcr lobc most closcly fits thc 
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rcctanglc. the amplitude of this pcak will bc largcr than for filtcrs that are smallcr or larger. Such a 
pcak will be dctccted as a pcak bcrwccn Icvcls. and Iabcicd as an hl*. The Icvcls below it will contain 
an  M patti which splits into t w o  parts, one for each corncr. Above it another M-path will lcad to the 
ccntcr of thc rcctanglc. This M-Path may or may not  join with nnc from the othcr cnd of the 
rccranglc, dcpcnding on both Ihc lciigth LO \vidth ratio, and die diffcrcnce in gray Icvcl bctwecn the 
rectangle and the background. 

7.1.6 A Square Which is Smaller Than the Filter 

As a final illustration, Ict us consider thc rcsponsc of a filtcr to a square whosc si7c is approximately 
thc same as thc positivc ccntcr lnbc of thc filtcr. This is illustratcd by figure 7-6. 

50.-- 

40 -- 

30 -- 

20 -- 

IO fa>- > 0 __ I 

Iti5+ 
Path Across Square 

-I0 j- I T 
-*O _L Response 

Figurc 7-6: Rcsponsc of Filter To a Square 

As with tlic carlicr cxamplcs, thcrc is a ncgativc ridgc surrounding thc square. As thc ccntcr of the 
filtcr m o m  ovcr the squarc thc rcsponsc riscs to a strong pcak. ‘I’hc hcight of thc pcak will be 
approxiinatcly four times thc amplitude of the ncgativc ridgc outsidc the squarc. ‘I’hc pcak that 
occurs for thc filtcr whosc ccntcr lobc just covcrs the square is the Iargcst rcsponsc to the square 
whicli any of thc filtcrs will have. ’I‘his pcak is dctcctcd as an M* point, and scrvcs as a root for the 
graph which rcprcscnts die squarc. An M Path will cxtcnd abovc this pcak for sc\~cral Icvcls. Iklow 
the pcnk an M Path wil l  split into four parts, one for cnch corner. 
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7.2 Peak and Ridge Path Detection at Each Band-Pass Level 

llctccting a local pcak in a band-pass Icvcl from the SDOG transform is simplc beccrusc of thc 
smoothncss givcn by thc band-pass impulsc rcsponsc. Unambiguous dctccrion of  the path of a ridge 
with an algorithm that may bc implemented in parallcl has proved to be a more difficult problem. 

I t  was originally bclicvcd that the dctcction of points on a ridge wouid requirc mcasuring the 
direction of least change (local directionality) and then finding thc local ridge bly scanning 
pcrpendiculnr to that dircction. Several techniqucs for measuring loccil dit-cctionality wcre 
inxstigarcd. 12 particularly rcli3ble and efficicnt rncasurc bascd 011 n 4 jjoillt i)I--I’ of thc inncr- 
product from 1-11 filtcrs at foiir dircctions will be described in a scparatc rcport. 

‘fhc simplest nicasurc of local directionality at a point is to comparc the filtcr output at cach of thc 
8 neighbors. A t  any point, the directions at which the largest neighbors exist is the most likely 
dircction o f  tlic ne;irest ridge. I3y dcfinition. the largest neighbors of points on a ridgc arc also points 
on a ridge. ‘l’his simplc principlc scrvcs a j  a hasis for thc r i d p  dctcction algoritlirn dcscribcd below. 
Ikcausc it is not based on a costly dircctionality rncasurcmcnt function, this algc~rithrn is simpler to 
program and cxccutcs faster than any of thc othcr algorithms for ridgc dctcction that wcre 
invcst igatcd. 

None of thc algorithms that wcrc dcvelopcd for detecting and linking ridgc p;tth points always 
produced unbroken paths. I’hc problems wit11 thcsc algorithms is that the data consists of fixcd point 
nmihcrs  which exist at discrctc locations. Whilc the algorithm dcscribcd bclow was sufficicnt for the 
put-pcw o f  dcmonmating this thesis, thcrc is room for fui-thcr rescarch. 

7.2.1 Detecting Local Peaks 

I ~ x a l  pcaks ( positive maxima and ncgative minima) at a band-pass lcvcl arc casy to dctcct. A local 
pcak (M)  is dcfincd as any sample in a band-pass lcvcl for which none of thc adjacent 8 neighbor 
samplcs has a valuc of thc same sign and largcr magnitudc. Notc that this dcfinition allows adjacent 
samplcs with thc samc valuc to both bc dctectcd as pcaks. This situation o c c m  hecausc of tlic fixcd 
point quantization and is handlcd by intcrprcting adjacent pcak points ;is part of ;i single pcak. If two 
samplcs h a w  tlic same valuc, and only onc of tncm has an adjacent neighbor with a largcr valuc, thcn 
ncirhcr sample is labclcd as a pcak. 

I3y this dcfinition, an arca of uniform filtcr output is composcd of all peaks. Only a constant signal 
Miill produce it uniform rcsponsc over an arca in a band pass imagc. and Uic valitcb in h i s  rcsponse 
arc m o .  Such arcas arc casily dctcctcd and cxcludcd. I t  is possiblc to h a w  small regions of width <4 
which havc a constant valuc if thc amplitude is vcry small (c.g. < 3). This is bcciiusc of quantization 
with fixcd point numbcrs. h i s  problcm is avoided by not allowing a point whcrc thc magnitude is 
lcss than 10 to bc labclcd as a peak. 

I t  is mcntioncd abovc that a situation can occur where two adjacent snmplcs havc tlic same value, 
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and only onc of thc samples has a Inrgcr ncighbor. An exnmplc of this occiirs in figures 7-8 and 
7-9 bclow at row 54 coluoin 142. Such false pcaks are elimiixted by sclting thc 1' flag for any 
M-node \rhich has an cqual valued neighbor. A sccond pass is made through the irnagc during which 
thc M and E flags arc cleared for an) M-nodc which has its E flag sct and is not adjacent to anothcr 
A4 -n ode. 

'fhus pcaks arc dctcctcd by comparing a value to its ncighbors. and to thc quaiitization tlircshold. 
11'ini~:'1ci1iciitcd by i~scll: tliis algor-itiiin rcquiIcs S rei'cl-ci~cs to the iiriagc irr-Iay for cadi sample. ' h i s  
simple detection proccdurc is casily implemented as part of thc more complcx ridgc path detection 
proccdi.lrc describcd below. 

7.2.2 Detecting Ridge Paths at a Band-Pass Level 

This section describes an algorithm fur dctccting samplcs which arc on a ridgc in a 2-11 band-pass 
image. This algorithm is bawd on thc principlc that the largcst ncighbors of a point on a ridge are 
also on the same ridge. 'l'hus any pair of samplcs which point to cach other as larscst neighbors are 
on a ridge ( dctccted as P-nodes). 

Thc algorithm for dctccting ridgc path nodcs consists of two stagcs and rcquircs 8 "pointer" bits. 
'I'hc following is an informal cxplanation of this algorithm: 'I'hc cight neighbors of a point arc 
asscmblcd i r i w  a circular list, with die nodcs of the opposite sign rnarkcd ;is zcro. 'I'his list is then 
scanned looking for local maxima. For each local maxima, the corresponding pointer bit is sct. After 
diis ~ J ~ C C S S  has becn cxccuted for c\cry nndc in the lcvcl the second stage ccimmsnccs. At this stage, 
at each node, any ncighbor for which thc pointer has been set is tcstcd. If the neighbor has its 
corrcsponding pointcr (pointing back) sct, thcn both points arc labclcd as ridgc nodcs. and marked 
hy sctiing a P flag. 13y deleting all unanswcrcd pointers, the ridgc nodcs are left with a two way linked 
list giving thc path of the ridge. 

This algorithm consists of the following steps: 

Stage 1:  A t  each node: 

1. Makc a circular list of the absolutc value of the 8 neighbors. 

2, For any neighbor where thc sign of the value is diffcrcnt thcn thc center node. cntcr 
a zero. 

3. Scan the list (A finite state proccss works niccly here). For any list clcmcnt for 
which thcrc is no larger adjaccnt valuc, set a pointcr for that neighbor. 

4. Store the pointers for thc next stage. 

0 Stage 2: For each point: 

1. Scan the pointers. For each pointer that is set get the pointcr of h a t  neighbor that 
points back. 



2. If this pointer is a l w  set, mark the node as a P. Otherwise delete the pointer. 

'I'hc two way linked list ofpointers is used in later proccsses. 

This prtxcss is illustrated by thc cxamplcs shown in figures 7-7 through 7-9 below. Figure 
7-7 shows thc rdw vdlucs filter valucs from levc1 2 of the piston rod test image, columns 141 through 
152, rows 41 through 57. Notc tliar this data is on a fi sample grid. 

Values f o r  nodes - L e v e l  2 rod.dat raw data 
141 142 143 144 145 146 147 148 149 150 151 152 

47 13 1 -3 -6 -11 -12 
48 -2 -9 -15 - 18 -20 - 19 
49 -5 - 18 - 19 -17 - 18 - 18 
50 - 18 -14 -7 -3 - 1  -3 
51 -16 -1 1  1 11 14 14 
52 -3 8 13 15 11 15 
53 0 14 15 8 1 1 
54 14 1 -9 - 18 - 19 - 16 

56 0 -26 -38 -38 -39 -43 
51 0 -21 -31 -29 -24 -23 

55 12 1 -20 -29 -36 -38 

Figure 7-7: Values at Lcvcl2 of rodswf 

Figure 7-8 shows thc pointcrs that arc created by the first stagc of the ridge path dctcction process. 
'Thc pointcrs arc marked by thc s:ymbols { / ! \ - }. Also shown is thc symbol M whcrcvcr a peak has 
bccn dctccted. 

l 'hc result of thc second stagc is shown in figure 7-9 bclow. At this stagc thc ridge path points have 
bccn marked with a I' and only answcrcd pointcrs arc not deleted. 

7.2.3 Eliminating Small Loops 

In  most cases thc algorithm dcscribcd abovc produccs a unique path of largest valucs. 
Occasionally two points occur with thc same ~ a l u c  such that the direction bctwccn thcm is 
pcrpcndicular to thc ridgc path. ' h i s  oxcurs bccausc a continuous ridge is rcprcscntcd by fixcd point 
numbers at discrcte samplc points. This plicnomcnon becomes more likcly as thc signal intensity 
bccoincs wcaker. 

Such sinal1 loops complicatc the programming for latcr stages of thc process. Fortunately, they are 
casily dctcctcd and cliininatcd by dclcting onc of thc sub-paths. 

'I'hc sct of all such loops involving 3 or 4 points may bc divided into thrcc classcs by grouping 
togcthcr those that arc rotational cquivalcnts. 'I'hcsc classcs arc listcd in figurc 7-10 with the equal 
samplcs shown as "E" and tlic other samplcs as "I"'. Notc that in classcs 1 and 2 the loop on the right 
i s  o n  a fi sarnplc grid. 
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V a l u e s  f o r  n o d e s  - L e v e l  2 r o d . s w f  p o i n t e r s  
141 142 143 144 145 146 147 148 
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47 
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49 
49 
50 
50 
50 
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51 
51 
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52 
52 
53 
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53 
53 
54 
54 
54 
54 
55 
55 
55 
55 
56 
56 
56 
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Figure 7-8: I’ointcrs From First Stagc of Ridgc Path Dctcction Proccdure 

‘l’hc possiblc prcscncc of such a loop is signalcd by a samplc having a pair o f  pointcrs in  adjacent 
dircctions. Whcn such an adjaccnt pair of pointcrs is dctcctcd the nodc is markcd by sctting its S 
flag. A sccond scrgc prtxlcss thcn makcs a tcst of thc dircctions of thc pointers in thc ncxt samplc in 
thc path. Loops arc brokcn by dclcting thc P flag and thc pointers of onc of thc cqual valucd 
samplcs. ‘lhc samplc that is dclctcd is choscn such that path lcngth is kcpt as short as possible and as 
straight as possiblc. Whcn thcsc two critcria arc not sufficicnt to choosc an equal valucd point to bc 
rcmovcd, thc morc clock-wise samplc is choscn arbitrarily. 

Figurc 7-11 shows a path that includcs a small loop. ‘I’hc nodes with adjaccnt pointcrs arc markcd 
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ligurc 7-9: Ridgz Paths After Stage 2 of Procedure 

with an "S". Figurc 7-12 shows thc same path after it has been processcd thc Procedure that 
clirninates small loops. 'I'his ridgc path is from thc lcft most piston rod in the Piston Itods tcst image 
uhich is s l iow~i  in figure 7-25. The ridgc is a ncgativc ridgc that occurs outside thc oval shaped 
region within cach piston rod. 
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7.2.4 Unterminated Ridge Paths 

In most c ;ws a ridgc path will tcrrninatc at both cnds at an M nodc. I’hcrc arc, howcvcr, scvcral 
situations whcrc this docs not occur. In  thc following scctions wc dcscribc thcsc situations and how 
thcy arc treated. 

Whcncvcr a nodc has only onc P pointcr. a flag, called thc 13 flag (for Broken) is sct. A 13 node can 
occur for tlic following reasons: 
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1. When a ridge path is broken, usually because of an abiupt changc in the ridge dmplitude. 
Such cases arc an error and arc handled by attcmpting to extend thc path as dcscribcd in 
section 7.2.5 below. 

2. A "Spur": This is an extra point which occurs to the side of a ridge path, us~ially 
connected to an h4 node. Spurs arc deleted only whcn they arc a single nodc and not 
conncctcd to an M nodc, as dcscribcd by section 7.2.7. 

3 .  A Fading Ridge: This can lcgitimatcly occur for some pattcrns. For cxamplc, whcn a bar 
ends by fading into the background, or when a largc area has square wave "teeth" that are 
longer than they arc wide. 

4. A n  Isolated Pair. This is thc casc whcn two P nodes are connected to each othcr and only 
each othcr. 'l'his can be the result of a small region which is described at lower lcvcls and 
should be ignored at this Ievcl, or it can occur at a saddle point along a ridge. 

'I'hc action which is taken at a I3 nodc is first dctcnnincd by the number of pointcrs which the 
connected ncighbor of thc 13 nodc has. 'I'hc following situations occur: 

1. One pointcr: This signals an lsolatcd Pair. 

2. 'I'wo pointcrs: 'I'his usually indicatcs a break along a ridge path. although a fading path or 
a long spur might bc the causc. Which of these is the casc is determined by attempting to 
extend the piitti as described in section 7.2.5 below. 

3. Thrcc (or morc) pointcrs: l l i c  I? nodc is a spur. 
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7.2.5 Repairing Broken Paths 

Under some conditions the amplitude of a ridge can make a sharp increase or decrease. Such a 
rapid transition can result in a ridge path point not bcing detected or in a pair of pointers not bcing 
formed along a ridgc. An cxample in which this occurs in 4 places is shown in figure 7-13. ?'he 
pointers are used in the proccss for detecting the L-nodes. Thus ir  is necessary to correct such broken 
paths. 

A one patrs proccss is cxccutcd for each !lode with its I3 flag set %liich is connected to a nodc with 2 
pointers. This proccss illtempts to extend tlic ridge path for up to 2 samples. If it i y  possible io close 
the path with samples of thc same sign, and without creating an adjacent pointcr condition (as 
defiiicd abokc). then the path is closcd. 'lhc algorithm runs as follows: 

1. Iktcnnine the dircction of the single pointer. 

2. For the opposite dircction. arid the two directions adjacent to the opposite direction, get 
the neighbor node. 

3. I f  any of thcsc neighbors arc also a P-node and have the same sign, and linking to that 
node will not create an "adjaccnt pointers" condition (see exception below), link to the 
P-node with the largcst magnitude and quit, 

4. If none of thcsc three nodcs arc P nodcs. choose the largest of diem (with thc same sign) 
and repeat steps 2 and 3. Use the direction between the surting point and the chosen 
ncighbor for choosing the next set of thrce neighbors. 

5. Stcps 2 and 3 arc rcpcated twice if the largcst neighboring nodc is always found in the 
samc direction. Otherwise steps 2 and 3 arc only rcpcated oncc to avoid crcating small 
loops. 

Exception: At step 3, an adjacent pointer condition docs not inhibit linking to a nodc if the 
adjacent pointcr points to a B-node. In such a case thc the link is made and the B-node is dcletcd. 

Figure 7-13 shows thc inner oval region from a piston rod at band-pass levcl 3 before it is 
prtxcsscd by the algorithm to conncct broken ridgc paths. Figurc 7-14 show the result after the 
cxtcnsion algorithm. This figure also illustratcs that thc extcnsion algorithm has a prcfcrcnce for 
connecting to the adjacent nodc that has the largest value. 7he proccdurc also dclctcd tlic B-nodes 
that remained as spurs aftcr thc linking. 

7.2.6 Isolated Pairs 

'I'hc configuration of two P nodes with only 1 pointcr (i.c. conncctcd only to cach othcr) is a rare 
but troublcsomc onc. I t  usually occurs i n  arcas whcrc thc signal is weak. and if extended can often 
causc a spur of lcngth 2 or 3.  It has been obscrvcd that whcn thc amplitiidc of a ridge makcs a dip 
this configuration will occur. In  this case, the broken path on cithcr side of thc pair of isolated 
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Figure 7-13: Examplc of Brokcn Ridgc Paths Bcforc Extension 

P-nodcs will cxtcnd to the P-nodcs, thus connecting thc broken path. Thus thcsc points arc not 
cxtcndcd. If thcy both remain as 13 nodcs aftcr thc cxtcnsion process they are dclctcd. 

7.2.7 Deleting Spurs 

Occasionally thc algorithm for dctccting ridgc nodcs will lcavc a nodc which is adjaccnt to, but not 
on thc path of, Ihc ridge niarkcci as a P-node. Such P-nodes, which arc ieferrcd to as "spurs" are 
cnsily dctcctcd. Spur nodcs have only onc pointcr, and thcy arc conncctcd to a nodc with 3 pointers. 
Whcn a spur P-nodc is dctcctcd, if' the nodc to which it points is not an M nodc, it's P flag and 
pointcr 3rc dclctcd. A spur which points to an M point is rctaincd as a potcntial point on an ],-path. 
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Figure 7-14: Examplc of Iicpaircd Ridge Paths Aftcr Extcnsion 

7.3 Phenomena Between Levels in the Transform Space 

In this scction we rcvicw sonic of thc structurcs that occur in thc sampled 1)OG transfonn of some 
common forms. Wc first dcscribc thc chain of M-nodes (thc M-path) that result from non-clongatcd 
forrns. ends of  clongaicd forms and corners. Wc then dcscribc thc chains of I.-nodcs (tlic I.-path) 
that rcsult from clongatcd fonns and cdgcs. 'I'his scction dcscribcs thc purpose and principlcs bchind 
thc algorithms for fonning M-paths and 1,-paths that arc dcscribcd in thc ncxt scction. 
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7.3.1 Connectivity of Peaks: M-Paths 

In our first cxpcrimcnts with thc band-pass dctcction fiinctions [ C ~ O M ' I C ~  7Sb] we obscrvcd a 
phcnomcnon uhich has provcd fundamental to constructing a s i x  invariant rcprescntation of gray 
scalc forms from a SIIOG 'l'ransform. 'l'his phcnomcnon is: Any non-elongated gray scalc form will 
cause a pcak at approximately the same location in several adjaccnt band-pass Icvcls. Furthermore, 
except for ccrtain dcgcncratc cases, the magnitude of the peaks will rise monotonically across lcvcls to 
a maximum and then dccrcasc. 

Thcsc pcaks may be detected indiiidually at each Icvcl as dcscribcd a b o ~ c  in scction 7.1. The 
pcaks map then bc linked by starting at  each and cxamining its ncighbors in thc ncxt uppcr lcvcl for a 
pcak of thc sanic sign. The largcst pcak may bc found during this linking proccss by cornparing the 
valucs of the pcaks as h e y  are linkcd. This proccss, which is called "flag stealing", is dcscribcd in 
scction 7.4. 

To scc why this conncctivity occurs, Ict us consider thc Sampled DOG Transform of a uniform 
intensity 11 x 11 squarc. Fhch band-pass filtcr will rcspond most strongly to a uniform region which 
just fills it positivc ccntcr lobe. Howcvcr thc rcsponsc of a filtcr falls off gradually as Ihc size of a 
uniform region grows largcr or smallcr. Wc have obscrvcd h a t  the rcsponsc will dccrcasc by about a 
factor of 2 for a factor of 2 increase or decrcasc in the width of a square. Since thc filtcrs arc scaled by 
a factor of fi a local pcak occurs within scveral adjaccnt band--pass levels. The band-pass signals for 
an 11 x 11 squarc are shown below in figure 7-15. I n  this figure wc havc plottcd the valucs along a 
linc which pass through two corncrs of thc squarc for thc band-pass lcvcls 6 through 1. The largcst 
pcsk occurs for the filtcr :it levcl 4, which has a positive ccntcr region of diamctcr 2 + 1 (Scc 
equation (6.5)) or diameter of approximately 9.9 samples. 

Jn fact thcrc are distinct typcs of M-paths that occur in a D0JAP transform. I'hc following three 
sub-sections cxaminc thc three most common classes of M paths. F,ach of thcsc classcs has bcen 
givcn a name. 'I'hcsc namcs, "spots", "bar-ends", and "corners", arc not intended to imply that thcsc 
pcaks only occur in patterns which an English spcaking human would call a spot, bar, or corner. 
These arc mcrcly labcls with which we can rcfcr to these classcs. I'hcsc labcls could just as casily be 
labclcd with numbers (as indced tlicy arc in our programs). 

In this subscction we are conccrncd with rcgions of pixcls in which tiic valucs arc approximately 
uniform. 'I'hcsc rcgions must havc a background which is prcdoininantly darkcr or liglitcr than the 
rcgion for thcsc rcsirlts to hold. 

7.3.1.1 "Spots" or Non-Klongalcd Forms 

I x t  us consider such a rcgion which is not morc than twicc as long as it is widc. We rcfcr to this 
class of gray scalc forms as "spots". 'Thc squarc in figurc 7-15 is an cxamplc of a form that includcs a 
spot M-path. 

A spot will rcsult in M-nodcs at a sct of adjaccnt lcvcls of a 1X)JP transform. I'hcsc M-nodcs will 



Q 0 1 Level6 

40 I mm 0 

20 LJ-L- 0 

40 

20 

0 
1 

I '  
I 

i o  

mm 0 

96 

32 

0 

Level 5 

Level 4 

Level 3 

Level 2 

Level 1 

Signal 

Scan Path 

Figure 7-15: Kcsponsc to an 11 x 11 Squarc Across Diagonal for 1,cvcls 1 Through 7 



117 

be located at thc sample at cach lcvel closest to the ccnter of thc form. As a rcsult. thc\c M's hil l  tcnd 
to be almost directly under one anothcr. An cxamplc of such a sequcncc of pcaks is shown in lcvcls 7 
rhrough 3 in  figurc 7-15. 

'I'hcsc M-nodcs may be dctcctcd individually at cach lcvcl. lhcy  may thcn be linked togcthcr by a 
quite siinplc process to form a two-way linkcd list. M'C call such a linked list of hl nndcs an  M-path. 
The magnitude of tlic values of thc M nodes along such an M-path will risc to a maximum and then 
dIop off. 'l'he lcvcl at which die ~na>;imum wcuIs providc:, iin cstiinatc of tlie s i x  of  liic spot. 'l'his 
estimate may be ohtaincd from tlic fc~nnula for the radius of the positive center lobc of tlic level k 
band-pass filter. 'I-his formula is given as cquation (6 .5)  in chapter 6. 

In most cascs each pcak in the spot M-path will be surroundcd by a ridge path of thc oppositc sign 
at a distancc of 3 to 5 samples. Onc way to classify 3 pcak as part of a spot h4-path is to dctcct such an 
opposite signed ridge at all dircctions within a distancc of 6 samplcs. Wc have cmploycd a process 
\vhich s c m s  at inultiples of 45' scarchiiig for such opposite signed ridges to  classify individual pcaks 
with satisfying rcsults. 7hc  classification accuracy can bc improvcd by combining thc rcsult of such a 
scm from thc peaks within scvcral lcvcls of the largcst, or M* pcak. 'I'his providcs a label For thc M* 
pcak. 

7.3.1.2 "Bar-end": The Lnds of an Elongated Form 

If a gray scale fonn is inore than twice as long as it is wide, a scqucncc of pcaks will occur at several 
adjaccnt lcvcls at ihc ends of the form. This is illustratcd by figurc 7-16. This figurc shows oiic cnd 
of a unifonn intcnsity rectangle. Circles arc drawn ovcr this rcctanglc to rcprcscnt the locations 
wlicrc diffcrcnce of gaussian filtcrs from an SDOG transform best fit thc rcctanglc. Each circlc has a 
radius which is that of thc zero crossing.of the inner positivc ccnter lobc of thc corrcsponding filter. 
'I'hc circlcs arc centcred at lcgal samplc points from the lcvcl of the SDOG transform of thc filter 
which thcy rcprcscnt. 

'1'0 thc right of the partial rectangle is a trcc of M-nodcs. b c h  symbols corrcsponds to onc of the 
circlcs on thc lcfi and rcprcscnts thc location of a pcak in thc SDOG transform of thc partial 
rcctanglc. 'l'hc largcst circlc corrcsponds to thc top symbol, thc sccond largcst circlc corrcsponds to 
the sccond symbol, ctc. 'fhc labcls "Jhr-End" and "Corncr" arc thosc which wcrc assigncd on tlie 
basis of thc out sidc ncgativc ridgc. The labcling proccss cmploycd a scarch scan in  8 dircctions that 
rcturncd onc of tlirce sutcs: no ridgc, samc-signcd ridgc, or opposite-signed ridge. 'I'hc basc thrce 
niimbcr was tlicn used to indcx into a tablc of labcls. Thc tablc was constructcd by a training process. 
'I'his labcling proccdurc will bc dcscribcd in a report. 

'fhc position of thcsc pcaks will movc from thc ccntcr toward the cnds of thc form as thc levcl 
indcx, k, dccrcascs. As with a spot M-path, thc magnitudc of thc pcaks will risc to a largcst valuc and 
thcn fall off. This largcst value. which is labclcd an M*, corrcsponds to thc filter whosc positive 
ccntcr lobe bcst fits thc cnds of the form. 

At cach Icvcl. thc pcaks at the cnd will be conncctcd by a ridgc path of the samc sign. 'Ihc cntire 
configuration will bc surroundcd by a ridgc of thc oppositc sign. For bar-cnd M-Paths a scan of its 
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Figure 7-1 6: Examples of Bar-End M-Paths 

ncighbors to a distancc of 6 samplcs \\ill  show this opposite signed ridge spmning an anglc of 
approximately 270'. '1 his fact, and the presence of thc single ridgc of ilic same sign can bc uscd to 
label tiic pcaks as "bar-cnds". As bcforc, a label may be assigned to thc M* pcak on thc basis of the 
labels of the othcr M's in thc M-Path. 

7.3.1.3 "Corners" and Other Protrusions 

A corncr or a sharp protrusion will also rcsult in a scqucnce of peaks at scvcral adjnccnt Icvcls. 
Howcvcr, if thc cdgcs of this corncr or protrusion arc straight, thcn wc havc a shapc which is the 
same at scvcral rcsolutions. I n  this casc thc magnitude of thc pcaks will tend to be constant. ( I n  fact, 
small fluctuations can causc spurious M*'s to be detected.) I f  thc protrusion is rounded. thc valuc of 
thc pcaks will rise to a maximum and thcn diminish as k dccrcascs. 'I'hc M-Path may evcn cnd before 
the lowcst (k = 1) lcvcl. In this casc thcrc will likely bc a largcst M node. For a pcninsula that is 
morc than twicc as long as it is widc, this M-path will be a bar-cnd. 130th of thcsc situations are 
illustratcd in figure 7-17. 

In most cascs. corncrs will havc two ridgcs (P-paths) of thc samc sign conncctcd to thctn, usually at 
right anglcs. Also, within a distancc of 6 samplcs tlicrc will bc an ridgc of opposite sign spanning an 
arc of about 180". 
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Figure 7-17: Two Forms that Causc "Corncr" M-Paths 

7 .3 .2  3 - D  Ridges: L Paths 

Whcncvcr an clongatcd gray scalc form occurs, Uic DOIP transforq of thc forin will contain a 
ridgc dt scvcral adjaccnt Icvcls. Thc saniplc points along Uicsc ridgcs corrcspond to points in (x,y,k) 
whcrc thc positivc ccntcr lobc of n band-pass filtcr is a closc fit to tlic width of thc gray scalc form. 
'I'hcsc points arc dctcctcd by thc ridge dctcction process described abovc and Idbclcd as I> nodcs. As 
with M nodcs. J> nodcs will occur at approximntcly thc samc x,y locations i n  scvcr;rl adjnccnt Icvcls. 
At thc lcvcl whcrc the filtcr ccntcr lobe is the closest fit to thc gray scalc form. thc magnitude of the 
filtcr output (along UIC ridgc) will have a largcr u l u c  than at adjaccnt lcvcls. 
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I'licse largcst ridgc nodcs ( called li-nodcs ) can be dctcctcd from thc ridgc nodcs ( P-nodcs ) at 
cadi Icvcl b y  a proccss Mliich is similar to tlie "flag stealing" proccss uscd for dctccting tlic largest 
M-nodc on an M path. Unfortunately this detection proccss is soincwiiitt morc coniplcx because of 
tlic dircctional nnturc of ridges and tlic diffmncc of samplc rates at difi'crcnt lcvcls. Once the 
I.-nodes havc bccti dcwctcd they can be linkcd into a two-way linkcd list call an L-path. 

I n  thc. folloM,ing paragraphs wc will examine thc patterns of ridgcs that occur for uniform width 
bdrb ,  baIs ofclii~tiging ~ i d ~ l i  . and cdgcs of rcgions. 

7.3.2.1 Ridge Paths for a Uniform 13ar 

Consider tlic unifumi rcctanglc which was uscd as an cxamplc i n  figure 7-5 abovc. Tlic rcsponsc at 
Ic\,cls 6 through 1 of the Samplcd DOG transform along ;I linc dirough tlic ccntcr of tlic rcctanglc is 
shown in figurc 7-1s bclow. At Icicl 2, an M* occurs at both cnds of this rcctanslc. Iktwccn thcse 
hl*-nodcs thcrc is a ridgc nodc that is larger than thc ridge nodcs above and bclow it .  This ridgc 
nodc is dctcctcd as an la nodc by the proccss dcscribcd in thc ncxt scction. 'I'liis rcctanglc produccs a 
graph as shown in figure 7-18. We can abstract all of the M* nodcs and I.-paths i n  this graph to 
obtain a dcscription of a class of foims that rcscmblc this bar. This class of foims is dcfincd by thc 
prcscncc of thc symbols: 

M * - L - M *  

If we held the width of the rcctanglc constant and increased its length the numbcr of I,-nodcs 
bctwccn Ihc M* nodcs would increase. We can dcfinc tlie class of bars as those forms v+Iiicli have a 
pair of %1* nodcs conncmd b;: some numbcr of L-nodes bctwcen t!icm, and thcn cncodc the 
Cartesian d ismcc  bctwccn tlic M* nodcs (mcasurcd in sainplcs at sotnc rcfcrcnce lcvcl) as an 
attribute of thc form. 

7.3.2.2 h r s  of Changing Width 

Supposc. instcad of a rcctanglc, wc have a four-sidcd forh which changcs in width by a factor of 2 
along its length. Such a form is shown i n  figure 7-19. As thc width of thc form dccrcascs, the lcvcl of 
thc filtcr which bcst fits tlic fomi dccreascs. As a rcsult the M* nodcs occur at diffcrcnt Icvcls, and 
tlic I.-Path charigcs Icvcls. Wc cnn dcfinc a class of bars that includcs bars that changc width, by 
collapsing the I.-path into a single symbol. Ihc  I,-path should rcuin tlic attrihutcs of its lcngth 
(Mcasurcd in numbcr of samplcs at some rcfcrcnce Icvcl) and the changc in lcvcls bctwccn thc M* 
nodcs that it connects (Ak). 

7.3.2.3 I'dgcs of Regions 

A straight linc cdgc of a uniform rcgion will rcsult in a sct of ridgc paths at scvcral lcvcls in which 
thc valucs arc approximatcly tlic samc. If thc cdgc is blurry, thcn thc valuc along thcsc ridgc path will 
decrcasc with dccrcasing k. If. on thc othcr hand, tlic figurc is washcd out ,  thc yalucs irlolig thc ridgc 
palh  ill bc largcst at somc Icvcl, and wi l l  bc dctcctcd as I,-nodcs. 
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Figure 7-18: Response to a 5 by 11 Rectangle 
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Figurc 7-19: An Elongated Form That Changcs Width 

'l'hc fact that an I, nodc is part of an cdgc can bc dctcctcd by tlic same scan proccdurc described 
abovc for labcling M-nodes. An I ,  nodc or P-node which is part of an cdgc will haw a singlc ridge of 
oppositc sign running parallcl to it within a distancc of 6 sainpics. It may or may not havc a same 
signcd ridgc parallcl to it in thc oppositc dircction within 6 saniplcs. dcpcnding on how widc thc form 
is. A n  I,-path which is part of a "bar" o r  othcr clongatcd form will havc oppositc signcd ridgcs 
running parallcl to it on two sidcs. Figures 7-2 through 7-6 show cxamplcs of tlic ridgc points and 
oppositc signcd ridgc points that occur for an cdgc. 'I'hcsc figurcs show thc rcsponsc along a line at 
onc Icvcl. Figurc 7-4 shows an cxamplc of a ridgc point which is an I. nodc and dctcclcd as a bar 
with ridgc points of thc opposite sign on both sidcs. I h t h  of thcse cascs arc illustratcd with a piston 
rod imagc shown in figurcs 7-26(a) through 7-26(1i) and 7-27(a) through 7-27(h) at thc cnd of this 
chapter. Figurc 7-27(h) is a good 2-11 cxamplc of thc ridgcs that occur on both sidc of an cdge. 
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7.3.3 Connectivity of L-Paths and M-Paths 

Onc of the propcrtics tliat permits us to construct a rcprcwntation of an itnagc using only local 
opcrarions is thc property that J_-paths will almost always tcrmiiiatc at an M-path. 

A n  ].-path follows the Icngth of an elon_gatcd form. As the form widcns, thc I.-path moves 
upMxds in the k dimension. As the form narrows, the 1.-path inovcs downward in thc k dimension. 
At  thc cnds of an clongatcd form the response ofa  1101.1’ (or SlIOG) transform iiicrcascs due to the 
presence of inore background arca i n  thc ncgiitivc sidc-lobc of riic bmd-pass filtcr. This increase 
rcsults i n  a n  M-node. LJnlcss the foim fiidcs into the background \cry griidually thcrc will be an 
M-nodc at its cnd, and thus thc I--pcith will tcrminate at an M-path. I3ccausc the SiitIiC band-pass 
filtcr v\,ill bcst rcspond to the width of a form both along thc form and at its cnds. an I.-path will 
usually tciminarc within one Icvcl of an h.I* node. 

7.4 Connecting Peaks  Between Levels 

This scction describes a proccss which links pcaks (M nodcs) which arc at adjaccnt lcvcls in the 
DOG transforin to form M-paths. This proccss also detects the largest M nodcs in a path and labels 
thcsc as M* nodes. An M* nodc is an M nodc which is part of an M-path and which has a larger 
valuc than the adjacent M nodes in the M-path. 

7.4.1 Linking M’s 

? .  J hc principle behind the proccss for linking M nodes is sirnplc. Starting at the highcst lcvcl, K, at 
cach lcvcl k cach M nodc looks at the nodes within a local ncighborhood above it, at lcvcl k +  1. A 
2-way pointcr is madc to all M nodes that arc found within this neighborhood. 

This proccss procceds as follows: For each lcvcl k, from K tlirough 1, cach M nodc at lcvcl k 
cxamincs thc nodes which are adjacent to it  at levcl k +  1. ‘I’hcre may bc cithcr 4 or 9 such adjacent 
nodcs duc to tlic fi sampling. ‘I‘hc nodcs which arc adjaccnt to thesc nodcs at lcvcl k + l  arc also 
cxmincd. ’I’hus citlicr 25 o r  10 total nodcs arc cxarnincd. lfany of thc adjacent 4 o r  9 nodes at lcvcl 
k + 1 arc M nodcs and liavc a valuc of the samc sign, thcn a 2-way pointcr is formed. ‘I’his pointcr is 
formcd by sctting thc appropi-iatc down pointer of thc no& at lcvcl k + l  and sctting die up pointer 
corrcsponding to  that uppcr ncighbor in thc nodc at lcvcl k. Scc tablc 7-1 and scction 7.1 for an 
cxplanation of thc up and down pointcr bytes. 

If  m y  of tlic ncighbors of the ncighbors at Icvcl. k+ 1 are an M nodc an indircct 2-way pointcr is 
madc. An indircct pointcr goes through the adjacent ncighbor’s pointcr. ’I’hc set of possihlc indircct 
paths arc illustratcd in figurc 7-20. ‘I’hc fact that a pointer is indircct mny bc dctcrmincd by 
cxarnining thc 1- and M flags of a nodc. If both thcse arc zero then any pointers for 1,  and M paths are 
i ndircc t poin tcrs. 
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Figurc 7-20: Possiblc Scr of Indirect 2-Way Pointers for M-Paths 

7.4.2 Detecting M*'s  

M* nodcs arc dctectcd by a yroccss which we refer to as "flag stealing". Whcn an M nodc dctccts 
anochcr M node at h e 1  k + l ,  it comparcs values. If tlic M node at lcvcl k has a valuc of smaller 
mayiitudc i t  clears its own * bit. If the M node at lcvcl k has a valuc of Ixgcr m~gnitudc it clcars tlie 
* flag of the nodc at lcvcl k + l  and scts its own * flag. If morc than otic M nodc IS dctcctcd at lcvcl 
k+ 1 thcy must all be smallcr for the node at  level k to sct it's * flag. If 1'10 M nodcs arc found at level 
k + 1 thcn the * flag is clcarcd: This prcvcnts any isolated M nodcs from bccoming M* nodes. If 
morc than one node a t  lcvcl k link to an M node at k + l  any of thcm will clcar the * flag of the node 
at lcvcl k + 1 if thcy have a larger \ a h .  'I'hus * flags propagate down an M-path until tlicy rcach a 
nodc wiLh thc largest magnitude. 

7.4.3 Example 

Figurc 7-21 shows thc M-paths and thc M* nodc that occur at lcvel 7 through 1 for a uniform 
intcnsity square of width 11 pixels, and grcy lcvcl 96 on a background of 32. 

7.5 Detecting Ridge Nodes in (x,y,k) Space 

This scction dcscribcs thc proccsscs for dctccting ridgc nodcs (I,-nodcs) in the 3-11 SDOG 
transform space. 'Thc scction starts with a discussion of the approach which is uscd and a dcscription 
of somc of thc problcms tliat complicatc such dctcction. A dcscription of thc search proccdurc for 
P-nodcs within two neighborhood sizcs abovc cach P-nodc is thcn givcn. A discussion of the "flag 
stcaling" process that is iiscd and modifications to this proccss is thcn prcscnted. 
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Figure 7-21: M Paths For Square of S i x  11 Pixels 

7.5.1 Problems and Approach 

Kidgc nodcs in the (x,y,kk) space produced by thc SDOG transform are dctcctcd with a form of flag 
stcaling prtwss. As with dctcction of M*-nodcs from M-nodes. thc P-nodcs which havc bccn 
dctcctcd as ridgc points at each level arc uscd as candidates for L-nodes. 

‘I‘hcsc P-nodcs cxaininc thc P-nodes within a ncighborhood at thc lcvcl above thcm. l h i s  
cxamination occurs during a two stagc scarcli proccdurc. Initially a small ncighborhood at lcvcl k+ 1 
is cxamincd abovc cadi P-nodc at levcl k. If no P-nodcs arc found in this sinall ncighborhood, then 
thc nodcs within a largcr neighborhood arc scarchcd for P-nodcs. ‘J‘his second scarcli is inhibitcd for 
dircctions within 45’ of any 1’-path pointcrs in the P-nodcs at level k to prcvcnt a P-nodc at lcvcl k 
from stcaling thc I,-flag from a P-node at lcvcl k + 1 ovcr a diffcrcnt part of the ridge. 

‘I’hc situation is morc cornplicatcd than with dctcction of M*-nodes, because: 

Ridgc paths &-paths) arc directional and may travcl through as well as along thc Icvels. 

0 liidgc paths that dcscribc.an cdgc rcnd to movc sideways toward thc cdgc as thc lcvcl 
dccrcascs. ‘I‘his crcatcs situations whcrc cach 1’-nodc at lcvcl k+ 1 is cxamincd by scvcral 
1’-]1odcs at lcvcl k. 
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e Two conncctcd P-nodes at level k may, bccause of fi resampling. have a P-nodc 'it Icvel 
k-1 betwccn thcm, :I\ illustr,\rcd b) upper part o f  figure 7-22. In th14 figure, the largcr 
squares reprcscnt thc 1'-iiodcs at level k + 1. and thc mallcr squnrcs rcprcscnt the P-nodcs 
at Icvcl k. hhich of the nodes at level k + l  should thc node in the ccntcr at level k 
comparc its valuc to? 

P- 
P ' P  

The problem illustrated by figure 7-22 is even more scvcrc when thc P paths at ad.jaccnt levels are 
displaccd sidc-ways as shown in tlic lowcr part of tigurc 7-22. This situation is handled by a 
modification to tlic flag stealing process dcscribed in scction 7.5.3. l'his niodification is based on  the 
principlc that an I--flag is stolcn only if all irs lowcr P-nodc ncighbors havc a largcr valuc. 

P P .  P 

Overlapping Ridges at Adjacent Levels 

Displaced Ridges at Adjacent Levels 

Iigurc 7-22: Two Configurations of Ridgc Paths at Adjacent Lcvels 

7.5.2 Search Paths 

At cach P-nodc at a lcvcl k. the uppcr ncighborhood at lcvcl k + 1 is scarchcd for P-nodcs. 'The 
P-nodc at lcvcl k from which thc scarch originatcs is rcfcrcd to as thc "sourcc" node. 

A sourcc nodc at (x, y, k) can havc two possiblc ncighborhoods at lcvcl k +  1 dcpcnding on 
whcthcr a samplc cxists at (x, y, k + 1 ). 'I'licsc t w o  ncighborhoods arc illustratcd in figure 7-23. In 
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this figure, circlcs 
k + 1. ‘l’hc source 
ncighborhoods arc 

O l o l  

rcprcsent sample points at Icvcl k whilc boxcs reprcscnt samplc points a t  lcvcl 
nodc has a cross through it. If k is evcn (i.c. on a fi samplc grid), thcsc two 
rotatcd by 45’. 

o m 0  

p J 0 p J o p - J  

Upper Neighbor Exists 

Figure 7-23: 

O p J O p J O  

No Upper Neighbor Exists 

Two Possible Upper Neighborhoods 

7hcrc arc two scarch proccdurcs that arc used to dctcct P-nodcs at  an uppcr level, dcpcnding on 
whcthcr thc source nodc at (x, y. k) has a samplc dircctly above it, i. e. at (x, y, k + 1). ‘lhc tcst which 
tells whcthcr a sample exisrs at (x. y, k + 1) is used to dctcrminc which search procedurc is uscd. ‘ h a t  
is, if: 

xmod2  k = y 1 n o d 2 ~ =  1 

is true thcn thc source nodc at (x, y, k) has a samplc dirccly above it. 

I f  a samplc cxists above the sourcc nodc, thcn it is tcstcd to scc if it is a P-nodc. If  it is a P-node, 
thcn only this node is cxamincd. 

If  no siunplc cxists abovc the sourcc nodc, or the sample above thc source nodc is not a P-node, 
thcn a two stagc scarch procedure is cmploycd. ‘I’he first stagc cxamincs thc ncarcst 4 upper 
neighbors. I f  no P-node is found in this first stage. a sccond stagc scarchcs for P-nodcs in an cnlargcd 
ncighborhood. ‘I‘hc ncighborhoods examincd by thcsc scarch algorithms arc illustratcd in  figure 
7-24. I n  this figurc thc samplc points at lcvcl k which havc no nciglibor arc illustratcd with a circle. 
Points whcrc sarnplcs cxist at  both lcvcls arc indicatcd by a 1, or a 2. ‘I’hosc points with a 1 are 
cxamincd in thc first stagc, thosc with a 2 arc cxamincd in thc sccond stagc if no P-nodcs arc found in 
thc first stage. 

Thc sccond stage scarch docs not occur for any dircction within 45’ of a P-path pointer in the 
sourcc nodc. This hclps prcvcnt nodcs from intcrfcring with the flag stcaling prtxcss at othcr points 
on thc P-path. 
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Upper Neighbor Exists No Upper Neighbor Exists 

Figure 7-24: Upper Scarch Neighborhoods for Stagc 1 and Stage 2 

7.5.3 The Modified Flag Stealing Process 

'I'hc principlcs of "flag stcaling" wcre dcscribed during the discussion of dctcction of M*-nodes 
givcn in scctiun 7.4.2. This process must be modificd to use Nith detecting I.-nodcs, bccausc each 
I.-node at lcvcl k + l  is likely to be cxamincd by scvcral P-nodes at lcvcl k, somc of which may be 
displaccd along the P-path ridge. Since thc value can changc along a 3-13 ridgc. nodcs furthcr along 
tlic ridgc might improperly clcar thc I,-flag of nodcs abovc thcm, breaking tlic ]--path. 'The 
modification is bascd on the principal that all of the lowcr ncighbors must havc a largcr valuc, bcfore 
thc uppcr I-'-nodcs 1- flag will be reset. 

Modificd flag stcaling employs two tcmporary bits at each nodc which dcnotc whcthcr any lower 
ncighbors havc a sniallcr valuc ( flag Tl) or a largcr (or equal) valuc (flag T2). Aftcr flag stcaling is 
cxccutcd at lcvcl k,  thc I.*-nodcs at lcvcl k +  1 arc cxamincd, and any with nodc which has its '1'2 flag 
sct and its '1'1 flag clcar has its L flag clcarcd. 

A scarch ncighborhood which is of rcstrictcd duration along a ridgc is also uscd. A largcr 
ncigliborhood is nccdcd for dircctions pcrpcndicular to the ridgc bccausc of the latcral drift tliat can 
occur with 1'-paths as the lcvcl dccrcases. 

7.5.3.1 Modificd Flag Stealing 

I f  a sourcc 1'-nodc at (x, y, k) has an uppcr ncighbor at (x, y, k + l )  which is also a P-nodc, thcn 
only this ncishbor is cxamincd by this source node. 

If thc sourcc P-nodc at (x, y, k) has no uppcr ncighbor, or thc uppcr ncighbor is not a P-nodc, then 
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this process is applied to the ncxcst upper 3 neighbors. If no P-nodes arc found in the nearest upper 
neighbors. the search is applied to an cnlarged upper neighborhood. As mentioned above, the second 
stage scarch is inhibited for all samplcs within 45’ of a P-path pointer in the source node. 

When a P-node is found at level k +  1, its value is compared to that of the sourcc nodc. If the value 
of  the upper ncighbor is largcr and the upper neighbor has its 1- flag set, then the ‘1’2 flag of die upper 
neighbor is set to indicate that the upper neighbor has ii lower neighbor with a smallcr value. If tllc 
\iiIiie o f  dic so i i ixx  node is largcr. hen h c  I> flag of dic source node is scL. Also, if thc I ,  thg of the 
upper nciglibor is set. then the T1 flag of the upper ncishbor is set to indicatc that the upper neighbor 
has a lower neighbor which attempted to steal its flag. 

7.5.3.2 Resolving the ’Fl and ‘12 Flags 

After the 1 -  nodc detection process has been run at level k, thc I>-nodes at level k + 1 :ire processed 
to resolve the 1’1 and 1 2  flazs. At each I>-nodc at level k +1, if its ‘1‘1 flag is set and its ‘1‘2 flag is not 
SCL then all of its neighbors 3t level k arc larger. In this case, its L flag is clearcd. 

‘This modified flag stealing process will permit two or more P-nodes at the same location in 
adjacent lcvcls to be L-nodcs. This can occur when an elongated form has a sudden dccrcase in 
width. For such a form, the I>-path can travel straight down through the lcvcls. An cx;itnple of this 
occurs with i n  b e  Piston Rod images and can be sccn at column 41, rows 97 to 104, in lcvcls 7 and 6 
of the Piston Rod description shown in figures 7-27(d) and 7-27(c). ‘The ],-nodes at the upper level 
are inhibited from losing thcir l--flags, bccausc other P-nodes at in thc lower Ic\cl P-pith have 
smaller values. and thus sct thcir ‘11 flag. 

7.5.3.3 Linking I,-nodes 

After thc ’rl and T2 flags have been resolvcd, a process is cxecutcd to fonn two way pointers 
bctwecn all adjacent L-nodes. This proccss runs as follows. Each I,-node at lcvcl k + 1 cxamincs all of 
its neighbors at lcvcl k + 2 within its 2”d stage neighborhood and all neighbors at lcvel k + 1 for which 
it has a 1’-path pointer but no I,-path pointer. If any of thcsc neighbors are an I.-node, an M-node, or 
an M*-nodc a two hay pointcr is made by setting thc appropriate pointers in the UP, SAME and 
I W W N  pointer bytes of thc neighbor and the sourcc I,-nodc. 

7.6 Examples 

‘I’his section shows some cxamplcs of M*’s, M Paths, 1,  Paths and P Paths. ‘I’hcsc cxamplcs are 
from levels 10 through 3 of  tlic right most piston rod in the imagc shown in figure 7-25 below. ‘I’his 
image is from tlic GM “l%in of Parts” data basc [Baird 771. 

Figurcs 7-2h(a) through 7-26(f) show thc uppcr third of the lcft most piston rod. ‘llicsc figures are 
shown with nodcs spaccd at 4 pixels, which is thc samplc r i ~ t ~  at lcvcl 5. Figurcs 7-26(g) and 
7-26(h) show a simllcr window which is from tlic upper lcft corncr of the window shown in parts a 
through f. In parts g and h thc samplc ratc is 2 f i  and 2 rcspcctively. 
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Figurc 7-25: Piston Rod Imagc. Sampled at 256 by 256. 



Figurc 7-26(a) is from lcvcl 10 of thc DOG transform. A t  this lcvcl the data has bccn sarnplcd at 
16VT and so this figurc is vcry sparsc. Notc thc M node at row 81, col 49. ‘I’his is the s t m  of an M 
path that leads into thc piston rod. 

Figurc 7-26(b) shows the samc window at lcvcl 9. A s  is oftcn thc casc thcrc arc short spurs hanging 
off of t1ic M nodc at row 81, col 33. 

Figurc 7-26(c) shows the same window at lcvel 8. At row 73, col 41 is thc hil* nodc which scrvcs as 
a landinark Tor the upper part of any piston rod. l’hc two 1, nodcs at rou 65 arc spurs: they do not 
conncct to anything elsc. ‘The I, node at row 89 is part of an 1, path that travcls down through the 
lcvcls and down through thc rows to bccomc thc long part of thc piston rod. 

Figiirc 7-26(d) shows a phenomenon which is very rare: This i5 thc only instance that we have 
obscr\ cd. On rows 73 and 81, ‘I’hc values in columns 41, 49, and 57 are thc sninc. l‘hc result is a pair 
of parallcl adjacent ridges of thc samc sign. l‘his is not a scrious problem as tlicsc points arc not 
strong cnough to be 1-  nodes. Notc also that the M path has split into two parts. I3oth parts haw two 
way pointers to the M* node at level 8. 

In figurc 7-26(c) thc shapc of the uppcr part of the piston rod bcgins to bccome apparcnt. Note 
that an M nodc has appcarcd in the middle, at row 77, col 45. ’l’his M nodc is attached by P paths to 
ncarby M nodes in 4 directions. Thcsc paths resulted when the spurs attached LO thi:, ccntrd M nod 
wcrc cxtcndcd. This central M nodc cvolvcs at lowcr lcvcls into thc oval shapcd rcgion which occurs 
in thc centcr of the top of the piston rod. 

Figurc 7-26(f) shows lcvcl 5 of thc description. Notc the M* node on row49, column 45. ‘I’his 
marks tlic largc rcgion at thc top of the piston rod. Notice also that two 1- paths cxtcnd from this M* 
nodc. ‘I‘hcsc I ,  paths drop down to lowcr lcvcls as that part of thc piston rod narrows. Also notc that 
at this lcvcl thc ncgativc ridgc surrounding thc inncr oval has appcarcd. ‘I’hc oval is not conncctcd to 
thc rest of thc piston rod in this or any of thc lower levels. 

Figurc 7-26(g) shows the iippcr right corncr of thc window from thc prcvious subfigurcs, as scene 
in levcl 4. At this lcvcl thc data is sainplcd at 2 f i .  Notc that thc I *  path bcgiin in lcvcl 5 continua 
into this Icvcl. Notc also that at this lcvcl tlic ncgativc ridgc which sun-oiinds thc oval also forms a 
part of an I ,  path. 

Figurc 7-26(h) shows the transform at lcvcl 3. I’hc 1- path that dcscribes thc ring of the uppcr part 
of thc piston rod dips into this levcl in its narrow parts. ‘Thc P path for this form is broken at this 
lcvcl. l’his is an artifact of the ridgc dctcction proccss. ‘I’hc ncgativc ridgc outsidc of thc piston rod 
has an M* at this Icvcl. ’I’his indicates that a rounded corncr occurs in the background (A ncgative 
corncr!) ‘Ihc M* occurs bccausc this corncr is not sharp. ‘Ihc ncgativc ridgc bctwccn thc outcr 
positive ring, and the inncr oval also contains two M*’s at this Icvcl. ’I’hcsc correspond to ricgative 
corners in the insidc of the ring. 7’hc 1, path attached to these ncgativc M*‘s cxtcnds up to lcvcl4. 
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V a l u e s  f o r  nodes  - L e v e l  10 rod.swf L P a t h s  and  M P a t h s  
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Figurc 7-26a: Top Of Piston Rod at Lcvcl 10 
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V a l u e s  f o r  nodes - L e v e l  9 r o d . s w f  L P a t h s  and M P a t h s  
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Figure 7-26b: Top of Piston Rod at Lcvcl 9 
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V a l u e s  f o r  nodes  - L e v e l  8 r o d . s w f  L Paths and M P a t h s  
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Figure 7-26c: Top of Piston Rod at Level 8 
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V a l u e s  f o r  nodes  - L e v e l  7 r o d . s w f  L P a t h s  a n d  M P a t h s  
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Figure 7-26d: Top of Piston Rod at Lcvcl7 
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r o d .  s w f  L P a t h s  a n d  M P a t h s  V a l u e s  f o r  nodes  - L e v e l  6 
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Figure 7-26e: ‘Top of Piston Rod at Level 6 
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V a l u e s  f o r  nodes - Level 5 r o d .  s w f  L P a t h s  a n d  M P a t h s  

45 
45 
45 
45 
49 
49 
49 
49 
53 
53 
53 
53 
57 
57 
57 
57 
6 1  
6 1  
6 1  
6 1  
65 
65 
65 
65 
69 
69 
69 
69 
73 
73 
73 
73 
77 
77 
77 
77 
8 1  
8 1  
8 1  
81 
85 
85 
85 
85 
89 
89 
89 
89  
93 
93 
93 
93 

17 2 1  25 29 

-9  -15 -22 -28 

/ 

-12  -18  - 2 1  -17 

! 

P - -  MP 

/ 

L P  
/ 

/ 
-13 -11 -2 8 

P 
/ 

-12  5 22 30 

/ 
/ 

-11 13 33 33 
MP - -  MP 
! 
! 

L P  
I 
! 

-3  18 29 17 

33 37 4 1  45 49 53 57 6 1  

12 13 33 41 34 14 -11 -26 
! \ 

L P  P 
! \ 
! 

L P - -LMP*--L P 
0 24 4 5  54 4 5  23 - 8  -26  

/ 
/ 

20 30 33 
L P  

/ 
/ 

25 17 8 
P 

16 - 5  -13 
P '  

/ 
/ 

-3 -14 -10 
MP 

/ 
/ 

3 25 26 6 -13 -6  12 
P P 

/ ! 
/ ! 

P MP 
10 29 28 2 -14  3 29 

! ! 
! ! 

11 30 26 4 - 1 2  4 3 4  

! \ 
! \ 
37 3 1  24 9 - 7  
P L P  

\ 
\ 

3 6 12 20  20 
P 

\ 
\ 

-16 -15 - 6  17 
UP - -  P 

\ 
\ 

-9 -15 -16 -1 
MP 
! 
! 

19 3 -16 -8 
P MP 

! \ 
! \ 
40 17 -10  -14 
P P 

! ! 
! ! 
4 1  18 -9 -12 

L P  
\ 
\ 

3 27 30 
L P  
! 
! 

MP 
-2  19 32 

\ 
\ 

-6 10 26 

P 
! 
! 

10 -10 
P 

\ 
\ 

2 1  -1 

26 13 
P 

0 

-9  
P 

\ 
\ 

-1 - 

P -- MP - -  P 
! 
! 

20 27 6 
P 

-2  1 -10 

/ 
/ 

10 -11 -11 
P -- P - -  P 

P 
/ 

-11 - 7  

! 
! 
-14 2 
MP 

/ 

P 

0 18 

29 
P 

\ 

26 

16 

14 

13 

15 

2 1  

/ 
3 1  

MP 
\ / 

\ \ / 

P P P 
\ \ / 

-16 -5  11 23 22 11 -1 -3 6 17 26 2 1  

Figure 7-26f: Top of Piston Rod at Lcvcl5 
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V a l u e s  for nodes  - L e v e l  4 rod.swf L P a t h s  and M P a t h s  
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E’igurc 7-26g: Top Ixft Corncr of Piston Rod at I,cvcl4 
(Note that Snmplc Rate is 2 d )  
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V a l u e s  f o r  n o d e s  - Level  3 r o d . s w f  L P a t h s  a n d  M P a t h s  
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Figorc 7-26h: Top I xft Corncr of Piston Rod at Ixvcl 3 
(Notc that Sample Rate is 2) 

Figurcs 7-27(a) through 7-27(h) show thc dcscription for thc middlc of thc samc piston rod. The 
window within which Uicsc points arc shown is immcdiatcly bclow Uiat for figurcs 7-260 through 
7- 26( h). 
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Figurc 7-27(a) shows this window at levcl 10. Ikcausc of thc sparsc sampling, thcrc are only 2 P 
nodcs, which arc an extension of the ridge path for the middlc of thc piston rod. The samc is truc for 
lcvcls 9 and 8. although one can see thc valucs incrcasing as the lcvcl decreases. 

At l c ~ c l  7, figure 7-27(d) shows this P path with two L nodes at rows 97 and 105. 'I'hcsc I. nodcs are 
part of thc 1- path h a t  surtcd wilh thc M* nodc at row 73, col 41 of lc\,el 6 shown in figure 7-27(c). 
'l'his 1- path continucs into levcl 6, as shown in figure 7-27(c) as the uppcr part of the piston rod 
n;fi~ows. Notc, ASO, how thc ncgativc ridges niovc closer to thc positivc ridgc ;is Ihc filtcr radius 
bccomes smaller. This is a classic example of thc configuration of ridzcs that occurs for a uniform 
width longish object. 

The I. path finally scttles into level 5, as shown in figure 7-27(f). This 1- path connccts to thc M* 
nodc at  row 133 col41, and thcn continucs down the piston rod. 

Figurcs 7-27(g) and 7-27(h) show blown up vcrsions from the middlc of thc window shown in the 
previous figurcs. I n  thcsc two figures. thc nodcs arc printcd Nith a spacing of two columns; the 
sample ratcs are 2 f i  and 2, respectively. Figure 7-27(g) shows this smaller window at Icvel 4. The 
positiw ridgc at this lcvcl has a lower value than at lcvcl 5. Figurc 7-27(h) shows this smallcr window 
at lcvcl 3. A t  this I e \ ~ l  tlic positive ridge has split into two ridgcs, rcprcscnting thc edgcs of thc piston 
rod. 'Ihe spurs attached to the M nodes at this lcvcl extended to reach cach other, giving an 
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occasional path bcrwcen the two positivc ridges. 
V a l u e s  f o r  nodes - L e v e l  10  r o d . s w f  L P a t h s  and  M P a t h s  
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Figure 7-27a: Middlc of Piston Rod at Lcvcl 10 



V a l u e s  f o r  nodes  - L e v e l  9 r o d . s w f  L P a t h s  a n d  M P a t h s  
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Figurc 7-27b: Middlc of Piston Rod at Levcl9 
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Figurc 7-27c: Middle of Piston Rod at L e d  8 



V a l u e s  f o r  nodes  - L e v e l  7 r o d . s w f  L P a t h s  and M P a t h s  
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Figure 7-27d: Middlc of Piston Rod at I.cvcl7 
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Figure 7-27c: Middle of Piston Rod at Lcvcl6 
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Chapter 8 
Matching the Representation 

’I’his chaptcr concerns matching the representations of pairs of gray scale forms, particularly in 
si ti la tions where: 

0 the two forms are in digitizcd images of the same objcct (or vcry similar objects), and 

onc of thc objects was at a diffcrcnt distance and/or 2-D imagc plane oricntation from the 
camera than the other at thc time of digitization. 

This chaptcr providcs exarnples of the rotational quasi-invariancc and the sizc quasi-invariancc of 
thc rcprcscntation dcvclopcd in thc previous chaptcrs. However the tcchniqucs involvcd in such 
matching can also bc uscd for stcrco image intcrprctation and objcct recognition. ‘I’hus, it is worth 
wnilc to dcvclop principles and approaches to such matching while demonstrating thc propcrtics of 
thc rcprescntation. 

‘I’hc remainder of this section discusses the role which corrcspondcnce plays in stereo 
intcrprctation and structural pattcrn recognition. Scction 8.2 summarizes thc matching techniques 
which arc illustrated in this chapter. ‘These tcchniqucs are prcliminary; matching was not within the 
domain of this rcscarch. Thcse tcchniqucs were cxplorcd to assist in demonstrating the iiscfUlncss of 
thc rcprcscntation and as a prcliminary look at an important problcm which we will address when 
this dissertation is complctc. This is followed by a scction which prcscnts tlic tcst data (section 8.2) 
which was uscd to verify thc sizc and rotational invariance of the rcprcscntation. 

Scctions 8.3 and 8.4 concern thc use of M-nodcs (local peaks at  a Icvcl), M*-nodcs (local pcaks 
among thc lcvcls). and P-paths (ridgcs at a level) for dctcrmining thc rclativc position, oricntation 
and sizc of two rcprcscntations of the same (or similar) gray scalc forms. In scction 8.3, tlic conccpt 
of conncctcd M-nodcs is defined and an example is prcscntcd. Scction 8.4 illustrates the 
corrcspondcncc of M-nodcs and M*-nodcs in rotatcd and scalcd imagcs of an objcct using thc tcapot 
imagcs. This scction cnds by showing the corrcspondcnce of the M-nodcs in a stcrco pair of paper 
wad irnagcs. Scction 8.5 discusscs the use of thc M*-node corrcspondcncc to align 1,-paths (ridgcs 
among thc Icvcls) from rotatcd and scaled imagcs of an objcct and dcssribes a simplc similarity 
measure for aligned L-paths. This section ends with cxamplcs of matching tlic I,-paths from the 
right-side shadow of thc tcapot image. 



8.0.1 Applications of Correspondence Matching 

'J'his Subsection briefly introduces the matching problem in the domains of stcrco matching and 
structural pattern rccognition. I t  also describes thc propcrtics of the representation that make it 
uscful in these domains. 

In image understanding thcrc arc several problcm domains where it is desirable to determine the 
correspondence between parts of two rcprcscntations. Onc such problcm domain is intcrprctation of 
pairs of stcrco imagcs to obtain dcpth information. Depth information is obrnincd froin ;I stereo priir 
of imagcs by triaiigulation. 'T'riiingulation depends on knowledge of the relative positions and 
orientations of two cameras, the so-called "camcra parameters" [Iluda 731. The "stereo 
correspondence" of surface points in tlic images is also required. 'I'his is the positions of pixcls in thc 
two images that corrcspond to the samc point on thc surface of an object. I t  is then possible to set up 
the projcctivc gcomctry that relates thc two camcras to points on the surfacc of objects. Given this 
v geometry, the distance may be computed from onc of the cameras to each surface point for which 
corrcspondcncc is known. 'Ihcsc distanccs provide a map of the 3-D form of a scene. 

Before the dcpth to a surface point can be computed, it is ncccssary to determine the location of 
thc pixcls which corrcspond to that surface point in cach of the images This stcrco corrcspondcnce 
problcm is the most difficult problem in stcreo imagc intcrprctation. The usual approach to this 
problem is to corrclate patchcs in thc two images. But this is an cxpcnsivc process, and Ihcrc arc 
problems with determining how largc a ncighborhood to correlate. 

The representation dcvclopcd in the previous chapters has propcrtics which greatly simplify the 
proccss of determining thc corrcspondcncc of patterns of pixcls in two images. 

1. Only pcaks corrcspond to pcaks. ' h c  cxistcncc of peaks or M-nodes yrovidcs a set of 
landmarks which can bc uscd as tokcns in thc matching process. 

2. 'I'hc multi-resolution hicrarchical structure of the rcprcscntation pcrmits the 
corrcspondcncc proccss to commencc with thc most global M* nodes for cach form. 
Since very few such symbols exist at the coarsest rcsolution. the complcxity of this process 
is kcpt small. 

3. The conncctivity of M-paths pcrmits the match information from a coarsc rcsolution to 
constrain tlic possiblc sct of matches at dic ncxt higher-resolution Icvcl. 'I'hus what could 
bc a wry largc graph matching problcm is rcpcatcdly partitioned into scvcral small 
problcms. 

Anothcr important problcm domain in imagc undcrstanding is classifying two dimcnsional gray 
scalc forms. 'Ihc rcprescntation dcvclopcd in this dissertation can bc uscd for a stritctiml pattern 
rccognition approach to this problcm. That is, a gray scalc form may bc classified by mcasuring the 
similarity of its rcprcscntation to a numbcr of prototypc rcprcscntations for objcct classcs. 'This 
approach was dcscribcd briefly in chaptcr 1 for both 2-1) gray scalc forms and for 3-11 shapes. 

'fhc propcrtics of thc rcprcscntation citcd above facilitatc its usc for constructing objcct-class 
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prototypcs and for matching prototypcs to objcct rcprcsentations. An object class prototype may be 
formcd by constructing the rcprcscntations of a uaining set of images. ‘Ihc configurations of M- 
paths and I_-paths that occur for a given class of objccts can be dctcrmincd by matching the 
rcprescntations from this training set. The prototypc dcscription can be composcd of the M-paths 
and I_-paths that occur in thc majority of the dcscr ip t i~ns .~~ ‘I‘his pro\.idcs a simplificd 
rcprcscntation which can scrve as an objcct class prototype. ‘I’hc multi-rcsolution hierarchical 
structurc of thc rcprcscntation pcrmits the sct of possible matching prototypcs to bc rcduccd on thc 
basis of dic fcw coarscst rcsulution symbols. 

‘I’hc study of creating and matching such prototypes could be a dissertation in itsclf. Only a few of 
thc morc obvious principles and tcchniqucs arc dcscribcd bclow. 

8.1 A Matching Procedure for Descriptions of Similar Grey Scale 
Forms 

’I‘his section dcscribcs a matching proccdurc for dcscriptions of tlic samc or similar objccts from 
two imagcs. Thc invcstigxion of such matching is a rcscarch topic which we cxpcct to pursuc in the 
ncar hturc. Thc procedures dcscribcd below arc vcry prcliminary; matching tccliniqucs wcrc not 
within thc scopc of the rcscarch proposcd for this disscrtation. ‘These tccliniqucs wcrc invcstigatcd to 
assist thc dcrnonstration of thc uscfulncss of thc representation for matching, and to show the 
invariance of thc rcprcscntation to changes of the sizc and orientation of a gray-scale form. 

Matching is trcatcd as a problcm of comparing a reference dcscription to a mcasurcd description. 
In this proccss the rcfcrencc dcscription is transformed in sizc, orientation, and position so as to bring 
its cornponcnts into corrcspondcnce with the mcasurcd data. The goal of this proccss is to dctcrminc: 

0 thc ovcrall rclative position, orientation, and size of the of thc forms rcprescntcd in the 
two descriptions, 

which M*-nodes, M-nodcs, and I,-nodes in the rcfcrcncc dcscription corrcspond to which 
M*-nodes, M-nodes, and L-nodes in the mcasurcd description (thc corrcspondence 
mapping), 

0 local rclativc changcs in position, orientation, .and sizc bctwccn parts of thc reference 
dcscription and the corresponding parts of thc mcasurcd description, 

0 parts in cithcr of the descriptions that do not occur in the otbcr description. 

Such matching consists of scveral steps: 

1. lnitial alignrncnt: In this stage the most global M*-nodc(s) is(arc) used to dctcrmine the 
rclativc positions and sizes of thc two dcscriptions. 

13Although this tcchniquc has bccn tricd for a few hand cxamplcs, wc havc not. as of this writing, tricd IO implcmcnt it in 
codc. 
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2. Orientation: Given the rclativc positions and sizes. thc corrcspondcnce of M-nodes and 
I.-nodes in the few levels below the most global M*-node(s) can be uscd to estimate the 
relativc orientations of thc two dcscriptions. ‘Ihis corrcspondcncc can be found by the 
samc procedure used for the following task. 

3. Corrcspondcnce of M-nodes: Each lcvcl in which thcrc is morc than one M-node in the 
description of a form. givcs a gr:iph composcd of M-nodcs connected by ridges (P-paths). 
Each P-path has thc attributcs of distance and orientation bctwecn the M-nodcs at either 
end. ‘I‘echniqucs exist for dctcrmining thc corrcspondencc between nodes in such a pair 
of  graphs. Indccd. when thc number of nodcs is small it is not unreasonable to 
exhaustiwly examine cvcry possible corrcspondcncc. A similarity mcnsurc. such as the 
average difference in the lengths and orientations of thc P-paths may be used to 
dctcrminc the corrcspondcnce which is most likely. A fundamental principlc in matching 
descriptions from an SIIOG transform is to use thc corrcspondencc at the prcvious (lowcr 
frequency) lcvel to constrain the set of possible corrcspondcnccs at thc next (higher 
frcquency and highcr rcsolution) lcvel. This prevcnts the computational complcxity of 
maiching hl-nodes from growing exponcntially as the nuinbcr of M-nodes grows 
cxponcntially with incrcasing resolution. 

4. Corrcspondcncc of L-nodes: Forms which arc elongated can rcsult in a description 
which contains fcw M-nodcs. ‘l’he shapc of such forms can be cornparcd by comparing 
the L-paths in their descriptions. Comparing L-paths consists of two stages: 

e alignmcnt of thc I,-paths by aligning the M*-nodes which terminate thee I,-paths at 
cach end. and 

e computing the distaiicc of cach L-node in the reference L-path to thc nearest L- 
node i n  thc mcasured L-path. 

Dctcrmining the correspondence of individual L-nodes in two dcscriptions is not a 
rcasonablc approach because the distance betwccii L-nodcs in an Id-path varies by as 
much as a factor of ~ with oricntation. Mcasuring thc distancc from cach I,-node in 
onc description to the nearest L-node on the sccond dcscription allows the measures of 
maximum distancc and avcragc distance to be uscd to compare the entire L-path 

8.2 Test Data 

‘T’hc matching techniques dcscribcd in this chaptcr are illustrated with rcprcscntations from five 
tcapot imagcs.14 ‘I‘hcsc imagcs wcrc formcd by photographing a scene composcd of a tcapot flanked 
on cithcr sidc by a cup; all of thcsc objccts are on a whitc table cloth. ‘I’lic photographs wcrc taken 
with a 35 mm camcra using a 55 mm Icns and Pan-X black and white film. l l c  ncgativcs were 
digitized by Slii-International to 512 by 512 by 8 bits. Test images of the teapots wcrc formed by 
cropping 256 by 256 pixcl scctions from each imagc. ‘I’hc pixcl values in these cropped scctions were 
thcn normalizcd to have a mcan of 128 and a standard deviation of 32. 

I 4 A  snth ~capot image was also formcd and processed but thc tapc on which the image was stored bccimc unreadable 
during picparation of this disscrtation 
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Images wcrc formcd at threc scales by mo\,ing thc tcapot away from the camera. This movcmcnt 
changed the position of the tcapot and cups with rcspcct to thc lights. causing somc changcs in 
shading and shadows among the ima_ces of different sizcs. 'I'hc distances arc such that if  thc size of 
the sniallcst tcapot image is dcfincd as 1.0, the middlc scale imagcs arc larger by a factor of 1.14 and 
the largest imagcs arc largcr by a factor of 1.36. 

At cach distancc, a second photograph was taken with thc camera tilted by approxiniatcly -15". 
' 1 ' 1 1 ~ ~  rlicrc here originally six tcapot irnagcs. l'hc scdlcs and 2-11 oricntations of thc fivc imagcs 
shown in this chapter arc summarizcd in table 8-1. 

T e a m  Size Oricntation 
1 1.0 O 0  
2 1.14 0" 
3 1.36 O0 
4 1.0 - 1 5 O  
5 1.14 -15' 

'Table 8-1: S i x  and Oricntation of five Tcapot lmagcs 

Rcproductions of thcsc five test iinagcs arc displayed below in figures 8-1 through 8-5. To produce 
tlicsc figures, thc original digitized imagcs wcrc displayed with thc Grinncll imagc display on tlie 
C-MU Computcr Scicncc Ilcpt. IUS VAX. Each display was momcd by a factor of 2 to simiilatc the 
cropping that produccd thc tcapot imagc. The zoomed imagcs wcrc thcn photographcd with the 
Dunn film rccordcr attached to thc Grinncll monitor. Thc rcsulting 8" by 10" glossy prints wcrc thcn 
half-toncd to produce the images shown in figures 8-1 through 8-5. 

Section 8.4 bclow describes the results of matching for teapot images # 1 through # 5 .  

8.2.1 Example of Band-Pass Images of Teapot 

Following thc pictures of thc test data is a picturc showing thc band-pass imagcs for tcapot #l. 
'I'hc format for this band-pass imagc is shown in figurc 8-6. 'I'hc actual band-pass imagcs for tcapot 
# I  arc shown in figurc 8-7. 7'hc lcvcl 0 band-pass imagc (also known as thc high-pass rcsiduc) is 
shown in thc lower right corncr. Thc uppcr lcft corncr shows thc Icvcl 1 band-pass imagc. 'I'hc lcvel 2 
band-pass imagc is shown in t1ic upper right corncr. ?kc lcvcl 3 and 4 band-pass imagcs arc shown 
undcrncath thc lcvcl 1 imagc and so on, down to lcvcl 13. 

17c cvcn lcvcl imagcs ( lcvcls 2. 4. 6,...,12 ) are sampled at fi. In ordcr to display thcse images 
on a rastcr display, cach pixcl on an odd row is uscd to fill the undcfincd location to its right, and 
each pixcl on an cvcn row is uscd to fill thc undcfincd location on its lcft. 'I'his crcatcs an intcrlocking 
brick-like tcxturc in thc display. This filling was donc only for display purposes. 

'l'hc band-pass lcvcls 12 through 5 arc important to thc cxamplcs givcn in scction 8.4. Sincc thcsc 
lcvcls arc so hard to scc in figurc 8-7, thcy arc shown cnlargcd i n  figurc 8-9. 'I'his figurc was formed 
by zooming thc display of lcvcls 12 through 5 by a filctor of 4. 'I'hc format for this irnagc is shown in 
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Figure 8-1: Teapot #1. Size = 1.0, Orientation = 0.0" 
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Figure 8-2: Teapot #2. Size = 1.14, Orientation = 0.0" 
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Figure 8-3: Teapot #3. Size = 1.36, Orientation = 0.0' 
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Figure 8-4: Teapot #4. Size = 1.0, Orientation = -15.0' 
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Figure 8-5: Teapot #5 .  Size = 1.14, Orientation = -15.0' 
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figurc 8-8. Rec:iusc of the zoom, thc brick-like display texture, and the individual pixels arc much 
more \,isiblc in figure 8-9. 7'he intercstcd reader may wish to refer back to this figure while reading 
the cxamplcs in section 8.4. 
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Level 5 

Level 1 

Level 6 

Level 3 Level 4 

Level 2 

Level 0 
(High - Pass Residue) 

Figure 8-6: Format for Display of Band-Pass 1,cvcls 13 through 0 
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Figure 8-7: Band-Pass Images for Levels 13 Through 0 of Teapot # 1 
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Level 5 

Level 7 Level 8 

Level 6 

Figure 8-8: Format for Display of Zoomcd nand-Pass 1 .cvcls 13 through 5 
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Figure 8-9: Zoomed Band-Pass Images for Levcls 13 Through 5 of Teapot # 1 
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8.3 Matching M-Paths 

This scction dcscribcs how thc M-paths from two rcprcsentations may bc matchcd to dctcrminc 
the corrcspondcncc of M-nodes. 'I'hc tcchniqucs describcd in this section cmploy only information 
that is intrinsic to M-paths and P-paths. For clarity thc section starts by describing how this 
information is obtained from the reprcscntation. l'his additional information may bc thought of as 
cithcr an abstraction from the rcprcscntation, or as something that is computcd from the 
rcprcscntation "on thc fly". Aftcr this M-node rcprcscntation is dcscribcd, thc proccss of obtaining 
thc initial alignment based on the highcst lcicl (lowcst rcsolution) M* nodc is dcscribcd. The 
corrcspondcncc of l o w r  lcvcl nodcs i n  thc tcst imagcs is thcn shown. 

The proccsscs dcscribcd in this section will not work for gray-scalc forms which arc vcry long and 
thin (c.g. roads, rivers, bars. stripes ctc.) and do not haw cnds within the irnagc. Thcsc forms are 
describcd primarily by L-Paths. Matching I,-paths is discusscd in section 8.5. 

8.3.1 Abstracting M-Paths from the Respresentation 

Unles a gray scalc form is a thin form with its cnd off of thc image, it will havc onc or more 
M-Paths in its rcprescntation. The M-nodes in thesc M-paths provide tokcns for aligning pairs of 
rcprcscntations and dctcrmining whcthcr structures that cxist in onc imagc also cxist in anothcr, as 
wcll as dctcrmining how the structurcs diffcr in two imagcs. Dctermining the corrcspondcncc of 
M-Paths in two rcprcscntations dcpcnds on information which is intrinsic to the M-nodcs and the 
P-paths that conncct bl-nodcs. In order to illustrate M-path corrcspondcncc morc clcarly this section 
dcscribcs this information and how it may be obtained from thc rcprcscntation. 'I'hc first conccpt 
that must bc clucidatcd is that of conncctcd M-nodes. 

8.3.1.1 Strongly Connected M-Nodes 

Ilcfinition: Two M-Nodes arc said to bc "strongly conncctcd" if and only if: 

1. They exist at thc samc lcvcl of thc samc rcprcscntation, 

2. Thcy arc not adjacent to each other (i.c. arc not part of thc samc M-path ), 

3. Thcy arc linkcd by a P-Path or scquencc of P-Paths. 

Jn most cascs, M-nodcs which arc at the same lcvcl and of thc samc form will bc strongly 
conncctcd. When two M-nodcs arc conncctcd by a P-Path with no intcrvcning M-Nodcs along the 
P-Path bctwccn thcm, thcy arc said to bc "dircctiy" strongly conncctcd. If a third M-Node occurs 
along thc P-Path betwccn thc two M-Nodcs. thcn thc two (outcr) M-Nodcs arc said to bc "indircctly" 
strongly conncctcd. 'l'his distinction will comc in handy when discussing M-Path matching in the 
prcscncc of spurious or missing M-Nodes. 
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8.3.1.2 \YcaLI) Connected R1-Nodes 

1)cfinition: Two M-Nodes are said to be "wcakly conncctcd" if and only if: 

1. 'I'hcy exist at the samc lcvcl of the same rcprcscntation, 

2. They arc not adjacent, 

3 .  'I'hcy arc not linkcd by a 1'-Path at tlicir level, 

4. Othcr h4-Nodcs within one lcvcl in thcir M-Paths arc strongly conncctcd. 

Thc conccpt of wcakly conncctcd M-Nodcs providcs for thc casc whcrc a P-Path has bccn brokcn 
cithcr for reasons intrinsic to thc form or bccausc of an error in  thc P-Path dctcction algorithm. 

Wcakly conncctcd M-Nodcs can be detected by cxarnining thc conncctivity abovc or below them 
in thcir M-Paths. 

M-Nodcs havc ccrtain attributes based on thcir position in thc transform spacc (x.y,k). Thcy also 
havc an attribute that is the valuc of tlic filtcr at that lcvcl and location. Also, if dcsircd, thcy can be 
assjgncd a labcl on the basis of  the configuration of oppositely signed ridges around thcm. Such 
labcling can simplify thc corrcspondcncc proccssc. 

Conncctcd M-Paths arc "linkcd" by two way pointers. Fnch half of a pointer may also be assigned 
thc attrihurcs of distance (I)) and orientation (8),  which arc dcfincd as: 

Distance: 'nic diskincc bctwccn two M-nodcs is thc cartcsian distance incasurcd in terms of 
thc number of samples at that lcvcl. In  lcvels with a fi samplc grid, tlie distance 
along the x and y axcs arc in units of &f. 

orientation: Thc oricntation bctwccn two M-nodcs is the angle bctwecn thc linc that connccts 
thcm and thc x axis in thc positivc dircction (right). For convcntion, this angle 
rangcs from 0' to 359' in thc counter-clockwisc direction. Up is 90°, lcft is 180' 
and down is 270'. 

8.3.1.3 Example of Ahstractcd M-nodcs and P-Paths 

Scvcral figures arc shown in thc ncxt scctions to illustratc conncctcd M-Nodcs and M-Paths from 
thc uppcr lcvcls of tlic tcapot images. 'I'hc following cxamplc illustratcs how these figures arc derived 
from tlic rcprcscntation. 

Figurc 6-10 shows thc M-nodcs and P-nodcs from lcvcl 7 of teapot imagc #I .  Ixvcl 7 is the 
higlicst lcvcl with rnorc than onc M-nodc. Ilccausc of spacc limiti~tions this figurc docs not include 
all of thc ncgativc ridges surrounding thc teapot. 'Ihis figurc shows tlircc positivc M-nodcs, 
conncctcd by P-paths. Also prcscrit is thc ncgativc ridge abovc thc tcapot. thc ncgativc pcak inside 
thc handlc of thc tcapot. and a part of thc ncgativc ridgc bclow and to thc lcft of thc tcapot. Thc 



most important fcaturc of this figitrc is the prcscncc of thc thrcc conncctcd positivc M-nndcs (peaks) 
and the 1'-paths that conncct them. 
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Figurc 8-10: I m c l 7  from lcapot Image #I 
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l'hc thrcc positivc pcaks from lcvcl 7 of tcapot # 1 arc shown abstracted from thc band-pass data 
in figurc 8-1 1. 'I'hc dircct ]'-Path links bctncc'ti thcsc M-nudcs arc illiistratcd wi th  solid arrows and 
labclcd H ith circlcd numbcrs. Thc indircct P-f'ath l ink bctwecn thc right-inost and Icft-most M-nodes 
is shown as ;I dottcd arrow labclcd with thc circlcd nuinbcr 3. 'Ihc numbcrs arc an indcx into a tablc 
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Level 7 

Figure 8-1 1 : M-nodcs and P-Paths for Ixvcl 7 of ‘Teapot # 1 

of attributes. Thc attributes for thcsc particular links arc givcn in tablc 8-2 in thc next scction. This 
sarnc sct of links is includcd in figurc 8-12. Ihcsc numbers arc also uscd to show the corrcspondcncc 
which was assigncd by hand matching betwccn thcse links and the same links in the other teapot 
imagcs. 

8.4 Examples of M-node Correspondence 

This section presents cxamplcs of M-node corrcspondcncc using the most global lcvcls of the 
teapot imagcs. In cach of thc cxamplcs, the M-nodes from thc most global lcvcl (Icvcl 12) to the 
sccond highcst lcvcl with more than onc M-node are used. 

‘Ihis section begins with the M-node graph for lcvcls 12 through 6 of tcapot imagc # I .  This is 
followcd by thc rcsults of hand matching this graph to tcapot image # 3  (scalc = 1.36, orientation = 
0’) and to tcapot imagc #4 (scalc = 1.0, orientation = -15’). Othcr cxamplcs of M-nodc matching 
for thc teapot imagcs arc thcn prcscntcd and discusscd. Thc scction cnds with M-nodc matching for 
tlic uppcr lcvcls of the stcreo pair of papcr wad images. 

Figure 8-12 shows thc uppcr M-nodcs, M-Paths and P-path links for tcapot imagc 1. In  figures 
8-12 and thc otlicr M-nodc graphs, thc M-path links arc shown as a dark line. 1.ighter solid arrows 
arc shown bctwccn dircctly linkcd M-nodcs at each lcvcl. Ilashcd arrows arc shown connccting some 
indircctly linkcd M-nodcs. 

F ~ c h  P-path link in thc M-nodc graphs (such as figure 8-12) is labclcd with a circlcd number. 
‘Ihcsc labcls wcrc assigncd by hand on the basis of thc length and rclativc oricntations of thc P-paths. 
In thc sssignmcnt of tlic labcls in thc sccond lcvcl with more than onc M-nodc. t l ic corrcspondcnce 
ofliic M-nodcs in the lcvel above this level was uscd to constrain thc possiblc sct of corrcspondcnces. 
As mcntioncd abovc, thcse numbers also scrvc as an indcx into a tablc of attributes for thc links. 

‘I‘hcsc attributc tablcs givc thc valucs for dx, dy, D, and 0 for cach P-path link. ‘I’hc positivc 
dircctions for dx and dy arc thc sarnc as uscd in thc imagc: + x  points right, + y  points down. 
Howcvcr, notc that 8 incrcascs in thc countcr-clockwise dircction. In thcsc tablcs, in thc lcvcls which 
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arc a t  a d! sample grid, thc distanccs dx and dy are rccordcd in units of d .  In C ~ S C S  wlicrc an 
M-nodc spans two adjaccnt samples. thc M-nodcs position is assigncd at the mid-point between 
thcm. 'l'his results in  values of dx or dy that have fractional parts of .5 in the Cartesian samplcd levels, 
and .25, .5 or .75 in thc 6 samplcd Ievcls. 

In thcsc tablcs. orientation ( 8 )  is mcasurcd in degrees. On a Cartesian grid, at distances that are 
typically 5 to 10 pixels, angular rcsolution is typically 5 to 10 degrccs. Of course, the longer the 
distmcc, thc morc accurate the cstimatc of orientation. 

8.4.1 M-nodes for Teapot Image # 1 

'I'hc M-nodcs for Ievcls 12 through 6 of tcapot image #1 are shown in figure 8-12. As shown in 
table 8-1 this is the smallcst "non-rotated" tcapot image. In  lcvcls 12 through 9 of  figure 8-12 only a 
single hl-node occurs in thc teapot. l'hcsc M-nodcs all occur within a distancc of two samplcs of the 
M-nodc abovc thcm, and arc thus linkcd into a singlc M-I%".'' This M-path is rcfcrrcd to as the 
principal M-Path. 'I'hc M-nodc at level 8 has the largest valuc along this M-path and is thus marked 
as an M*-nodc. This M*-nodc corresponds to a filter with a positivc ccntcr lobe of radius R, =: IS 
pixcls" ( scc cquation (6.5) ) or a diamctcr of 37 pixels. This corresponds to the form in thc image 
that rcsults from the overlap of the shadow on thc right sidc of the teapot and the darkly glazcd upper 
half of thc rcapot which appcars asa light rcgion in figure 8-l.17 At lcvcl 7, additional detail begins 
to cmcrgc. iM-nodcs oxcur ovcr the uppcr right corner of the tcapot and ovcr llic handlc rcgion. 
'I'hcsc M-nodcs are joincd to the M-nodc on the principal M-path by a P-Path. Thcsc P-Paths are 
illustratcd by a solid arrow. 

'Ilic indircct links bctwccn thc M-node on the principal M-path and othcr M-nodes arc shown as 
dashcd arrows. Thcrc are two rcasons for showing the attributcs of thc indircct links bctwccn these 
M -nodes: 

1. In somc of thc tcapot imagcs, thc M-node corresponding to thc M-nodc of valuc 19 at 
lcvcl7 docs not oxcur. In such a case the indircct link labclcd as 3 occurs as a direct link. 

2. Quanti7ation introduces an crror into thc attributcs 1) and 8 .  The magnitudc of the error 
in thc 1) tcnn is indcpcndcnt of 1). 'I'hus thc proportion of 11 dominlrtcd by the error 
dccrcascs as 11 incrcascs. 'I'hc crror in 0 dccrcascs as I )  increases. Thus longer links 
providc a morc accuratc rncasurc of thc scale and oricntation of the object. 

Fivc M-nodcs occur in lcvcl 6. l h rcc  of thcsc M-nodcs occur undcrncath (within 2 samplcs) of 
M-nodcs from lcvcl 7. 'I'hcsc thrcc M-nodcs arc thus part of thrcc M-paths. 'I'hc rcmaining two 

" ~ h c  M-path links appcar ax straight dark lines in figure 8-12 although in fact Lhcre can bc a lateral shin of up to two 
samplcs bctwccn their positions. M-pah linking was dcscribcd in scction 7.4. 

1 6 ~  pixel is thc sample ratc in thc original image 

17Thc tcapot inisgcs were digitixd from ncgativcs. Thus dark forms appur light in figurcs 8-1 hrough 136. 
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Figure 8-12: M-nodcs and P-Paths for Ixvcls 12 to 6 of Teapot #1 



170 

P-Path Isvel dx dv D 9 
1 7 -6 -2 6.32 161.5' 
2 7 -5 3 5.83 210.9' 

4 6 -4.OdT -2 .ov7  6.32 153.4' 
5 6 - 3 . 2 5 a  l . 5 f i  5.06 205.8' 

7 6 0 . 2 5 f i  3 . 2 5 f i  4.6 265.6' 
8 (48~5) 6 - 7 . 2 5 f i  -0.5fi 10.2 176.1' 
9 (4&5&6&7) 6 -1OdT 2 . 7 5 G  14.6 195.3' 

3 (1&2) 7 -11 1 11.04 185.2" 

6 6 - 3 . O d T  0.0 4.24 180' 

Tablc 8-2: P-Path Links for 1-cvels 7 and 6 of Tcapot # 1 

M-nodes arc in fact thc highcst levcls of two mor-c M-paths. For simplicity, this illustration shows 
only thc indirect links for thc M-nodcs that arc part of cstablishcd M-paths at levcl6. 

Notc that onc of thc h4-nodes at lcvcl6 is an M* node. This M-node corrcsponds to the upper lcft 
corncr of the teapot. This M*-node marks the left end of thc dark region of glazc on the uppcr half 
of thc tcapot. ' n c  width of thc positive ccntcr lobe of thc filtcr which corrcsponds to this M*-nodc 
givcs an approximation of the width of the darkly glazed region. 

8.4.2 Initial Alignment to Obtain Size and Position 

An initial cstimatc of the alignmciit and rclative sizes of two gray scale forms may bc constructed 
by making a corrcspondcncc bctwccn thcir highest lcvcl M*-nodes. This is illustratcd by comparing 
thc M-nodcs and links in figure 8-12 to thosc in figure 8-13 shown bclow. Figure 8-13 shows the 
M-nodcs and P-Path links for tcapot numbcr #3. Iiccall from table 8-1 that tcapot #3 has the same 
oricntation as tcapot #1 and is scalcd largcr in sizc by a factor of 1.36 which is just lcss than fi. 
'I'hc distancc and oricntation for each P-Path link in teapot #3  lcvcls 12 through 7 is shown in table 
8-3 bclow. 

'Thc highest lcvcl M*-nodc in tcapot #3 occurs at lcvcl 9. Thc fact that this M*-nodc is one lcvel 
highcr than the highest lcvcl M*-nodc for teapot #1 confirms that teapot #3 is approximately 
dT largcr than tcapot # 1. 

'l'hc corrcspondcncc of thc highest lcvcl M*-nodcs from thcsc two tcapots givcs an cstimatc of the 
alignmcnt of tlic two teapots as wcll as thc scaling. ' I lc corrcspondcncc tclls LIS thc position at which 
tcapot #1.  scalcd by fi in s ix  will match tcapot # 3 .  l'hc tolcrancc of tlic initial alignmcnt is 
dcpcndcnt on which of thc teapots is dcsignated as a rcfcrcncc pattern. 'I'hc rcfcrencc pattcrn is the 
onc which is scalcd, rotatcd and translatcd so that its componcnts arc brought into corrcspondcnce 
with thc sccond, obscrvcd pattcrn. I n  this matching (as wcll as with stcrco intcrprctation) which 
imagc is uscd as Uic rcfcrcncc iinagc and which imagc is uscd as thc data imagc is arbitrary. The 
tolcrancc of Uic initial position alignmcnt is * the samplc ratc at thc lcvcl of thc M*-nodc in thc data 
imagc. I f  tcapot #3  is dcsignatcd as the data imagc. thcn thc samplc ratc at lcvcl 9 dctcrmincs the 
tolcrancc. 'I'hc positioning tolcrancc at lcvcl 9 is + S f l  pixcls. 
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Figure 8-13: M-nodes and P-Paths for Levels 12 to 7 of Teapot # 3  
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P-Parh I .C\Tl  ds dv D 8 
3 8 - 7 . j f i  I S f i  10.81 191.3' 
4 7 -3.5 -6.0 6.94 149.7' 
5 7 -4.0 1.0 4.12 194.0' 
6 7 -4.5 1.0 4.61 192.0' 
7 7 -0.5 5.0 5.02 264.3 ' 
8 (4as) 7 -10.0 -1s 10.11 171.5' 
9 (4&5&6&7) 7 -1s 3.S 15.4 193.1' 
11 7 -1.5 6.5 6.67 257.0' 

'Table 8-3: P-Path Links for Lcvcls 8 and 7 of Teapot # 3 

Thc tolcrance of thc s i x  scaling is less than 2 6 .  Thc corrcspondcncc of thc highest lcvcl 
hi*-nodcs providcs an cstimatc of thc s i x  scaling factor which is a p m c r  of fi. Such an estimate is 
sufficicnt to constrain the corrcspondcncc proccss. A morc accuratc estimatc can bc obtaincd from 
the average of thc ratio of D's for links %hose correspondcncc has bccn found. An cxai~iple of this 
will bc givcn in the next section. 

. 

8.4.3 Determining Further Correspondence and Orientation 

Thc matching proccss starts by finding the corrcspondcncc for the highest lcvcl M*-nodes. This 
providcs the prcxcss with an initial cstimatcs of thc size and position of the two forms. 'I'hc ncxt step 
is to find thc corrcspondcncc of lowcr lcvcl M-nocies to rcfinc dic cstiinaics of rclativc size ana 
position, discover thc relative oricntations, and discovcr whcrc onc of tlic forms has bccn distorted by 
parallax or o h r  cffccts. 

Lct us continue with our cxamplc. An M-nodc for thc uppcr left corner of tcapot # 3  docs not 
occur. Thc changc in scalc from teapot # 1 to teapot #3 was not cnough to bring this M-node up to 
lcvcl 8. This may also bc a result of thc slight diffcrcncc in shading that resulted from moving the 
teapot with rcspcct to thc lights and camcra in ordcr to s i x  scillc thc objcct. 'l'hc fact that tlic M-node 
of valuc 16 in lcvcl 8 of teapot # 3  corrcsponds to thc M-node of valuc 13 in Icvcl 7 of teapot #1 
must bc discovcrcd from tlic position rclativc to thcir principal M*-nodcs and thc distance and 
oricntation from thc M-node on thc principal M-pad1 at thc samc Icvel. 

l 'hc valucs for I1 and 8 for thc link attributes in lcvcls 7 and 6 of teapot 1 arc compared to the 
attributes in thc corrcsponding links from lcvcls 8 and 7 of teapot 3 in ublc 8-4. 'l'hc rcadcr should 
rcmcmbcr that all of thcsc links arc constraincd to begin and cnd at sainplcs in thcir rcspcctivc Icvcls. 
13ccausc wc arc dcaling with distances of bctwccn 4 and 15 samplcs at ;irbitrary ;rnglcs, llicrc is 
quantization noisc in thcsc attributcs. 'I'hc diffcrcnccs in oricntation arc shown in thc column Ivbclcd 
8,-B,. Except for l ink 3, tlicsc wlucs show a consistcnt sinall rotalion in  Lhc countcr-clt~kwise 
dircction for tlic links from teapot 3. In light of this. thc imngc datn w;is rc-cumincd irfrcr compiling 
this table. Imdrnarks wcrc chosen at thc basc ofthc handle and the bnsc of thc spout in both images. 
In tcnpot # I .  this basclinc had an anglc of 3.8' rclativc to thc rnstcr linc. In tcirpot # 3 ,  this basclinc 
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Teapot 1 Teapot 3 Difference 
q e ,  D,/D, ~ ~ - i i ~  100 x (D~-D, ) /D~  P-Path D, e, *3 

3 11.09 
4 6.3 
5 5.1 
6 4.2 
7 4.6 
8 10.2 
9 14.6 
Average Error 

185' 10.8 191" -6' 
153' 6.9 14s' 5' 
206' 4.1 194" 12' 
180" 4.6 192" 12' 
266" 5.2 264' 2' 
176' 10.1 171" 5' 
195' 15.4 193" 2' 

4.57' 

0.974 
1.095 
0.804 
1.09 
1.13 
0.99 
1 .os 
1.020 

-0.2 
0.6 
1.0 
0.4 
-0.6 
-0.1 
0.8 
0.257 

-1.8% 
8.7% 
24.4% 
8.7% 
-11.5% 
-1.0% 
5.2% 
4.3% 

Table 8-4: Comparison of D and 0 attributes for Tcapots 1 and 3 

had an anglc of 7.1'. Thus it appears that the two tcapots actually haw a rclativc change in 
orientation of approximately 3.3". l'he actual values of B fliictuatc morc than this due to 
quantization error from sampling and changes in shading. 

'Thc ratio D3/D, would show a factor by which thc lengths consistcntly shift whcn thc teapot is 
scalcd by 1.36. Sincc this shift in scalc was enough to drive thc corrcsponding P-paths in tcapot #3  
up to a new lewl, but less than the t/z = 1.41 scale change bctwccn lcvcls, an avcragc ratio of 
D3/D, = 1.36A.41 = 0.96 was anticipatcd. In  ublc 8-4 wc see that this avcragc ratio workcd out to 
1.02. Our conclusion is that quantization noisc and changes in shading accountcd for most of this 
diffcrcnce. 'Ihc actual diffcrcnccs in length, D, - D,, show that the lengths were always within one 
sample. Exccpt for link 5, the pcrccntagc diffcrcnces, (D3- D,)/D, were gcncrally small ( 510%). 
'Ihc conclusion from this cxpcrimcnt is that the corrcspondcnce bctwccn M-nodes from similar 
gray-scalc forms of diffcrcnt sijrcs can be found. providcd that the matching tolcratcs variations of the 
lcngtlis of P-paths of up to 25% and variations in the rclativc angles of up to 12'. 

8.4.4 Correspondence of M-nodes Under Rotation 

Figure 8-14 shows thc M-nodes, M-paths, and P-path links for levels 12 through 6 of teapot image 
#4. This tcapot imagc is thc samc  si^ as tcapot imagc #1, but rotatcd by approximatcly -15'. 
Figurc 8-14 contains all of thc M-nodcs found in figurc 8-12 (tcapot # 1) plus onc additional M-node 
at lcvcl 6. l'hc valucs for dx, dy. 11, and B for tlic links in tcapot 4 arc shown in tablc 8-5. lhcse 
values are compared to thosc from tcapot # 1 in tablc 8-6. 

This comparison shows an avcragc rotation for thc P-Paths in teapot #4 of -13.7' with rcspcct to 
thc P-Paths in tcapot # I .  'I'his is vcry closc to tlic -15' which thc rotation was cstimatcd to be from 
thc photographs. As with thc size scaling example in thc previous scction, all of thc lengths match 
within onc samplc. 'I'hc pcrccntagc diffcrcncc in thc lcngth of links rangcs from -9% to 14%. 
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62 M Level 12 

1 

I 

I 

I 

66 M Level 11 

68M Level 10 

75 M Level 9 

16 M 

Level 8 

Level 7 

Level 6 

Figure 8-14: M-nodcs and P-Paths for Lcvcls 12 to 6 ofTeapot #4 
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P-PiIth 1 .evcl dx d Y D, e. 
1 7 -6 -3 6.71 l j 3  ' 
2 7 

4 6 
5 6 
6 6 
7 6 
8 (4825) 6 
9 (4&5&6&7) 6 
10 6 

3 (1&2) 7 
-5 
-11 
-2.5dT 
- 3 . 7 5 f i  
-3.25dT 
-0.75dT 
- 6 . 2 5 G  
-10.25dT 
2.5 fi 

2 
-1 
-3.OV'T 

-0.75 dF 

-2.75 dT 

0.25dT 

3.75 dF 

0.25dT 
2.5dT 

5.38 
11.04 
5.52 
5.31 
4.72 
5.4 
9.65 
14.50 
5.0 

202 ' 
185' 
130' 
184' 
167 ' 
256 ' 
153' 
179' 
315' 

'Fable 8-5: P-Path Links for I m ~ l s  7 and 6 of Teapot #4 

Teapot 1 Teapot 4 Di ffcrcnce 
P-Path D, 81 D4 $4 8,-B4 D,/D, D4-D1 100 x (D4-D1)/D4 

1 6.3 161' 6.7 153" 8' 1.06 0.388 5.7% 
2 5.8 211' 5.3 202' 9' 0.914 -0.5 -9.4% 
3 11.0 185" 11 185" 0' 1.0 0.0 0.0% 

5 5.1 206' 5.3 184' 22' 1.039 0.2 3.7% 
4 6.3 153' 5.52 130' 23" 0.876 -0.7 -12.7% 

6 4.2 180" 4.7 167' 13' 1.119 0.5 10.6% 
7 4.6 265' 5.4 256' 9' 1.174 0.8 14.8% 
8 10.2 176' 9.6 153' 23' 0.931 -0.7 -7.3% 
9 14.6 195' 14.5 179' 16' 0.992 -0.1 -0.72% 
Avcragc Error 13.7" 1.012 -0.121 0.52% 

Table 8-6: Comparison of D and B attributes for 'I'capots #1 and #4 

8.4.5 Examples of Site Change Less than fi 

'Ihis subscction shows thc rcsult of hand matching thc uppcr lcvcls of teapots #2 and # 5 .  'I'capot 
# 2  is thc samc oricntation as tcapot #1, but digitizcd approximatcly 1.14 largcr. Tcapot #5 is 
approximatcly thc samc s ix  as tcapot #2, but oricntcd at -15'. I3ccausc of thc changc in scalc and 
lighting. both of Lhcsc tcapot imagcs contain additional M-nodcs in thcir uppcr Icvcls. 

Figurc 8-15 shows thc M-nodcs. M-paths, and P-paths links for lcvcls 12 through 6 of tcapot image 
#2. I_cvel 7 of tcapot #2 contains 3 additional M-nodcs that did not occur i n  lcvcl 7 of'l'capots #1 
and #4. or lcvcl 8 of tcapot #3. 'I'hcsc M-nodcs arc all at thc top of M-paths that start at lcvcl 6 of 
tcapots #1 and # 4  and lcvcl 7 of tcapot #3. l'hc small scalc changc bctwccn tcapot # I  and tcapot 
# 2  was cnough to bring thcsc M-nodcs up to thc ncxt Icvcl. l l c s c  P-paths arc not labclcd in figure 
8-15 and thcir attributes arc not includcd in tablc 8-7. 
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Table 5-7 sh0u.s thc attributcs of tbc ]-'-paths in  figure 8-15 which wcrc matched by h a ~ d  to the 
P-paths from teapot # 1. Thcsc valucs arc cotnparcd to thuse of tcapot # 1 in table 5-8. 

This comparison shows that cach of thc P-Paths links in teapot # 2  are slightly ktrgcr than the 
corresponding links in teapot #l. with thc avcragc ratio of lcngths bcing 1.19. This is slightly larger 
than the 1.13 cstimatcd from the photographs, but well within the cxpccted rangc. Thc avcrage 
mismatch of P-path links was 1.57 samplcs. The perccntage change in thc Icngths of the P-paths 
ri~rigcci from 8% to 27% with an averagc of 14%. 

The M-nodes, M-paths, and P-path l inks for tcnpot # 5  are shown in figure 8-16 below. Teapot 
# 5  is scalcd largcr than teapot #1 by approximatcly 1.14 and rotatcd in the imagc plane by 
approximatcly -15". This teapot was supposcd to h a w  hccn a rotation of tcapot #2. Howcvcr, the 
lighting was changcd bctwccn thc photoprcrphing of teapot imagc # 2  and tcapot inlagc # 5 .  As a 
rcsult the shadow on the right side of tcapot # 5  appcars to hc sli_shtly larger than that of tcapot #2. 
This slight increase in sizc is sufficient to cause the M-nodc in the uppcr lcft corner to appcar at level 
8. and to shift the M* node from level 8 to level 9. It  also causes an additional M-node (value 32) to 
appcar along P-path number 5. Despite these changcs, thc P-paths which wcrc idcntificd in the 
earlicr examples are still detectable in teapot #5 .  'nit attributes for the P-paths of teapot # 5  are 
shown in table 8-9. These attributes arc compared to those of teapot #1 in table 8-10 and to those of 
tcapot #2 in table 8-11. 

' 

The avcragc values for the comparison of the lengths and orientations of dic P-parhs from teapot 
# 5  to those of teapot #1 arc very close to the expected valucs. As shown in ublc  8-10. the diffcrencc 
in orientation ranges from 4' to 26". with an average valuc of 14.22 ", which is very close to the 15" 
difference of orientation that was measurcd from the photographs. Thc ratio of thc lengths of P-paths 
rangc from 0.93 to 1.45, with an average value of 1.13. This is also very close to the change in size of a 
factor of 1.14 which was estimated from the photographs. 

The results of comparing the lengths and orientations of P-path links from tcapot # 5  to those of 
teapot #2. shown in table 8-11, are also reasonably closc to the expected values. Tcapot # 5  is 
approximatcly the same size as teapot #2. but rotatcd by approximately -15'. 'I'hc ratio of the lcngths 
of thc P-paths ranged from 0.77 to 1.34 with an avcragc valuc of 0.96. I'hc diffcrcricc in orientation 
of thc P-paths ranged from -13' to 32 ' with an avcragc value of 10.33". 'I'hc match of P-path 6 
stands out in this table as having the largest diffcrencc in oricntation ( 32' ) as well as thc smallest 
ratio of lcngths ( 0.77 ). P-path 7 scems .to correct for this abcrration by having a ratio of lcngths of 
1.34 and an difference of orientation of 9". The cause of this aberration sccms to bc that thc M-node 
to which P-path 6 points in teapot imagc #2 is "out of place" by 1 or 2 samplcs. Chccking back to 
thc comparison of teapot # 1 to teapot #2, shown in table 8-8. shows h a t  this samc P-path was the 
largest sourcc of crror in both orientation and length in that table also. Our conclusion is that 
bccausc of a change in shading, this M-node sccms to havc bccn shiftcd in position in thc image of 
tcapot #2. This aberration illustrates that whcn an M-node is slightly shiftcd in position, thc crror is 
averaged out by the lengths and orientations uf thc P-palhs going to h c  M-node and thosc coming 
from it. 'J'hc conclusion is Lliat dic avcragc ratio of lcngths and the avcragc oriciitation o f  I'-paths is a 
rcasonablc feature to use in determining the best correspondence of a set of M-nodes from a level of 
h e  dcscriptions of two images. 
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Figure 8-15: M-nodcs and P-Paths for Lcvcls 12 to 6 of Teapot #2 
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P-Path I .cvcl dx dv D 8 
1 7 -7 -2 7.28 164' 
2 7 -6 1 6.08 189" 
3 (1&2) 7 -14 2 14.14 188" 
4 6 -4.5d-f - 2 . m  7.28 151" 
5 6 - 4 . 0 6  l .Ot /Z-  5.83 194 ' 
6 6 -4.0dT l . O d  5.83 194' 
7 6 0.5 fi 3 . M  5.0 262 ' 
8 (4&5) 6 - 8 . 5 f i  - 1 . 5 6  12.2 170' 
9 (4&5&6&7) 6 -13.0dT 3.0dT 18.6 193' 

Table 8-7: P-Path Links for Lcvcls 7 and 6 of Tcapot #2 

Tcapot 1 Tcapot 2 Diffcrcnce 
P-Path D, 6, D2 82 8,-8, l12/D, D2-D, 100 x (I12-D1)/D2 

1 6.3 161' 7.28 164" -3' 1.16 0.98 13.4% 
2 5.8 211' 6.0 189" 22' 1.048 0.2 3.2% 

4 6.3 153' 7.28 151' 2" 1.16 0.98 13.4% 
5 5.1 206' 5.83 194' 12" 1.143 0.73 1.2% 
6 4.2 180' 5.83 194' -14' 1.388 1.63 27.9% 
7 4.6 265' 5.0 261' 4' 1.087 0.4 8% 
8 10.2 176' 12.2 170" 6' 1.196 2.0 16.4% 

Avcragc Error 3.11" 1.19 1.57 14.1% 

3 11.0 185' 14.14 188' -3' 1.285 3.0 21.2% 

9 14.6 195' 18.8 193' 2' 1.287 4.2 22.2% 

Table 8-8: Comparison of D and 8 attributes for Teapots # 1 and #2 

8.4.6 Summary of Teapot Matching Examples 

'I'hc cxamplcs shown above illustrate that the graphs of M-nodcs conncctcd by Y-path links from 
two images of  similar objects can bc matchcd dcspitc changes in thc s i x  and oricntation of thc objcct 
bctwccn thc two images. ncforc advancing to a simplc cxamplc of how thc rcprcscntation can be 
uscd to find stcrco corrcspondcncc. Ict us summarizc thc cxamplcs that have bccn prcscntcd. 

'I'his section began with an cxamplc of how thc graph of M-iiodcs. conncctcd by P-paths, is fonncd 
from a lcvcl of thc dcscription. This cxamplc showcd how thc M-nodcs and P-path links are 
abstractcd from lcvcl7 of tcapot image # 1. 

Next, it was shown how M-nodcs from scvcral adjacent lcvcls form M-paths that give a 
incrcasingly dctailcd dcscription of structurcs in an imagc. 'I'hc M-nodcs from lcvcls 12 through 6 of 
tcapot imagc # 1 wcrc prcscntcd, with thc P-path links that conncct M-nodcs at cach Icvcl. 'J'hc table 
of attributes for cach P-path link was also prcscnted. 
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Figure 8-16: M-nodcs and P-Paths for Levels 12 to 6 of Teapot # 5  
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1'- 1'2 t h I .eve1 dx dv D e 

2 7 -5 2 5.39 202 ' 
1 7 -7 -3 7.61 157' 

3 (1&2) 7 -12 -1 12.0 175' 
4 6 - 3 2 4  - 3  - .  5 d T  7.0 135' 
5 6 -4.OV'T 0 5.65 180' 
6 6 - 3 . O t 6  -1.ol.6 4.47 162' 
7 6 -1.5dT 4 . 5 a  6.70 252' 
8 (485) 6 - 7 . M  -2.5l.6 11.18 162' 
9 (4&5&6&7) 6 -12.0V'T 0 16.97 180' 
10 6 3 . 0 f i  3 . 0 f l  6 .O 315' 
11 6 2 . 0 ~  5.0\/jl 7.6 248 ' 
12 6 -7.OV'T -1.5 10.12 168 ' 

Tahle 8-9: P-Path lainks for 1,cvcls 7 and 6 of'reapoc # 5  

Teapot 1 Teapot 5 Difference 
P-Path D, 01 *, e, e,-e, D,/D, D,-D, 100 x (D,-I~,)~D, 

1 6.3 161 ' 7.62 157" 4' 1.21 1.32 17.3% 
2 5.8 211' ' 5.39 202' 9O '0.93 -0.41 
3 11.0 185' 12.04 175' 10" 1.09 1.04 
4 6.3 153' 7.0 135' 18" 1.11 0.70 
5 5.1 206' 5.65 180' 26' 1.10 0.55 
6 4.2 180' 4.47 162' 18' 1.06 0.27 
7 4.6 265' 6.70 252' 13' 1.45 2.1 
8 10.2 176' 11.2 162' 14' 1.09 1.0 
9 14.6 195' 16.97 180' 15' 1.16 2.37 
Avcragc Error 14.22' 1.13 0.99 

-7.6% 
8.6 
10.0% 
9.7% 
6.0% 
31.3% 
8.9% 
13.9% 
10.9% 

l'ahle 8-10: Comparison of 1) and 8 attributcs for Teapots #1 and # 5  

Tcapot 2 Tcapot 5 Di ffcrcnce 
e,-e, D,/D, q i i 2  100 x (D,-D,)/D, D, 8, P-Path D2 L 

1 7.28 164' 7.62 157' 
2 6 .O 189' 5.39 202' 
3 14.14 188' 12.04 175O 
4 7.28 15l0 7.0 135' 
5 5.83 194' 5.65 180' 
6 5.83 194' 4.47 162' 
7 5 .O 261' 6.70 252" 
8 12.2 170' 11.2 162' 
9 18.8 193' 16.97 180' 
Avcragc Error 

7' 
-13' 
13 ' 
16' 
14 ' 
32 ' 

8' 
1 3 O  

10.34' 

9 O  

1.05 0.34 
0.90 -0.61 
0.85 -2.10 
0.96 -0.28 
0.97 -0.18 
0.77 -1.36 
1.34 1.7 
0.92 -1.0 
0.90 -1.83 
0.96 -0.591 

4.5% 
-11.3% 
-17.4% 
-4.0% 
-3.0% 
-30.4% 
25.4% 
-8.9% 
-10.8% 
-6.2% 

'I'ahlc 8-1 1: Cornpiirison o f  1)  and 8 attributcs for 'I'capots 2 and 5 

'I'hc LISC of thc principal M-path and highcst lcvcl M*-nodc was thcn shown for aligning two 
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dcscriptions to gct an initial estimate of the differcncc in size and position. ' In this subsection a 
cornparison was made of the M-node graphs froin teapot #1 to Llic M-node graphs of tcapot # 3 .  It 
was shown that the corrcspondcncc could bc found despite a change in s i x o f  approximately 1.36 by 
shifting thc h4-nodc graph from the larger imagc down by onc lcvcl. It was also s h o ~ . n  that this shift 
L+LIS dictated by the difference in the I c ~ l  at which the highcst M*-node occurred in the two 
dcscriptions. 

A n  cxample was thcn givcn of thc corrcspondencc that occurs whcn thc objcct has becn rotated. 
Thc 1'-path links from teapot # 1 wcrc compared to those of teapot #4, which is of tlic same size, but 
rotated by = -14". Further examples were thcn presented which showed how thc matching is 
affcctcd by changes of sizc which arc less than a factor of fi. 

'I'hc ncxt scction illustrates how this representation can be used to determine the corrcspondencc 
from a stereo pair of images. 

8.4.7 Stereo Matching Example 

A stereo pair of images was formcd of a papcr-wad to tcst thc use of thc representation for 
dctcrmining thc corrcspondcnce bctwccn structural components in a stcrco pair of images. ' h e  
original images arc shown with thc output from die low pass filters in figures 8-19 and 8-21. ' h e  
format of thc low-pass images is snown in figure 8-18. Unlike the band-pass images, it is thc odd 
numhcred low-pass images which are dcfincd on a fi samplc p id .  In forming thcce low-pass 
imagcs, thc undcfincd pixels wcrc left with a value of zero. 'I'hus the odd numbered low-pass lcvels 
appcar with much lcss intensity than the cvcn numbered low-pass images. In cach of thc low-pass 
figures. the original image appears in the lower right comer. 

'I'hc rcsulting band-pass imagcs arc shown in figures 8-20 and 8-22. Thc format for thcsc band- 
pass imagcs is thc same as shown in figurc 8-6 in section 8.2. 

The scene was formcd by placing thc papcr wad on a dark lab bench undcr a desk lamp. A vidicon 
camcra. mounted on a tripod, was placed approximatcly 14 inches from the paper wad. and thc left 
image was digitixd using the Grinncll digitim. 'Ihc camcra was thcn movcd to the right 
approximately 6 inches and tilted so that the papcr wad was located i n  roughly thc samc part of the 
irnagc. 'I'his tilt anglc was approximatcly 20". 'l'hc right imagc was then digitized. 

l'hc purpose of this cxpcrimcnt was to test thc usc of the rcprcscntation for determining the 
corrcspondcncc of parts of thc two images. No attempt was planncd or made to usc this 
corrcspondcncc to dctcrminc the actual distances to surracc points on thc papcr wad. 

'I'hc M-nodcs for Ixvcls 13 through 9 of thc two papcr wads arc shown in figurc 8-17 bclow. Then 
corrcspondcncc bctwecn M-nodcs was assigned by hand. 'h i s  corrcspondcncc is illustratcd by the 
d;ishcd ;trrows i n  figure 8- 17. 15ch corrcspondcncc is labclcd with thc displ;iccmcnt, dx, dy, bctwccn 
the actual positions of thc M-nodcs in thc two images. Assigning thcsc corrcspondcnccs wiis a trivial 
trisk because of tlic small numbcr of M-nodcs at cach Icvcl. Evcn when thc nuinbcr of M-nodes 
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incrcascd at the I c \ ~ l s  below I c \ ~ l  9. thc correspondences at the prcvious Icvel constrain the possible 
correym~dcnccs so that there is ofrcn no choice as to which M-nodes correspond. 

Note that at level 30, two M-nodes occur in the right imagc, while only a single M-node occurs in 
the lcfi imagc. This diffcrcnce in structurc is the rcsult of the parallax crcatcd by tlic diffcrcnce in 
pcrspcctive. 1 his illustrates one of the problcms in determining stcrco correspondence: shape 
cliangcs wlicn sccn from di ffcrcnt perspectives. Thus a stereo corrcspondcnce algorithm iiiust be 
ciipable of assigning a sample from onc irnagc to morc than one saniplc in the second. 

_ _  

The conclusion from this cxperimcnt is that the representation can provide an cfficicnt tcchnique 
for dctcrmining the correspondence of structural componcnts in a stcrco pair of images. 
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Figure 8-17: Stcrco Corrcspondcncc ofbl-nodes for Paper Wads, Irvcls 13 through 9 
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Figure 8- 18: Format for Papcr Wad Low-Pass Images 
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Figure 8-19: Left Paper Wad and Low-Pass Images 
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Figure 8-20: Band-Pass irnagcs for Lcft Papcr Wad 
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Figurc 8-21: Right Papcr Wad and Low-Pass Images 
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Figure 8-22: Band-Pass imagcs for Right Paper Wad 



189 

8.5 Matching L-Paths 

Whcn a gray scale form has componcnts which are long and thin, ridges, or P-paths occur along 
this componcnt in several adjacent levels in the Samplcd 1)Ol.P (or SDOG) transform. This 
information is cncodcd by finding thc level where the rcsponsc is of tlic Il0I.P filtcr is strongest 
along thc path followcd by the ridges. These strongest P-nodes arc labeled as I,-nodcs by a process 
dcscribcd in the prcvious chapter and connected togcthcr to form an L-path. In  some situations, 
particularly iii structur;iI pattern rccognition, identifying or discriminating objccts rcqiiircs bcing ablc 
to nieasurc thc similarity of  I,-paths from two rcprcscntations. This scction is conccrncd with this 
problcm. 

8.5.1 Two stages of Matching 

As with any curve matching problcm, thcrc are two stagcs to matching L-paths: 

1. An alignment stage: In this stage the L-path from thc rcfcrence rcprcscntation is 
positioncd. oricntcd, and scaled so that will be in its closest correspondence with the 
mcasurcd 1,-path. 

2. A Similarity Measure: In this stage, some measure of the "goodncss of fit" is calculated 
between the two L-paths. 

8.5.2 L-Path Alignment 

'Ihe previous scction concerned thc problcm of determining thc corrcspondcnce bctwecn the 
rcprcscntations of two gray-scale forms, which are at different positions, scalcs, and/or oricntations. 
'I'hesc tcchniques employed M-nodes and M*-nodes as landmarks which are brought into 
corrcspondcnce. In most cases, I,-paths arc tcrminatcd at each cnd by an M*-node. 'I'wo ]*-paths are 
aligned by aligning their terminating M*-nodcs. 'This section shows how the corrcspondcncc of the 
tcrminating M*-nodes is uscd to scalc, shift and rotate the rcferencc I,-path so that it is in 
corrcspondcnce with the measured 1,-path. 

8.5.2.1 I,-Path Notation and Attrihutes 

I.ct us dcfinc the values along an ].-path as a scquencc: Li. Fach I,-node has attributes of filter 
value and location as well as a set of pointers to adjaccnt I.-nodes or M-nodes on thc I,-path. The 
location of the ith I,-node in Ihc I,-path bcforc applying thcsc linear transformations is (x,. yi, ki). 
This location is in terms of pixcls from the origiilal image. 

Onc of the two M*-nodes must bc selected as a "distinguished" for the orientation attribute, for 
indcxing and for computing thc linear traiisforins. If onc M*-node is at a h i g h  level than thc other, 
this is chosen as the distinguishcd M*-node. Othcrwisc, thc choice is arbitrary. 
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7’hc cntirc I--path also has a sct of attributcs which arc similar to those dcscribcd for P-paths in the 
prcvious scction. ‘Ihc attributcs of an I,-path arc dctcrmincd by the rclativc positions i n  thc SDOG 

of the terminating M*-nodes. The I--path attributes are: 

A I . :  Thc diffcrencc in lcvcls hctwccn two tcrminatin_g M*-nodcs. This is computed as the 
lcvcl of thc distingiiishcd M*-nodc minus thc lcvcl of thc othcr M*-node. 

0 Ill.: The cartcsian distancc between thc M*-nodcs mcasurcd in pixcls from thc original 
image. 

0 OL,: Thc orientation of thc vcctor from thc distinguishcd M*-nodc to thc othcr M*-node. 

8.5.2.2 :\ligniiicnt Parameters: 

Matching occurs by aligning a rcfcrence rcprescntation to a measured rcprcscntation. Finding the 
corrcspondcncc bctwccn thc tcrminating M*-nodes of the rcfcrcnce I.-path and thc M*-iiodcs of thc 
mcasurcd L-path gives thc paramctcrs for position, scalc, and oricntation for aligning thc rcfcrcnce 
I,-path to the mcasurcd data. ’l’hcsc parameters are uscd by a sct of lincar transforms that arc applicd 
to thc rcfcrencc I*-path to bring it to corrcspondcncc with thc mcasurcd I--path. ‘l’hcsc transforms 
and thcir parameters arc as follows: 

~ k :  thc changc in lcvcl that must bc applicd to onc L-path so that it may match a sccond 
L-path. Each incrcmcnt of 1 in Ak scalcs thc I*-path by a factor of df in size. 

Ad: A small scalc changc dctcrmincd by thc corrcspondcnce of the tcrminrrting M*-nodes 
aitcr Ihcy havc bccn sliifted to llie same Icwls. Ad = Drn/Dr whcre llrn is the length 
attributc of thc mcasurcd L-path and Dr is thc lcngth attributc of tlic rcfcrcncc 1,-path 
aftcr it has bccn scalcd to account for shifting by A k  Icvcls. ’l’his small scaling accounts 
for minor dcviations in thc total lcngtli of the L-path. l h i s  scalc change is applicd to the 
distancc bctwccn each I--nodc and thc M*-nodc which is uscd as a starting point for the 
matching. 

0 ~ 8 :  ‘I’hc rotation of thc L-path. The I.-paths arc originally cncodcd on cartcsian and 
fi samplc grids. A 8  rotatcs onc of the I.-paths so that its L-nodcs occur at rcal valued 
(or high rcsolution intcgcr valucd) points. Thc result is a rcquircmcnt for a rulc which 
rclatcs thc valuc at such a rcal-valucd point to thc values at ncarby discrctc samplc points. 
A ncarcst-ncighbor rulc is dcscribcd bclow for this. 

(x,y,): This is thc location of thc distinguishcd M*-node. 

IR’lhc SI)OG spacc is the scl of points defined by chc sct of band-pass imagcs (x, y. k). 
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8.5.2.3 Alignmcnt Function: 

I.ct us call the composite of thcsc linear transformations thc "alignment fiinction", N x l ,  yi, k,; Ak, 
30. Ad, x,, y,). I 'hc rcsult of this alignmcnt function is a real valucd location cxprcsscd in terms of 
pixcls from thc incasurcd image. Rcal \alucd \ariablcs will be dcnotcd b) a tildc, " - ". 'l'hc aligncd 
locarions will bc dcnotcd by a prime ('). Thus thc alignmcnt function, A(xl. y!, kl:  Ak, Ad,  Ad, x,, y,) 
produccs thc real Ialucd location: E;. y"; at level kf. 

Eacli I,-node has bccn initially recorded at  some location. xi. pi. k,. T l ~ e  corrcspondcncc process 
has plnccd the distinguished M*-node at some discrete point in the SIIOG spacc. (x,. y,, k,). The 
alignmcnt function opcratcs on thc displaccmcnt of thc L-nodc at Ax. A y  from thc distinguishcd 
M*-nodc. Thus the proccdure starts by computing this displacement: 

AX, Ay = X, - Xi, y, - Xi 

1,c~cl shift: Shifting the L-nodc by Ak levels scalcs Ax, Ay by a powcr of fi to form A?,, A?,. 

A?,, AY, = A X  2Ak'2, Ay 2Aw2 (8.1) 

Small Scaling: These distances are then scalcd a second timc by the small scalc change Ad. 

AE2, A F 2  = AZlAd, Ay",Ad (8.2) 

Rotation: 'Ihc rcsulting values are then rotated an angle of Ad by computing: 

A?3 = A ? 2 c ~ S ( A 8 )  + Ay"2Sin(A8) 
~y~ = -A?2Sin(A8) + ~ ) ' ~ C o s ( ~ d )  

(8.3) 

'I'hc rcsulting displaccmcnts arc then addcd to the location of thc distinguishcd M*-node to 
produce thc real valucd location XI, y"; at level ki: 

(2;. Ff, ki) = A(xi, yi, ki; A k ,  Ad, Ad, xr, y,) 
= x, + AZ3, y, + AYY ki + Ak 

(8.4) 

'I'hc aligncd position of each I,-nodc must thcn bc compared with thc mcasurcd I,-path to compute 
an crror mcasurc. 'I'hc similarity function is a function of the crror mcasurc at cach I,-node in the 
rcfcrcncc L-path. 

8.5.3 Similarity Measure 

An I.-Path is a curvc in a discrete 3-11 spacc (thc 1>OI,P transform spacc). 'I'hcrc are scvcral 
functions which can bc uscd to measure thc similnrity bctwccn two such curves. In this section we 
givc cxamplcs of similarity mcasures bascd on thc cuclidean distancc bctwccn cach 1,-nodc in the 
rcfcrcncc L-path (which has bccn scalcd and rotated) and thc ncarcst 1,-nodc in thc incasurcd L-path. 

Thc mcasurc that wc have chosen for thc cxamplcs in this scction is bascd on thc following 
p ri nc i plcs: 
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1. 'There is not ncccssarily a one to one correspondence bctwccn I .-nodes in an I_-path. This 
is bccausc of of thc distance bctwecn samplcs at different oricntations. 'I'hus thc measure 
should not pcnali~c for a lack of one to one correspondence. 

2. Similarity should not dcpend on the valuc attribute of the I--nodes. l'hc value attribute is 
scnsitivc to the image gain. 

3 .  'I'hc similarity measure should bc composed of a sum of similarity mcasurcs which tell the 
mismatch at each I--nodc in the rcfcrcncc I,-path. 

4. 'I-lic similarity mcasurc for an cntirc ]*-path should bc indcperidcnt of thc lcngth of an 
L-path. 

'l'hcsc principles lcad to the following similarity measure: 

After cach I,-nodc from the reference I--path has becn aligned, it is associated to the nearest 
I,-nodc from the mcasurcd data. 'The ncarcst nodc may be detcimincd by the "brute forcc" approach 
of computing thc Cartesian distance in thc SDOG space to several or all of thc I,-nodcs in thc 
measurcd I_-path. Alternatively, morc cfficicnt tcchniqucs, such as "chamfcr matching" may be used 
[Ijarrow cd]. I n  the following cxamplcs a differcncc in lcvcls is trcatcd as a distance equal to the 
samplc rate at tlic Icvcl to which the L-nodc was aligned. 'I'his distancc may be adjusted to make 
matchcs across lcvcls morc or less likely according to the application. 

'The cartcsian distances arc initially computcd in tcnns of pixcls (samplcs from thc original image). 
This distance is then divided by the sample rate at thc lcvcl to which the rcfcrcncc I,-node was 
transformcd, to compcnsatc for thc differcncc in samplc rates at each level. This division normalizes 
thc distance so that a mismatch by one sample gives the same error at each level. 

Thus thc error mcasure, E,, at each refcrcnce nodc, L,, is obtained by finding the ncarcst measured 
node. Ian = (xn, yn,kn), computing the cartcsian distance in pixcls, and dividing by thc sample rate at 
level k,. 

where: 

Either thc average of thcsc distances o r  thc largest such distance may bc uscd as a mcasurc of how 
wcll thc transformcd rcfcrcncc l,-,nath matched the mcasurcd L-path. 

Notice that this similarity mcasurc is not cotnmutativc. I t  is possiblc for an I.-node in the 
mcasurcd I.-path to bc far from any 1,-nodc in thc rcfcrcncc I.-path. and thus not bc found as a 
ncarcst neighbor by any of tlic transfonncd ],-nodes from thc rcfcrcncc I.-path. If  thc rolcs of 
mcasurcd and rcfcrcncc arc rcvcrscd this I,-nodc might contribute a much largcr distmcc than any 
distance obscrvcd wlicn thc rolcs wcrc not rcvcrscd. 
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8.5.4 Examples of L-path Alignment and Matching 

This subsection givcs examples of the usc of thc alignment function and the similarity mcasure. 
The 1,-path that describes thc shadow on the right side of cach teapot is iiscd in these cxamplcs. 'lhis 
shadow docs not have a wcll dcfincd shape.19 At the uppcr right corncr of the tcapor, thc shadow 
nicrgcs with thc darkly glazed upper half of thc tcapot. In thc lowcr half of the tcapot. thc lcft edge 
of thc shadow is vcry hard to discern. As is oftcn the casc in i! cylindrical shapcd object, thc intensity 
falls gradually as thc surface oricntation moves away from the light soirrcc. Visually determining the 
cdgc of the shadow is firrthcr complicated by the surfacc tcxturc of the tcapot. ' h i s  this shadow is a 
good cxnmplc of thc description by an I,-path of a form without distinct boundarics. 

Figiirc 8-23 shows this L-path for tcapot In this figurc, cach nodc is rcprcscntcd by two 
lincs of letters and numbcrs. 'I'hc top linc consists of the SDOG transform \~ l i rc ,  the nodc type ( M*, 
M. o r  I - ) ,  and thc levcl (in angle brackets). For cxamplc, 75 M* <8>. rcfcrs to an M*-nodc of value 75 
at lcvcl S. 'I'he sccond line givcs the relative position of the node with reqxct to the distin_cuislicd 
M*-node in pixels from thc original image. Thcsc numbcrs arc (AX,  ~ y ) .  I n  tlic distinguished node, 
thc sccond linc givcs thc actual position of thc nodc. Also shown are thc attributcs of thc cntire 
1,-path: 

e A I > :  (written as dl,) thc change in lcvcls between the M*-nodes; 

e D: thc length of thc I,-path in pixcls; and, 

8 :  (written as Anglc) the oricntation of the vcctor from thc distinguished M*-nodc to the 
othcr M*-node. 

Fnch L-node has a circlcd numbcr bcsidc it. Thcsc numbcrs serves as an idcntificr in thc tables 
tliat illustratcd I--nodc corrcspondcncc and distance. 

Figurc 8-24 shows the I.-path which dcscribcs the same shadow in tcapot # 3 .  Thc corrcspondcnce 
bctwccn I,-nodcs aftcr the I.-path from tcapot # 3  has bcen rotated and scalcd to match thc 1,-path 
from tcapot # 1, is shown in figurc 8-25 and tablc 8-12. 'l'hc corrcspondcncc in figurc 8-25 is shown 
with dashcd arrows. 'I'ablc 8-12 lists thc locations to which thc 1.-nodcs from tcapot # 3  wcre 
transformcd and thc closcst L-nodc from tcapot # 1. 'l'hc column labclcd distancc is thc cartcsian 
distancc bctwccn thc transfonncd rcfcrcncc nodc and tlic ncarcst measured nodc cxprcsscd i n  pixcls 
(samplcs in thc original image). 'I'hc column labclcd "crror" shows thc rcsult of dividing this distance 
by tlic samplc ratc at thc lcvcl o f  to which the rcfcrcncc nodc was transfornicd. At thc bottom of the 
tablc is the average crror and tlic Inrgcst error. 

19Scc figurcs 8-1 through 8-5 

20Nok: ihc sign of thc "y" tcrrn is rcvcrscd i n  all of' thc fgurcs and iablcs in ihis scciion ' h i s  h:is ihc crfccci of making 
anglcs incrcaw positivcly in thc countcr-clockwise dircciion. lhus y and fl arc consisicni with ihc righi-handcd coordinate 
syslcm usually uscd by humans insicnd orthc Icft-hnndcd coordinatc sysicni usunllg uscd in iniagc processing. ' h i s  also kccps 
ihc anglcs used i n  this scction consisicnt with thosc givcn i n  thc cxamplcs in scciion 8.4. 
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Reference M*-node .-> 75 M* <8> 0 
(161, 113) 

/ 
Teapot # l  

(Right Shadow) 

dL = 3 

D = 40.19 

Angle = 276 

Format: 

Value Symbol <level> 
(dx, dY, dk) 

Figure 8-23: L-path from l’capot # 1 

‘I’hc top linc of table 8-12 shows thc changc in attributes bctwccn the two I,-paths. A L  is the 
diffcrcncc in  lcvcls bctwccn thc distinguishcd M*-nodcs. Dm/Dr is thc ratio of the Icngths of the 
mcnsurcd (m) to thc rcfcrcncc (r)  I.-paths. ‘I’his ratio is computcd with Icngtli mcasurcd in  pixels 
bcforc thc rcfcrcncc I,-path is shifted by Ak lcvcls. ‘I’hus this ratio is the product of thc match 
paramctcrs ~d and 2Ak’2 Lhat wcrc dcscribcd abovc. A8 is thc diffcrcncc in anglcs. ’Ihc program that 
matchcd thcsc two ],-paths transformcd thc rcfcrcncc 1.-path by dividing cach distancc by Uic ratio of 
thc Icngrhs and rotating by Uic diffcrcncc in anglcs. ’I’ablc 8-13 shows thc results of tr~insforming tlic 
1,-path from ’l’capot # 1 to match that of’l’cclpot # 3 .  In both tablc 8-12 and tablc 8-13 a onc-to-one 
corrcspondcncc was found bctwccn I.-nodcs and ttic crror is always lcss Uian onc sample. 
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Teapot #3 

dL = 3 

D = 44.72 

Angle = 280.3 

89 M* <9> 0 
(161,145) 

30 L <8> @ 
0 

(8,409 -1 ) 

38 M <7> 
(8,40 -2) 

1 

1 
8 1 

41 M* <6> 
(8,449 -3) 

Figurc 8-24: I,-path from Tcapot # 3  

‘I’ransliirming thc ],-path from tcapot #3  to bc in corrcspondcncc with thc smiillcr I_-path from 
teapot # 1 gavc a worst casc crror is 0.824 samplcs and the avcragc crror is 0.32. Matching thc I,-path 
from lhc largcr tcapot # 1 to thc largcr tcnpot # 3  gavc a worst casc crror of 0.648 samplcs and an 
avcragc crror of 0.30 satnplcs. ’I’hus, dcspitc a scalc changc of = 1.36 bctwccn thc two imagcs, 
aligning thc terminating M*-nodcs brought the I,-path from the cach imagc into a rcnsonably close 
corrcspondcncc with thc I,-path from thc othcr image. 

Figurc 8-26 shows thc ],-path from thc shadow in tcapot imagc #4. ’I’hc corrcspondcncc of 
transformcd I.-nodcs from tcapot # 4  to thc 1,-nodcs of teapot # I  is shown in figurc 8-27. ?’he 
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- -- 
3 75M*<8> 

(161,113) 

- -  @ 89M*<9> 
(161, 145) 

/ 

44 L <8> 

35 L <7> 
/ 4- (0,329 -1) 

\ / 

\ 
@ 30L<8> 

@ 38M<7> 

@ 41 M*<6> - 

39 M <6> - -3 (4,36 -2) 
1 c- 

/-- 

(81 4 0 ~  -I) 

41 M* <5> (89 4 0 ~  -*) 

(8,449 -3) 

/ - -3 (4,40, -3) 
8 

Teapot #3 Teapot # 1  

Figure 8-25: I,-path Corrcspondcncc: 
I,-Path from Teapot # 3  l’ransformcd to Match I*-path from Teapot # 1 

correspondence of L-nodes and their distances are shown in table 8-14. I*-node number 3 in the 
].-path from teapot #4 might be considered spurious. ‘l’his I,-nodc is slightly to the lcft of thc rest of 
the I,-path and without it, the two I--paths would have the same number of I--nodes. None-the-less, 
it matches 1,-node 3 from teapot 1 to within 0.55 of a sample while J>-nodcs 2 and 4 are off by more 
than a samplc. Note also that due to the changc in orientation of thcsc two I,-paths there is not a 
one-to-one correspondence. 130th ],-nodes 2 and 3 of tcapot #4  match to l<-nodc 3 of Teapot #1 
and both I.-nodes 5 and 6 of tci-ipot #4 match to I,-nodc 5 of teapot #1. I,-nodc 2 of teapot #1  is 
not found to be the nearest neighbor by any I,-node from teapot #4. 
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Transform of Teapot # 3 to Match Teapot # 1 

AL = -1, I>,/D, = 0.S9. A$ = -9.18' 

Nodes from teapot # 3 
Transform of Rcfercnce Node 
Nodc A: A? Ak Nodc A x  A V  Ak diqtance error 
1 0.00 0.00 0 1 0.00 0.00 0 0.000 0.000 
2 -1.15 14.33 0 2 -8.00 8.00 0 9.329 0.824 
3 -2.30 28.67 0 3 -8.00 24.00 0 7.366 0.651 
4 4.28 36.41 -1 4 0.00 31.99 -1 6.155 0.769 
5 4.28 36.41 -2 5 4.00 35.99 -2 0.505 0.089 
6 4.00 40.00 -3 6 4.00 40.00 -3 0.000 0.000 

Nodcs from teapot # 1 
Closest Mcasurcc! Node 

Avcragc Error = 0.38 
Worst Error = 0.82 

Table 8-12: Correspondence and Distancc for Transform of 
I--path from Teapot # 3 to Match L-path from Teapot # 1 

Transform of Teapot # 1 to Match Teapot # 3 

AL = 1, D,/D, = 1.11, A B  = 9.18' 

Nodcs from teapot # 1 
Transform of Rcfercnce Node 
Node A? A? A k  Node Ax A v  Ak distance error 
1 0.00 0.00 0 1 0.00 0.00 0 0.000 0.000 
2 -8.15 9.58 0 2 0.00 15.99 0 10.378 0.648 
3 -6.73 27.32 0 3 0.00 31.99 0 8.195 0.512 
4 2.85 35.48 -1 4 8.00 40.00 -1 6.847 0.605 
5 7.64 39.56 -2 5 8.00 40.00 -2 0.562 0.070 
6 7.99 44.00 -3 6 8.00 43.99 -3 0.000 0.000 

Nodes from teapot # 3 
Closest Mcasured Node 

Avcragc Error = 0.30 
Worst Error = 0.64 

Table 8-13: Correspondence and Distances for Transform of 
L-path from Teapot # 1 to Match Tcapot #3 

'I'ablc 8-15 shows the result of transforming and matching thc 1,-nodcs from thc I,-path in teapot 
#1 to thc 1,-path from teapot #4. 'I'hc corrcspondcncc bctwccn 1,-nodes in this tablc is different 
than those for thc match from teapot #4 to tcapot # I .  In this casc thc worst casc crror was 0.901, 
which is less than a sample. l h c  avcragc crror, 0.48 is also smaller in this casc. Nodc 2 from teapot 
# 1, which gavc thc largest worst casc distance in tablc 8-14 was not found to be a closcst nciglibor to 
any of thc l,-nodcs form tcapot 4. Nodc 3 from teapot #4, which appcarcd to bc spurious, actually 
fcll within 0.552 samples of a I,-nodc 3 from tcapot #l. 

The I,-path for the right shadow in teapot #2 is shown in figure 8-28. The result of matching this 
I .-path to that of tcapot # 1 is shown in tablc 8-16. Ikspitc tlic changc in scalc of 1.14 bctwccn thcse 
two images these two l--paths have cxactly the samc lengths and orientations. lliffercnccs in position 
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Teapot # 4  

dL = 3 

D = 36.2 

Angle = 264 

78 M' <8> 
(145,81) 

I 
45 L <6> 0 
(0,329 -2) 

I 
f 

50 M <6> 

1 (-4,36 -2) 
8 
0 I 

52 M* <5> 
(-4,36, -3) 

Figure 8-26: L-path from Tcapot #4 

rclativc to thc samplc, howcvcr, causc L-nodcs 4 and 5 in thesc 1,-paths to cach bc off by 1 sample at 
thcir lcvels. 

Figurc 8-29 shows thc ],-path from tcapot #5.  This imagc is scalcd by a factor of 1.14 and rotatcd 
by -15" from tcapot # I .  'I'hc M*-nodes in thc 1,-paths occiir such that thcrc is an anglc of 37.4" 
bctwccn thcm. I h c  rcadcr may rccall that tcapot # 5  had an M*-nodc that occurcd irt lcvcl 9, whcn it 
was cxpcctcd to occur at lcvcl 8. As a result. this I.-path spans 4 Icvcls. This I,-pnth nlso has two 
I,-nodcs that arc -2 lcvcls bclow thc root M*-nodc. 'Ihc rcsults which this had on finding the 
corrcspondcncc is shown in tablc 8-17. 
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75 M* <8> 0 @ 78M*<8> - - - - 3 (161,113) 

/ (145, 81) 

@ 45L<6> 
(0,329 -2) 

I 

I 
@ 50M<6> 

(-4,36 -2) 
I @ 52M* <5> 

(-4,36, -3) 
8 

Teapot # 4  Teapot #1  

Pigiirc 8-27: I.-path Corrcspondcncc: 
L-Path from 'l'capot # 4  'I'ransformcd to Match I ,-path from 'l'capot # 1 

As can bc sccn from tablc 8-17, thc alignmcnt of thc highcst lcvcl M*-nodc from tcapot #1 with 
that of tcapot # S  caused scvcral of tlic I.-nodcs from tcapot # to find thcir ncarcst ncighbor at a 
lowcr Icvcl. Such "across Icvcl" matchcs add a wciglit of 1 samplc to tlic crror distance. Both 
I,-nodcs 2 and 3 from tcapot # found 1 .-nodc 3 of tcapot 5 to bc thc closcst ncighbor aftcr alignmcnt. 
I.-nodc 3 from tcapot # 1 had to look up onc lcvcl to find this match, with an crror of 1.090 satnplcs. 
Nodc 3 fi.om ~capot # 1 also found its closcst ncighhor from tcapot # 5  in ; i n  iippcr Ickcl, giving an 
crror of 1.269 samplcs. Partly as a rcsult of all thc across lcvcl matchcs, thc avcragc crror was 0.85 
samplus and thc worst casc crror was 1.37 samplcs. 



200 

Transform of Tcapot # 4 to Match ‘Tcapot # 1 

AL = 0, D,/D, = 1.10, A8 = 24.10’ 

Nodcs from teapot #4  
l’mnsfmn of Rcfcrcncc Nodc 
Nodc 42 AL\V 4k Nodc A x  A Y  Ak dismncc crror 
1 0.00 0.00 0 1 0.00 0.00 0 0.000 0.000 
2 3.70 17.36 0 3 -8.00 24.00 0 13.456 1.189 
3 -3.12 27.90 0 3 -8.00 24.00 0 6.246 0.552 
4 5.56 26.04 -1 4 0.00 31.99 -1 8.145 1.018 
5 7.41 34.73 -2 5 4.00 35.99 -2 3.642 0.643 
6 4.00 39.99 -2 5 4.00 35.99 -2 3.999 0.707 
7 4.00 39.99 -3 6 4.00 40.00 -3 0.000 0.000 

Nodcs from teapot # 1 
Closest Mcawrcd Node 

Average Error = 0.58 
Worst Error = 1.18 

Table 8-14: Correspondence of Transfonncd I,-nodcs from Teapot #4 
to I_-nodes from Teapot # 1 

Transform ofl’eapot # 1 to Match Teapot # 4 

A L  = 0, D,/1>, = 0.90, A 8  = -24.10’ 

Nodcs from tcapot # 1 
Transform of Rcfcrencc Node 
Nodc A? A? Ak Nodc A x  A v  Ak distancc crror 
1 0.00 0.00 0 1 0.00 0.00 0 0.000 0.000 
2 -8.55 5.54 0 1 0.00 0.00 0 10.194 0.901 
3 -11.56 19.64 0 3 -8.00 24.00 0 5.638 0.497 
4 -6.01 28.19 -1 4 0.00 24.00 -1 7.339 0.917 
5 -3.24 32.47 -2 5 0.00 31.99 -2 3.282 0.580 
6 -4.00 36.00 -3 7 -4.00 35.99 -3 0.000 0.000 

Nodes from tcapot #4 
Closest Measured Node 

Avcragc Error = 0.48 
Worst Error = 0.91 

‘iahlc 8-1 5: Corrcspondcnce of l’ransformcd L-nodes from Teapot # 1 
to L-nodcs from ‘I’capot #4 

8.5.5 Summary of L-path Matching Examples 

‘I’hc first cxamplc prcscntcd abovc was thc match of thc 1,-paths bctwccn tcapot # 1 to tcapot #3. 
‘ h i s  illustratcd matching bctwccn imagcs whcn thc objcct has bccn scalcd by ciosc to in size. In 
this cxamplc, thcrc was a onc-to-onc corrcspondcncc bctwccn thc I .-nodcs from thc two imagcs, for 
both thc casc whcn thc 1 ,-path from tcapot # 1 was scalcd and rotatcd and thc ncarcst neighbor was 
sought from teapot # 3  and whcn the 1,-path from teapot #3  was scaled and thc ncnrcst neighbor 
from tcapot # 1 was sought. In both cascs all of thc corrcspondcnccs wcrc found within oiic sample. 
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Teapot #2 

dL = 3 

D = 40.19 

Angle = 264 

70 M* <8> 0 
(185, 153) 

/ 

34 L <8> 
(-8,249 0) 

I 

I 

i -  

27 M <7> 
(0,329 -1) 

34 M <6> 
(0,40 -2) 

36 M* <5> 
(4,409 -3) 

Iigurc 8-28: I,-path from Teapot #2 

In thc third and fourth cxamplcs. the 1,-path from tcapot # 1  was matchcd to that of teapot #4. 
‘I’capot #4 is of thc s3mc scalc as tcapot # 1 .  but rotatcd by approximatcly -15’. ‘I’hc diffcrcncc in 
position of thc tcrniinaiing M*-nodcs Icd to a diffcrcncc of anglc bctwccn thc two 1,-paths of 
approximatcly 2 4 O .  Also, thc ]--path from teapot #4 was 0.90 thc lcngth of thc one from tcnpot #l. 
This diffcrcncc in lcngth and oricntation Icd to a diffcrcncc in thc numbcr of I,-nodes in thc two 
I.-paths. ‘I’hcrc was not a onc-to-onc corrcspondcncc in thc matches of thc two I.-paths. Whcn the 
I.-path from teapot # 4  was scalcd and rotatcd to match thc onc from tcapot ## 1. two of tiic I,-nodcs 
found tlicir ncarcst match more than onc samplc away, with the worst bcing 1.189 samplcs away. ‘I’hc 
avcragc distiincc was 0.58 smplcs. Whcn thc I,-nodcs from tcapot # 1 wcrc compared to thosc of 
tcnpot #4. thc worst case mntchcs was 0.91 slimplcs and thc avcrasc error was 0.48 samplcs. 
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Transform of Teapot # 2 to Match Teapot # 1 

AL = 0, lIm/Dr = 1.00. A 8  = 0.00’ 

Nodes from teapot #2 
Transform of Rcfercncc Node 
Node A %  A? Ak Node A x  Av Ak distance crror 
1 0.00 0.00 0 1 0.00 0.00 0 0.000 0.000 
2 -8.00 8.00 0 2 -8.00 8.00 0 0.000 0.000 
3 -8.00 24.00 0 3 -8.00 24.00 0 0.000 0.000 
4 -8.00 31.99 -1 4 0.00 31.99 -1 8.000 1.000 
5 0.00 40.00 -2 5 4.00 35.99 -2 5.656 1.000 
6 4.00 40.00 -3 6 4.00 40.00 -3 0.000 0.000 

Nodes from teapot # 1 
Closest Mcasurcd Node 

Avcragc Error = 0.33 
Worst Error = 1.00 

l‘ahlc 8-16: Corrcspondcncc of L-nodcs and Distanccs for Transform of 
I<-path from Teapot # 2  to Match ’Teapot #1 

I n  thc next matching example the L-path from teapot #2 was matchcd to that of tcapot # l .  
Teapot # 2  is 1.15 largcr than tcapot #l. Thc two L-paths had exactly the samc Icngth and 
oricntation. All of the L-nodes cxccpt two found their ncarcst ncighbor at a distancc of 0.0 samplcs. 
’l’hcse two I,-nodes found their nearcst ncighbor 1.0 samples away. 

In the final cxamplc, thc I.-path from teapot # 5  was comparcd to that of tcapot # 1. Teapot #5 is 
rotatcd by -15’ and scalcd by 1.15 from teapot # I .  The principal M*-node in tcapot #5 was one 
lcvcl higher than cxpcctcd, and this had a big effcct on thc matching of thcsc two 1,-paths. Many of 
thc ncarcst neighbors in thios cxainple were found across level. 

Our conclusion from these cxpcrimcnts is that thc L-path matching proccdurc and similarity 
nicasure dcscribcd above gives a rcasonablc cstimatc of the of thc similarity of I,-paths from two 
bnagcs. l’hc worst mismatch bctwecn individual L-nodes in all of thcsc cxainplcs was 1.37 samples 
whilc thc worst avcragc crror distance was 0.85. This matching proccdurc gives tlic ability to 
comparc I,-paths from any oricntation and length. and spanning any numbcr of Icvcls. ‘l’hc simple 
similarity mcasurcs of worst distance and avcragc distance provide a uscful mcasurc of  the similarity 
of I .-paths from two images. 
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Teapot 5 

82 M* <9> 0 
(1 77, 129) 

dL = 4 

D = 36.87 

Angle = 257 @ 46L<8> - 62 L <9> 
(-161 16, -1) (0,161 0) 

\ 
36 L <7> 3 

(-81 24, -2) 

38 M <7> 0 
(-8,32 -2) I 

8 I 
42 M <6> 
(-8,32 -3) I 

0 I 
43 M* <5> 
(-8,36, -4) 

Figure 8-29: I,-path from Teapot # 5  
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Transform of'reapot # 5 to Match Teapot # 1 

A I -  = -1 .  DJD~ = 1.09, A e  = 37.42' 

Nodes from teapot # 5  
Transform of Refercncc Node 
Node A: A: i,k Node Ax A V  Ak distance error 
1 0.00 0.00 0 1 0.00 0.00 0 0.000 0.000 
2 5.59 16.52 0 3 -8.00 24.00 0 15.516 1.371 
3 -10.92 22.11 -1 3 -8.00 24.00 0 8.723 1.090 
4 0.13 27.58 -2 4 0.00 31.99 -1 7.178 1.269 
5 2.93 35.84 -2 5 4.00 35.99 -2 1.080 0.191 
6 2.93 35.84 -3 5 4.00 35.99 -2 4.143 1.035 
7 4.32 39.97 -4 6 4.00 40.00 -3 2.847 1.006 

Nodes from teapot # 1 
Closest Mcnsurcd Node 

Avcragc Error = 0.85 
Worst Error = 1.37 

l'ablc 8-17: Transform of L-path from Teapot #I  to Match Teapot # 5  
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Chapter 9 
Discussion 

‘l’his cliaptcr prcscnts a discussion of applications of the DOLP transforni and a discussion of how 
thc propcrtics of thc rcprcscntation for gray scale shape could be proven with cxpcriments. 

9.1 Applications of the DOLP Transform 

‘I’hc 1101,P transform, in both its l-D and 2-D form, can be uscful as a rcprcscntation for a variety 
Characteristics of thc DOLP of applications requiring signal detection or signal description. 

transform that makc it uscfiil in signal dctcction situations are: 

0 I t  providcs a hnction for dctccting pulscs that is not dependent on the sharpness of the 
boundary or thc uniqueness of the amplitude of the pulse; 

0 It scparatcs pulses of differcnt durations so that they may be dctcctcd indcpcndently; 

0 It provides a way of dctccting a pulse whose width is not known a priori; 

0 I t  providcs a way to find the rcsolution at which some dcsircd signal occurs; 

I h c  following paragraphs claboratc on thcsc characteristics. 

9.1.1 Detecting Ill-defined Pulses 

‘I’hc 1101 .P transform providcs a tcchniqiie for dctccting pulscs in 1-D signals and rcgions in 2-D 
signals which is not dcpcndcnt on thc sharpncss of thc boundary of thc pulsc or rcgion. Indccd, 
within Ihc 11OJ.P transform thc boundary is a scparatc signal at a highcr rcsolution. In a 1-11 signal 
this ability can bc uscd to find blurred pulscs of a particular frcqucncy, cvcn in thc prcscncc of noise. 
For a 2-11 signal thc 1101.P transform providcs a simplc tcchniquc for dctccting and describing small 
2-11 rcgions. A 2-11 rcgion will appear as a local maxima in thc DOIP transfrom. ‘I’his maxima may 
bc trackcd in consccutivc framcs without a scarch process. 

I h c  1101J’ trijnsfonn is also uscful for dctccting the orientation of a surfacc from tcxturc CUCS. An 
image tcxturc is usually composcd of clcmcnts at a particular sct of sizcs. In many natural tcxturcs, 
thc shapcs of thc individual clcmcnts may bc random. If thc s i x  of tJic physical objccts which 
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correspond to thc regions is known, the distance to the surfacc may be inferred from the s i x  of thc 
tcxture clcmcnts. Furthur-morc the orientation of the surface may bc inferred from thc gradient of 
the s i x .  For cithcr process, the size of the the texture clcments may bc mcasurcd by dctccting local 
maxima in thc 3-spacc of the 1101.P transfrom. ‘I’lic level at which tlic maxima occurs givcs an 
cstimatc of the si1.e of the clcmcnt. This’simple dctcction schcmc will cvcn work whcn thc shapcs of 
the individual clcmenrs vary randomly. 

9.1.2 Detecting Pulses of Different Durations 

The DO1 .P transfrom scparatcs a signal into band-pass componcnts. Each band-pass clianncl 
rcsponds to signals of a particular rangc of durations ( in 1-11 ) or widths ( in 2-1) ). This propcrty can 
bc used t o  dctcct ovcrlapping signals of diffcrcnt durations which arc superimposcd in thc samc 
imagc. For cxamplc, consider printing on a textured or nonuniform surface, such that the patterns or 
blotches on thc surfacc arc much larger than the printed letters. A DOLP transform of thc imagc will 
separate thc characters of the writing from the pattern on the papers, allow citlicr thc pattern or the 
writing to bc dctectcd by tlircsholding. 

9.1.3 When Width is not known A-Priori 

‘l‘lic DOLP transform channcls are sensitive to frcqucncy ranges which arc exponentially spaced 
and cover thc rangc from the smallcst to the largest signal representable in tlic imagc. This property 
can be uschl for dctccting a signal whose width ( or duration ) is not known a-priori. Such a signal 
will rcsult in a local maximum in at least one of the DOLP channels. 

9.1.4 Automatic Focus 

Whcn a camcra is out of focus the cffcct is the same as convolving a low-pass blurring hnction 
with thc imagc. It is possiblc to mcasurc whcthcr a lcnsc is moving toward or away from corrcct 
focus by dctccting thc changc amplitude with which a high frcqucncy pattcrn ( c.g. a thin bar ) is 
dctcctcd by a 1101,P transform channcl. In the case where thc sccnc docs not contain an artificial 
focusing pattcrn of known spatial frcqucncy it is possiblc to scrvo thc focus from thc highest 
frcqucncy lcvcl at which significant signal cncrgy is obscrvcd in a DOLP transfrom. 

9.2 Evaluating Claims 

‘This rcscarch was undcrtakcn to show that it was possiblc to rcsprcscnt an image with a sct of 
band-pass filtcrs and to dctcrminc thc propcrtics of such a rcprcscntation. This rcscarch was 
undcrtakcn with vcry lirnitcd rcsourccs. This rcsourcc limitation has rcstrictcd thc investigation to 
forming thc rcprcscntation of only a fcw images. 

‘Ihc rcscarch has gonc wcll bcyond its original goals; wc have shown that it is not computationally 
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prohibitivc to compute thc convolution of an image with an expontially spaced set of band-pass 
filtcrs; we have shown that such a sct of convolutions can be orsanisred into a revcrsiblc transform; 
we have show11 that thc imagc sliapcs can thcn be rcprcsentaed by dctccting pcaks and ridgcs in the 
band-pass imagcs; Wc h a w  shown that these pcaks and ridgcs can be dctcctcd b y  local processes. 

9.2.1 Claims Concerning the Representation for Shape 

Thc primary claim of this diwrtation is that thc rcprescntation of a shape bascd on thc 2-D 
Samplcd DO1.P transfrom which is describcd in chaptcrs 6 and 7 can bc matched cfficicntly. A 
sccondary claim is that this rcprcscntation can bc matched rcgardlcss of changcs in thc s i x ,  position, 
or 2-space oricntation of the shape. 

7hc  ability to match hicrarchically from global to local is intrinsic to the structurc of the 
rcprcscntation. In chaptcr 8 we havc dcmonstratcd how this matching is donc. Having such a 
rcprcscntation docs not complctely solvc thc problcm of how to bcst do such matching. Issucs of 
how to organizc thc scarch for a match and what criteria to usc to mcasurc the ovcr all goodness of 
the match must also bc scttled. This rcprcscntation prescnts thc data in a structurc that allows a 
matching proccdure to proccdc hicrarchically, and to USC thc rcsults of a each match to constrain the 
scarch for matching fcaturcs at a morc local level. 

’Ihc hicrarchical naturc of thc rcprcscntation is intrinsic to the DOLP transfrom; it can not bc 
disputed. ‘To provc the uschllncss of such a rcprescntation for matching. it is ncccsary to dcvclop a 
matching algorithm bascd on the reprcscntation. The ability of thc algorithm to producc correct 
results must be dcmonstratcd in a large number of diffcrcnt imagcs. This will providc proof that the 
tcchnique works. 

7hc  computational complexity of the matching algorithm must thcn bc analyzcd. Thc rcsulting 
measurc of computational complcxity should thcn be cornparcd to the complcxity o f  othcr matching 
algorithms. 

9.2.1.1 Invariance to Size and Rotation 

Experiments have shown that thc reprcscntation composed of M-nodcs. M*-nodcs, I,-nodcs and 
P-nodcs is subjcct to cylic distortions whcn a pattcrn shifts in position, sizc or oricntation. As a shape 
incrcascs in six, the M-nodcs, I,-nodcs, and M*-nodcs must makc thc transition to a highcr lcvcl in 
discrctc stcps. Since thcsc transitions are not constraincd to occur simultancously. thc specific 
configuration of nodcs docs changc. This is a cyclic distortion: aftcr thc changc in scalc has advanccd 
by a factor of fi, thc pattcrn will havc rcturncd to its starting configuration. ’I’hc cffccts of change 
in position arc similar: as a pattcrn movcs ovcr a distancc which is onc samplc ratc at Uic lcvcl of its 
highcst M*-node. the M-nodes, 1,-nodcs, M*-nodcs and P-nodcs in thc rcprcscntation move to the 
ncxt samplc at  in discrctc stcps that arc not constraincd to occur simultancously. Ilowcvcr, aftcr the 
pattcrn has shiftcd by the distancc of onc samplc at any Icvcl, all of thc nodcs at thc Icvcl and lower 
will havc rcturncd to the same configuration. ‘I’his bchaviour is suggcstcd by rcasoning and 
confirmcd with cxpcrimcnts with squarcs and rcctanglcs. Thc cxccption to thc cyclic dcgradation 
from a position shift occurs whcn a pattcrn shifts closcr ( lcss than its diamctcr) to a sccond pattcrn. 
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It is possible to construct a second, more abstract, dcscription which compensates for the cyclic 
distortions. ' h i s  description, described in chapter 8, is composed of M-paths, M*-nodes, and L- 
paths. Whilc this representation is not subjcct to the cyclic distortions. there remain certain illusions 
which can altcr the rcprcscntation of a shapc as it underges a transformation in size. position, or 
orientation. So far all of Ihc illusions which have such an cffcct also causc distortions in the 
perception of the form by the human visual system. 
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Chapter 10 
Summary and Conclusions 

This chapter prescnts a summary of thc contents of the prcccding chaptcrs, a discussion of the 
result$ presented in cach chapter, and thc salicnt conclusions that can be drawn from thcse rcsults. 

10.1 Major Results of this Dissertation 

This dissertation prcscnts rcsults in three areas. 

1. A reversiblc transform ( The Difference of 1-ow Pass or DOIP transform ) for dctecting 
and mathematically representing signals of any number of dimensions. Signals are 
filtered into cxponcntially-spaced spatial frcqucncy bins by convolution with circularly 
symmctric band-pass filtcrs. Thc filters arc six-scalcd copics of a low-pass filtcr minus 
thc samc filtcr scalcd largcr by a scaling factor, S (typically a). This transform rcsolves 
a signal into components of different spatial frequencies. 

2.Tcchniqucs for grcatly specding up the calculation of a DOLP transform using 
resampling and cascadcd filtering with expansion. 

3. A rcprcsentation for 2-D gray-scalc picturcs, based on the samplcd DOG transform, 
which greatly simplifics matching of picture information for structural pattern 
recognition and stcreo interpretation. 

'This dissertation may be divided into tlic following sections: 

0 Background Matcrial (Chaptcrs 1 ,2  and 3); 

Mcasuremcnt, dctcction and mathcrnatical rcprcscntation of nonpcriodic signals ( 
Chaptcrs 4 and 5) ;  

0 Fast computation tcchniqucs for the dctcction tcchnique (Chapter 6) ;  

0 Converting thc mathcmatical rcprcsentation to a symbolic rcprcscntation which dcscribes 
gray-scalc shapc hcirarchically by spatial frcqucncy ( Chapter 7 ); 

0 Examplcs of thc rcprcscntation and its usc for matching, including dcmonstrations of the 
invariance of thc structure of a dcscription to thc size and orientation of Ihc pattern 
(Chapter 8). 
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10.2 Summary of Background Chapters 

Chaptcr 1 introduccd the problcni context for this research: model based recognition of 2-D 
'I'his chapter also patterns and 3-L) objects by matching structural dcscriptions to prototypes. 

contains a discussion of the methodologics used in this research snd a summary of thc results. 

Chapter 2 reviewed rclatcd work on thc problems of measuring and rcprcscnting 7-11 signals. This 
cliaptcr bcgan with a discussion of thc two popular approachcs to image description: cdgc detection 
and region scgmcntation. Iloth approaches are bascd on the assumption that an iniage is composed 
of npprox i imtc ly  uniform rcgions. Careful cxainination of most images of "rcal world objccts" in 
unconstriiincd lighting shows this assumption to bc inaccuratc. 'I'his chapter also dcscribcd 
inadequacies in the rcprcscntations produced by both of these approaches: 

0 thc dcscription of shapc in terms of small events, 

0 the inability to describe gradual transitions in intensity, and 

0 the inability to describe textured regions. 

A numbcr of dctcction functions for edgcs arc then dcscribcd. Thwas was followcd by a rcvicw of 
sc\cral multi-resolution algorithms that have becn used to solve various problcms involving two 
dinicnsional signals. The Chapter cndcd with a review of two rcprcscntation tcchniqucs which give 
objcct-centered descriptions of shape. 

Chapicr 3 provided a brief review of mathematics ana terminology from the field of digital signal 
proccssing which arc cniploycd in later chapters. Definitions wcre prcscntcd for convolution and 
corrclation, the two opcrations were shown to bc the same for a symmctric filtcr, and corrclation was 
shohn to be equivalcnt to a sequence of inner products. The transfer fiinction of a lincar operator 
was dcrivcd bascd on thc propertics of the eigcnfunctions of lincar systcms. Ilcsampling, aliasing, 
and the 2-1) Nyquist boundary were thcn dcscribcd. l h c  fi rcsampling opcration was dcfincd and 
its cffccts on die frequency contcnt of an image were described. Chapter 3 cndcd with a rcvicw of the 
paramctcrs that are commonly uscd to specify a digital filter. 

10.3 Measurement, Detection and Mathematical Representation of 
Non- Pe riodic Signals 

Chapter 4 described the foundation on which the tcchniqucs described in the latcr chapters are 
bascd. Chapter 4 bcgan by describing the concept of a paramctcrizcd family of dctcction functions. 
This idca was conccivcd early in this research and Icd to thc dcvclopmcnt of tLhc DO1 -1' transform. 

Chapter 4 thcn rcvicwcd principlcs for the dcsign of dctcction functions which arc to be uscd to 
dctcct and dcscribc non-pcriodic signals using ridgc and peak dctcction. 'I'hcsc principlcs wcrc 
conccivcd early in this research and playcd a kcy role in dic dcvclopmcnt of the 1)OI~l' transform; 
thcy scrvcd as a guide which dircctcd thc rcscarch. 'Ilicsc principlcs also show the assumptions on 
which thc rcscarch procccdcd. 
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One of the major innovations rcsulting from this research is the Differcnce of 1-ow-Pass (DOI~P) 
transform, dcscribcd in cliaptcr 5. ‘The 1)OLP transform consists of a set of cxponentially size-scaled 
band-pass filters which are formed by subtracting a sequcncc of sizc-scaled low-pass filters. ‘The 
DOLP transform expands an N point signal into Isg,(N) band-pass signals, whcrc N is tlic number 
of  samplcs in thc signal, and S is thc scale fiictor for s i x  scaling thc filtcrs (typically a). ‘The 
band-pass signals, and a convolution of thc largest low-pass filter with the signal may bc addcd 
togcther to rccovcr thc original signal. Thus tlic IIOLP transform is rcvcrsiblc; it prcscrvcs all of the 
in formation i n  a signal. ‘Ihc I ~ O l P  transfomi scpai-atcs a signal into o\ crlapping frcquciicy channcls. 
’l’his has the cffcct of decomposing a signal into components of different sizes, even if thc boundaries 
of the components are poorly defined. l’he configuration of peaks in the 1)01,P transform of a signal 
dcscribcs its components in a tree whose structure is invariant to the scalc of the signal. 

’lhc DOIP transform may bc dcfincd for signals of any dimcnsiunality. and may bc computcd by 
analog filters as wcll as digital filters. Based on this dissertation, a 1-13 form of 1)OI.P transfonn has 
been recently used to detect and discriminate defects in thc coatings of florcsccnt light bulbs 
[Handelsman81]. An investigation is being launched into the use of a fonn of I)0IdP transform for 
tracking formants in speech spcctograms. Anotlicr effort is bcing startcd to invcstigatc thc usc of a 
form of DOLP transform to describe range data from a depth sensor, Also, we haw reccntly 
proposcd thc use of a 3-D form of DOIP transform to reprcscnt 3-D sliapc in tcnns of primitives 
which arc hzzy spheres. 

As the band-pass impulse responses are scaled larger in size it bccomcs possible to rcsamplc the 
band-pass signals at a rate proportional to the scaling of the band-pass filter. This rcsampling can 
greatly rcducc the complexity of computing the DOLP transform as wcll as thc amount of storage 
required. Iksampling at a rate proportional to the scaling of the band-pass impulse rcsponsc can be 
designed so that thc no information is lost to the description from aliasing, whilc thc computational 
cost is reduced from O(N2) to O(N Log N) and the storage rcquircmcnts arc rcduccd from O(N Log 
N) to 3N. (N is the number of sample points in the image.) The rcsamplcd DOLP transform was also 
dcfincd and described in chapter 5. 

10.4 Techniques for Fast Computation of a DOLP Transform: The 
DOG and Sampled DOG Transforms 

Chapter 6 conccrncd tcchniqucs for which wcrc devclopcd in this rcscnrch to greatly rcducc the 
cost and spccd of computing a 2-11 I X L P  transform. Two propcrtics of the Gaussian function can 
be used to obtain substantial decreases in the cost of computing a DOLP and a samplcd DOLP 
transform: 

1. the Gaussian auto-convolution scaling property, and 

2. Thc separability of thc circularly symmetric 2-D Gaussian function. 

The Gaussian auto-convolution scaling propcrty provides that when a Gaussian function is convolved 
with itself, thc rcsult is thc Gaussian function scaled largcr in standard deviation by a factor of fi. 
This suggests that tlic 1101,l’ transform may bc spccdcd up by producing each low-pass image from 
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the prc\-ious Io\v-p3ss imagc by convol\,ing by the appropriate Gaussian function. In fact, the DOLP 
fciiirfi)nn ma). be reduced in cost from 0(Ri) niultiplies to O(N L o g  N )  multiplies by using an 
addiuonal technique for scaling a Gaussian function by fi: The df expansion function. 'The 

expansion operation maps each row of ;i function on a Cartesian sample g id  onto each diagonal 
0 1 ' ~ i  V'? sample grid. 'l'hc cxpandcd function is zero or undefined for points between those on the 
df grid. This exprindcd Gaussian filter has a transfcr function with a Gaussian center-lobe which is 
scalcd smaller ( i n  frcqucncy) by ;i factor of fi. There arc also reflections of this center lobe in the 
four- C O ~ H C I ' S  uf rhc ( u , v )  Nyquist plane. I3y proper clwicc of filtcr paramctcrs, rhcsc rcflcclions can be 
forn?cd such that they fall over ;I region of the auto-convolved Gaussian's transfcr function where the 
response is wry small (i. e. < -70 dl3). l'hus. when thc two fiinctions are convolved, the center lobes 
are attcnuatcd to a very small response ( < -100 dI3 in our cxamplcs). 

I3y repeated a expansion thc original filter may be scaled to thc same size as the cumulative 
low-pass impulse rcsponsc at each level. 'lhus each low-pass image for level k + 1 can be formed by 
conbol\ing the ION-pass image at levcl k with a copy of thc low-pass filter that has bcen expanded k 
timcs. 

An algorithm for computing a IIOLP transform using Gaussian filters, auto-convolution, and 
expansion was described in section 6.2. This algorithm, called "Cascaded Convolution with 
Expansion", produces a form of DOLP transform ( the DOG transform) in O(N Log N) multiplics. 

Further spccd-up, and a rcduction in storagc rcquircmcnts arc possible by including 
fi resampling in the algorithm. This alzorithm, called "Cascaded Convolution with Resampling", 
gives a form of sampled 1301,P transform. thc SDOG transform. in 3 A', N multiplies, where X ,  is 
the number of cocfficicnts in the kcrncl Gaussian filtcr. As with the Samplcd DOLP transform, 3N 
storagc cclls arc required. 

Chapter 6 dcfincd: 

'I'hc Gaussian hnction 

'l'he 2-13 Circularly Symmetric Gaussian filter 

'I'hc Gaussian auto-convolution scaling propcrty 

0 the dT cxpansion opcration 

Cascaded convolution with cxpansion and thc 1X)G transform 

Cascaded convolution with rcsampling and thc SDOG transform 

I n  this chaptcr thc complexity of thc cascaded convolution with resampling was dcrivcd. This 
complcxity was cornpared to that of computing a SIIOG transform using Fl-T convolution. Cascaded 
coiivolution with-rcsainpling was shown to bc morc cfficicnt whcncvcr thc imagc signal is largcr than 
65 x 65 samplcs. 
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Chaptcr 6 also cxamincd thc attenuation of thc rcflcctions that rcsult from the cxpmsion opcrator, 
and the accuracy of thc auto-convolution scaling property whcn uscd with a finitc Gaussian filtcr 
with a circular support. A i  the end of chaptcr 6, the impulsc responses of thc lcvcl 0 and lcvcl 1 
band-pass filters wcrc shown. and linear and log plots wcrc shown of the transfer functions of the 
h e 1  1 and lcvcl 2 band-pass filtcrs. 

10.4.0.1 Conclusions Conccrning Signal Ilctection 

‘I’hc principal conclusions to draw from chaptcr 6 arc that: 

0 A DOLP transform is not prohibitively cxpcnsivc to compute. 

0 A 1lOJ-P transform can be implcmcntcd using Gaussian filtcrs and cascaded convolution 
with cxpansion such that thc computational cost is less than that of a Fast Fouricr 
Transform. 

0 Cascaded convolution with expansion can be uscd to produce a scqucncc of low-pass 
imagcs such that tlic impulsc rcsponsc with which thc imagcs arc convolvcd have 
standard dcviations which form an cxponcntial scqucncc, ak = o,fik. 

0 Cascadcd convolution with expansion can be implcmcntcd such that thc impulsc 
rcsponscs havc stop bands which are kcpt very small, (i. c. < -SO dI3). 

‘I‘hc work dcscribcd in chaptcr 6 could be extcndcd in several ways. 

11 substantial spccdup ( a factor of 49/1Sj can bc achicvcd by using tlic scparability 
propcrty of tlic circularly symrnctric Gaussian function. Howcvcr this tcchniquc will 
result in a slightly Iiighcr worst-casc stop-band ripple bccausc a squarc support is nccded 
for scparablc filtcring. An invcstigation into thc cxtcnt of thc dcgrading of thc stop band 
rcjcction from this mcthod would bc uscfitl. Such an invcstigation is to bc carricd out in 
thc ncar future. 

0 I’hc cascaded-filtcring-with-cxpansion algorithm approximatcs thc Gaussian low-pass 
filtcrs with an auto-convolvcd Gaussian convolvcd rcpcatcdly with cxpandcd Gaussians. 
This is illustratcd in figurc 6-9. ‘I’lic mcasurcs which wcrc uscd to dctcrminc tlic accuracy 
of this approximation arc somcwhat crudc. It would be intcrcsting to computc the 
standard dcviations of thc scqucncc of filtcrs produccd in this rnanncr. I t  would also be 
intcrcsting to find a mcasurc for how closcly thcsc composite filtcrs approximate /me 
Gaussian functions. 

’I’hc cffccts of thc Gaussian filtcr paramcrcrs I i  and a havc only bccn cxamincd ovcr a 
limitcd rcgion of thc R, a spacc. ’I’liis cxamination showcd that for I< =4.0 and a = 4.0 
tlic transfcr function tapcrs monotonically along thc u and v axes of thc spatial frcquency 
planc to a rcsponsc of approximatcly zcro at thc Nyquist boundary points u = fn , v = 
0.2’ An cxhaustivc cxploration of thc cffccts of R and a would bc intcrcsting. However 

21’1hc function is symrnctric and so u and v arc intcrchangeable. 
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on the basis of the cxperimcnts that wcre carried out, it docs not appear that such an 
cxploration would contributc anything to the tcchniqucs used clscwhere in this thesis. 

10.5 Transforming the SDOG Transform of an Image into A Symbolic 
Description 

Chapter 7 dcscribcd a scqiicncc of  processes which producc a stnictural dcscription of the 
information in an imagc. based on a SDOG transform of thc imagc. ’I’hcsc proccsscs arc: 

0 the detection of local peaks in cach band-pass image, 

0 thc detection and linking of ridgc points in cach band-pass image, 

0 linking of peaks between lcvcls to form a tree, and dctcction of the pcaks which are a 
local maximum in thc SDOG transform. 

There arc four types of symbols that are assigncd to samplc points in the SIIOG transfonn by this 
process. ‘Ilcse symbols are: 

P-nodes: Ridge points within a band-pass level. 

M - nodes: Local positivc maxima or ncgativc minima within a band pass Icvel. 

L-nodes: Ridgc points in all tlirec dimcnsions of the SIIOG transform. Thcse are dctcctcd 
by comparing the values of ridgc points at adjacent levels. 

M *-nodes: Local positivc maxima and negative minima in all thrce dimcnsions of thc SDOG 
transform. l’hcsc are detcctcd by comparing the values of adjaccnt M-nodes in 
adjaccnt band-pass levels. 

A local, two-pass pcak and ridge dctection algorithm is cxccutcd for cach band-pass lcvcl. The 
result of this algorithm is sct of points markcd as P-nodcs or M-nodcs. P-nodcs and M-nodcs which 
arc 8-ncighbor adjaccnt. arc linked by two-way pointcrs. ‘I’hc result is a set of M-nodcs which are 
conncctcd togcthcr by chains of P-nodcs. ‘I’hcsc chains of P-nndcs arc called P-paths. Proccsscs are 
then run  at cach levcl which rcmove small loops and fill in short gaps in the P-paths. 

‘Ihc 1’-paths at cach lcvcl scrvc two purposes: 

1. Ihcy providc candidatc points for I,-node dctcction; and 

2. ‘I’hcy link togcthcr M-nodes which are part of thc same visual form. 

Scctions 8.3 and 8.4 dcscribcd how thc P-path attributcs of orientation and length arc used to 
match small graphs of M-nodcs a band-pass lcvcl from two imagcs. ‘I‘hc purposc of this matching is 
to obtain a onc-to-onc corrcspondcncc bctwccn the M-nodes. 
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M-nodes scrvc as markcrs for distinct fcaturcs in visual forms. M-nodcs occur at scvcral Icvcls for 
forms such as corners. cnds of bars, and othcr convex and concave parts in a visual form. ‘Ilicy also 
dcnotc thc prcscncc of forms which arc not elongated. Examplcs of thc forms that cause M-nodes are 
givcn i n  scction 7.1 and 7.3. Bccausc h,l-nodcs dcnotc distinct visual fcatiircs they pro\.idc cxccllent 
tokens fur matching h a g s .  Corrcspondcncc matching in an SDOG transform is a process of 
dctcnni ning dic correspondence bctwccn M-nodcs, M*-nodes, and I,-nodes in the dcscriptions from 
two images. 

‘ l k  fact that each band-pass impulse response is a copy of the impulsc rcsponsc from the ncxt 
lower lcvcl scaled largcr by df provides that the M-nodcs from adjacent Icvcls occur within two 
sample distanccs of each othcr. Thus it is possible to connect h4-nodes bctwccn thc band-pass Ic\rcls 
by having each M-nodes search for M-nodes in a small ncigliborhood in the bmd-pass iniagc above 
it. Such adjacctit M-nodcs form a two-way pointer bctwccn thcnisclvcs. Scqucnccs of M-nodcs at 
scvcral levels such that each M-node is connccted to one M-node abovc it and/or onc M-node below 
it arc called M-paths. M-paths that describe a visual form givc a trec. At the top Icvcls of the tree 
thcrc arc M*-nodcs that provide an estimate of the size of the visual fonn. Aligning thc h4*-nodes 
from two iinagcs gives an initial estimate of the relative position and size of the two visual forms. l h e  
relative orientation is provided by determining thc corrcspondencc of the M-nodes, M*-nodcs and 
I--nodcs in lower levels of thc tree. Such matching is described in Chapter 8. 

Forms that arc long and thin result in ridges at several adjaccnt band-pass levels. Comparing the 
values of ridge points at adjacent lcvcls gives ridgc points in the three dimensional SIIOG transform. 
The 3-space ridgc points are labcled as La-nodes. L-nodes are linkcd to adjacent 1.-nodes with 
two-way pointers to form an 1,-path. Except for certain degenerate forms, I*-paths begin and end at 
M*-nodes. An I,-path describes the points along the center of an clongatcd form. I‘he level of each 
1,-node gives an estimate of thc width of the form at that point along the center of the form. ‘I’he 
alignment of the M*-nodes at cach end of an L-path provides an initial estimate of thc best alignment 
of thc I--paths from two images. A ncarcst neighbor matching rule was dcscribcd for comparing two 
I*-paths in scction 8.5. 

A conclusion that can be drawn from the algorithms described in chapter 7 is that a a structural 
description of an image can be constructed without the use of cxplicit measures of dircctionality. The 
issue of whcthcr a incasure for directionality was nccdcd to dctcct ( or  even dcfinc what is meant by) 
ridgcs in each band-pass image was raised at the outset of our investigation into tcchniqucs for 
constructing a dcscription of an image from a DOIP transform. ‘I’he outcomc was that such a 
rncasurc is not necessary: a two pass process can bc uscd to dctcct ridges. In thc first pass of this 
prtxess samplcs arc linked to their largcst neighbors. In thc second pass, samplcs which link to cach 
other arc marked as ridgc nodes. This process was found to bc sufficicnt for dctccting ridges. 

A fundamental reason why thc proccsscs described in chapter 7 woik is thc smoothncss of each 
band-pass image. ‘I’his smoothness is a result of thc band-pass cliaractcristics of tlic filters uscd in the 
IXILP transform. ‘l’lie DOIP band-pass filtcrs sufficicntly constrain the spatial frcqucncy contcnt of 
cach band-pass imagc so that relativcly simple prtxesscs map be uscd to dctcct pc‘rks and ridges in 
each image. ‘Ihc fi scaling between filters constrains the changes bctwccn adjaccnt band-pass 
images so that nearest ncighhor comparisons may bc uscd to dctcct Uic local peaks and ridges among 
thc band-pass images in the transform space. 
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10.6 Examples of Matching 

Chapter 8 dcmonstratcd how the representation may be uscd to dctcrminc the correspondence of 
forms in two images, even when a form has been rotated and/or scaled from one image to the next. 

‘lhis chaptcr started with a discussion of the use of corrcspondcncc matching for stnictiiral pattcrn 
recognition and for depth mcasurcment from stereo pairs of images. 

A procedure for determining the corrcspondcncc of M-nodes and I.-nodcs in thc dcscriptions of 
t w o  images of similar objects was then summarir.cd. A set of test imdges of teapots were then 
prcscntcd. ’I’hcsc tcst images were formed at 3 distances and 2 imagc-plane orientations. ‘I’hcy were 
formed to test and demonstrate the invariance of the representation to changcs of scale and image 
plane orientation. 

A discussion of determining the correspondence by matching M*-nodcs and M-paths was then 
prcscntcd. This discussion described how the highest level M*-nodes may be uscd to obtain an initial 
estmate of the relativc position and size of the form in the two images. I t  then described how the set 
of M-nodes which are conncctcd by P-paths at cach level may be matched. This matching employs 
the distance and rclatix oricntations between thc conncctcd M-nodes as die principal fcaturc in the 
matching. ‘I‘he process appears to exhibit only a lincar growth in complexity as thc numbcr of 
hl-nodcs at cach lowcr lcvcl increases, because the matches at each lcvcl constrain the matches at the 
ncxt lower level. 

Examples wcrc then prcscntcd which show matching of thc tcapot imagct from 3 distances (sizes) 
and 2 orientations. ‘I’hcse cxamplcs showcd the cyclic degrading of the description that occurs as 
scale is increased by a factor of fi. The examples also showcd that matching is possible despite this 
degradation. 

‘lhis scction closcd with an example of matching bctwccn a pair of s t e m  images. The 
correspondence of M-nodes in the upper levels of a pair of images of a paper wad was shown. 

‘I’hc last scctioil of chapter 8 dcscribcd a proccss for aligning I_-paths, based on the correspondence 
of their terminating M*-nodcs. and a simple meastire for the similarity of I .-paths. ‘I‘hc alignmcnt 
function is a simple linear scaling and rotation of the cntirc I_-path, based on the relativc distances 
and orientations between the M*-nodcs at cach end of’ thc L-paths. ’I’hc similarity mcasurc is based 
on Lhc principle that for cach I--nodc in the scaled and rotated I<-path, the nearest I,-nodc in the 
second ],-path is determined. The I,-path similarity is then mcasurcd by h e  average and thc worst 
case distances bctwccn 1,-nodes. Example of this matching were given using an Ia-path that describes 
a shadow from 5 of thc tcapot images. 

Miich work is nccdcd in refining and dcvcloping thc matching proccsscs dcscribcd in chapter 8. A 
thorough dcvclopmcnt of matching tcchniqucs using dcscriptions bascd on thc 1>01 ,P transform is 
much too large a problcm to be cncompasscd under the limited scope of this dissertation. It is 
howcvcr a timcly and vcry important problcm. 
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The matching examples that were shown in chapter S were intended to both illustrate the sizc and 
rotation invariancc of a structural description based on a D0I.P transfonn, and to show kinds of 
matching which can be done with such descriptions. In some sense these were the results of a 
prclirninary investigation. These preliminary results were promising. M*-nodcs and M-paths were 
found to bc particularly useful in finding the corrcspondcncc of compoiients in  ~ M ' O  descriptions. We 
are preparing to launch a tliorough development of matching techniques for descriptions based on 
the I l0I .P transform w-ithin the problcm domains of structural pattcrri recognition and stereo image 
corrcspondcncc. This promises tu be an exciting and friiitfid investigation. 
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Appendix A 
Selection of Filter Parameters 

This appendix describes thc choice of filter paraincters, R = 4.0 and a = 4.0, for thc cxperimcntal 
implcnicntation of thc SIIOG transform which was uscd to dcvclop tlic stnictural rcprcscntation. 

‘fhc choice of R and a must balancc two opposing constraints. On one hand. thc low pass filtcrs 
must sufficicnrly attcnuatc responsc at frcq~icncics outside of thc Nyquist boundary at each low-pass 
Icwl to avoid aliasing from rcsampling. Such aliassing would result in random crrors in thc position 
of peaks and ridgcs as wcll as thc detection of spurious peaks and ridges. The filter rcsponse can be 
madc arbitrarily small outside thc Nyquist boundary by incrcasing thc numbcr of cocfficicnts of the 
filtcr, (i.c. by incrcasing R ). It is also possiblc to adjust thc position of thc stop band towards the 
origin, at the cxpcnsc of incrcasing thc stop-band ripplc, by  dccrcasing thc paramctcr, a.  

On the other hand it is desirable :o kccp the numbcr of cocfficicnts and thus thc computational 
cost of tlic SDOG transform as small as possible. 

The R paramctcr dctcrmincs the cost of a DOLP transform ( Givcn thc size of thc irnagc, and the 
scaling value S = fi ). R should bc choscn to bc thc smallcst valuc which givcs nccep/able low 
lcvcls of aliasing whcn thc low pass imagcs arc samplcd. The mcaning of accepplable rcmains a topic 
of dcbatc. We have suggcstcd that thc stop band ripplc is acccptablc if thc magnitudc of the worst 
case stop-band crror is lcss than thc quantization rcsolution used to rcprcscnt thc samples. In our 
actual choice of I< and a we were much more conscrvativc than this guideline. 

‘I’hc a paramctcr specifics the standard dcviation of thc filtcr for a given R. Since a controls the 
tapcring of the cocfficicnts at tlic boundary of the filtcr support. it givcs a tradc-off bctwccn the 
transition width (AF) and thc magnitudc of the ripplcs (6) i n  thc stop band. Incrcasing a dccrcascs 
h e  si/c of thc ripples in  tlic stop band rcgion whilc making thc transition rcgion widcr and moving 
thc cdgc of the stop band away from thc origin. For any valuc of R, a should be clioscn as large as 
possiblc, so that the stop band ripplc is as small as possiblc. ‘l’hc uppcr limit for a is the value at 
which thc largcst filtcr rcsponsc at thc Nyquist boundary is of thc same magnitudc as the stop-band 
ripple. 

Thc first rc-sampling occurs at thc lcvcl 1 low pass imagc, whcrc thc impulsc rcsponsc of the 
low-pass filtcr is thc kcrncl filtcr, g(x,y;R,a) convolvcd with itsclf. Thus the transfcr function of the 
coinpositc filtcr at lcvcl 1 is thc squarc ofthc transfcr function of tlic thc kcrncl filter. 

it was dccidcd to dcsign thc kcrncl filtcr so that thc outcr cdgc of its transition rcgion would just 
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touch tlic new nyquist boundary for df sampling. This meant that the sampling dishncc at cach 
lcvcl Would bc approximately fi smallcr than nccdcd to minimix aliasing. This providcs a factor 
of d? hctrcr positional accuracy in the description, although it tends to make peaks m d  ridgcs less 
sharp. l‘his also nicant that the worst case stop-band ripple would bc thc square of thc ripple in the 
kernel filtcr. 

I’aramctcrs for the kernel filter wcrc testcd to determine: 

1. The worst case ripple outside tlic Nyquist boundary for fi sampling. 

2. ?he  valucs at u,v = +n/2, the four points on the ncw nyquist boundary that arc closest 
to the origin. 

As a first pass. filters and their transfcr functions wcrc computcd at cach of thc 9 points given by 
all combinations of: 

R E { 3,4,5 1 
a E { 3,4,5 1 

‘I’hcsc starting valucs wcrc choscn from earlier cxpcriencc with circularly symmetric Gaussian filters. 
’I’hc valucs obtained for maximum amplitude of stop band ripple (6) and for G(u= n/2,v= n/2) 
(‘I’his is for the real part of the transfer function) are shown below in table A-1. Thc symbol N/A is 
given for 6 whcn thc ripple did not comc to a pcak insidc thc u,v plane. 

a = 4.0 a = 5.0 a = 3.0 
6, G(n/2,n/2) 6. G(n/2,n/2) 6, G(n/2,~/2) 

R = 3  0.031,0.025 N/A, 0.063 N/A, 0.109 
R = 4  -0.018,0.013 -0.008, 0.011 0.003, 0.021 
R = 5  -0.003,0.0111 -0.006, -0.006 -0.002.0.002 

Table A-1: Results of Initial Paramctcr Trial 

From this cxpcrimcnt it was lcarncd that K = 3  was not not quite adcquatc to keep thc transition 
rcgion within thc Nyquist boundary for fi sampling. R = 5  was rcjcctcd bccausc I< = 4  was judgcd 
to be adcquatc. ‘I’hc valuc of a = 4.0 was judgcd to bc thc bcst of tlicsc thrcc trial points duc to the 
closcncss of thc stop band ripplc magnitude and thc maximum stop band crror. ‘I’hc transfer 
functions wcrc thcn computcd for R = 4 and a = 3.80 to a = 4.20 in steps of 0.05 . ‘I’hc valuc a = 
4.0 was fbund LO put thc first zcro crossing at thc points (u,v) = (kn.0) and (0,kn) , and tlius was 
sclcctcd for usc in dcvcloping thc symbolic dcscription tcchniquc dcscribcd in thc chaptcrs 7 through 
9. 

From thc Lablc of valucs givcn abovc it can bc sccn that thc worst casc aliasing whcn thc lcvcl 1 
low pass imagc is sampled. OCCUIS at (u.v) = (+n/2,rn/2). ‘I’hcsc points arc on tlic Nyquist 
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boundary, and for them thc filler rcsponsc is 0.O1l2 = .000121 or -78.34 dI3 doun from the inaxirnum 
response ( 1.0 at IIC). All other aliased frcqiiencies arc less than o r  equal to -.O0S2 = 0.000064 or 
-83.8 dR or smaller. ‘I’his was judged to be adequate and attcntion was turned to othcr matters. 
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